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Universal relations of local order parameters for partially synchronized oscillators
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Interactions among discrete oscillatory units (e.g., cells) can result in partially synchronized states when some
of the units exhibit phase locking and others phase slipping. Such states are typically characterized by a global
order parameter that expresses the extent of synchrony in the system. Here we show that such states carry data-rich
information of the system behavior, and a local order parameter analysis reveals universal relations through a
semicircle representation. The universal relations are derived from thermodynamic limit analysis of a globally
coupled Kuramoto-type phase oscillator model. The relations are confirmed with the partially synchronized
states in numerical simulations with a model of circadian cells and in laboratory experiments with chemical
oscillators. The application of the theory allows direct approximation of coupling strength, the natural frequency
of oscillations, and the phase lag parameter without extensive nonlinear fits as well as a self-consistency check
for presence of network interactions and higher harmonic components in the phase model.
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I. INTRODUCTION

Synchronization of rhythmic processes is an important
phenomenon [1–5] that underlies the functioning of many
essential physiological processes, e.g., in cardiac pacemaker
cells [6] and circadian clock neurons [7]. The interpretation of
data often relies on the Kuramoto-Sakaguchi model [8] type of
phase equations, which formulate the instantaneous frequen-
cies (time derivative of the phases) as a function of the phase
difference between the oscillations [9]. In fact, this model is
relevant to any globally (all-to-all) coupled oscillator system
provided the oscillators are in the regime close to the onset
of oscillations through a Hopf bifurcation and the interaction
between them is weak. Other applications where validity of
this model was rigorously justified include Josephson junctions
arrays [10,11] and electrical circuit oscillators [12–14].

The oscillatory units (e.g., cells with periodic gene ex-
pressions) are often partially synchronized: The oscillations
are neither fully synchronized, nor fully desynchronized, but
in a state in between that provides a balance for generation
of strong rhythm and ability to adapt to external change.
The partially synchronized states can be described through
extensive experiments with changing the coupling strengths,
plotting the order parameter as a function of the coupling
strength, and comparing the experimental results to the the-
oretical predictions [15–19]. The type of behavior depends
on the distribution of natural frequencies, coupling strength,
and the oscillation sheer (phase shift in the coupling that can
slow down or speed up weakly coupled oscillators without
phase locking) [20]. Present theoretical approaches focus on
solving the asymptotic behavior of the Kuramoto-Sakaguchi
equation, typically showing the order parameters as a function
of coupling strength assuming that the frequency distribution
and the phase shift parameter are known [21,22].

Experimental data (in particular in biological systems) can
be often collected only at a given coupling strength, and a
priori very little is known about the phase shift parameter or the

exact natural frequencies of oscillators. Therefore, a question
arises whether some universal relations exist for the evolution
of the phases in terms of the Kuramoto-Sakaguchi equation,
that could be compared to the experimental data at the given
coupling strength.

In this paper, we show the existence of the universal
properties of the partially synchronized states of the Kuramoto-
Sakaguchi equation in the thermodynamic limit. A synchro-
nization analysis is developed, which relies on the behavior of
the local order parameter. The use of a semicircle representa-
tion is tested in numerical calculations with finite-size phase
models and with a model of circadian gene expressions, as well
as in experiments with chemical oscillators.

II. KURAMOTO-SAKAGUCHI MODEL

The Kuramoto-Sakaguchi model [8]

dθk

dt
= ωk − K

N

N∑
j=1

sin(θk − θj + α), k = 1, . . . ,N, (1)

describes dynamics of N globally coupled phase oscillators
θk ∈ R mod 2π with the natural frequencies ωk drawn ran-
domly from a specific distribution g(ω). Given a distribution
g(ω) and a phase-lag parameter α ∈ (−π/2,π/2) and varying
coupling strength K from zero to large positive values one
usually observes synchronization transition scenario [23,24]
shown schematically in Fig. 1. The synchronization is charac-
terized with the Kuramoto order parameter

r(t) = 1

N

N∑
k=1

eiθk (t), (2)

which measures the synchrony between oscillators such that
|r(t)| = 1 and |r(t)| ≈ 0 stand for the perfectly synchronous
state and for disordered phase configurations, respectively. If
coupling K is smaller than a certain critical value Kc, then the

2470-0045/2018/97(6)/062207(12) 062207-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.062207&domain=pdf&date_stamp=2018-06-15
https://doi.org/10.1103/PhysRevE.97.062207


OMEL’CHENKO, SEBEK, AND KISS PHYSICAL REVIEW E 97, 062207 (2018)

0

1

0 Kc Ks K

|r|

(a)

(c)

(b)

-1 ωk 1
-1

1
(c)

.<θk >

-1 ωk 1

(b)

-π

π

-1 ωk 1

θ k

(a)

FIG. 1. Synchronization transition in the Kuramoto-Sakaguchi
model (1) with large number of oscillators N . Incoherence (a),
partial synchrony (b), and phase-locked state (c) are observed for
K < Kc, Kc < K < Ks , and K > Ks , respectively, where Kc and Ks

are threshold values depending on g(ω) and α. Additional panels show
phase snapshots θk and time-averaged phase velocities 〈θ̇k〉 typical for
these states.

asynchronous (incoherent) state, Fig. 1(a), is stable. For larger
coupling strengths one observes the onset of partial synchrony,
Fig. 1(b), with |r(t)| growing with the increase of K . Finally,
when K exceeds another critical value Ks all oscillators get
phase locked, Fig. 1(c).

Modulus |r(t)| usually exhibits finite-size fluctations, and
therefore in practice one replaces it with the mean order
parameter

R = 〈|r(t)|〉, (3)

where the angle brackets 〈·〉 denote time average. Moreover, a
detailed representation of stationary regimes in the supercriti-
cal region, i.e., for K � Kc, can be obtained if one records the
effective frequencies

�k =
〈
dθk

dt

〉
= lim

T →∞
θk(T ) − θk(0)

T
. (4)

In this paper, for each oscillator we also define a complex
quantity characterizing its mutual entrainment to the mean
field, the local order parameter,

ζk =
〈
−ieiθk (t) r(t)

|r(t)|
〉

∈ C, (5)

where r(t) denotes the complex conjugate of r(t). The oscilla-
tor with |ζk| = 1 is synchronized (or phase locked) with respect
to the Kuramoto order parameter r(t), while the oscillator with
|ζk| < 1 is desynchronized and drifts with respect to it. Note
that motivation for definition (5) originates from formula (A15)
in Appendix A.

It turns out that in many cases the triplet (R,{�k},{ζk})
constitutes a unique signature of the state developed by the
system (1). In Sec. III we show that the elements of this triplet
satisfy some universal relations.

The universal relations allow a simple approximation of
parameters of the system (1) from partially synchronized states
(Secs. IV A and IV B). Moreover, these relations allow to
demonstrate the nonuniqueness of parameter reconstruction

for phase-locked states (Sec. IV C) and identify the Kuramoto-
Sakaguchi model among other Kuramoto-type models (Sec.
IV D). In Sec. V we show two examples illustrating the appli-
cation of universal relations for primary treatment of the data
in circadian oscillators and experiments with electrochemical
oscillators. Some concluding remarks are given in Sec. VI.

Two Appendices at the end of the paper summarize the
details of the thermodynamic limit analysis for the Kuramoto-
Sakaguchi model (Appendix A) and describe the experimental
setup for electrochemical oscillators (Appendix B).

III. UNIVERSAL RELATIONS

In the limit N → ∞ the state of the phase oscillators {θk(t)}
can be described by a probability density function ρ(θ,ω,t)
such that ρ(θ,ω,t) dω dθ determines the probability to find
oscillator with (ωk,θk(t)) ∈ [ω,ω + dω] × [θ,θ + dθ ] at the
time t . The mean-field structure of Eq. (1) allows us to write a
nonlinear hyperbolic integrodifferential equation, the so-called
continuity equation, describing the evolution of ρ(θ,ω,t). This
equation can be analyzed using the method suggested by Ott
and Antonsen in Refs. [25,26]. In particular, it can be shown,
see Appendix A, that all stationary partially synchronized
states of Eq. (1) are represented by a two-parametric family
of periodic solutions of the continuity equation [50]. Explicit
form of these solutions and numerically observed ergodicity of
partially synchronized states result in the following identities:

R = p/K, (6)

ζk = h(sk)e−iα, (7)

�k = � + pQ(sk), (8)

where

sk = ωk − �

p
, (9)

and (�,p) ∈ R × (0,∞) is a pair of numbers parameterizing
the manifold of partially synchronized states. A remarkable
feature of formulas (7) and (8) is that their right-hand sides are
expressed via the two universal functions

h(s) =
{

(1 − √
1 − s−2)s for |s| > 1,

s − i
√

1 − s2 for |s| � 1,
(10)

and

Q(s) =
{

s
√

1 − s−2 for |s| > 1,

0 for |s| � 1,
(11)

which are independent of the particular choice of natural
frequencies ωk and other system parameters K and α, therefore
we call these formulas universal relations. In Sec. III A we
show that although formulas (6)–(8) are justified for the limit
N → ∞ only, they remain a good approximation for large but
fixed sizes N , too.

Accuracy of universal relations

In order to test formulas (6)–(8) in the finite-N case we
performed a series of numerical simulations of model (1) with

062207-2



UNIVERSAL RELATIONS OF LOCAL ORDER PARAMETERS … PHYSICAL REVIEW E 97, 062207 (2018)

d k(1
)

(a) δm
(1)

0

0.02

0.04

 0

 0.05

 0.1

δ m(1
)

(c)
α = 0
α = π/8
α = π/4

d k(2
)

(b) δm
(2)

0

0.02

0.04

0 N 160
 0

 0.05

 0.1

1.5 2 2.5 3

δ m(2
)

(d)

K

α = 0
α = π/8
α = π/4

FIG. 2. Accuracy of universal relations (6)–(8) for the Kuramoto-Sakaguchi model (1). Panels (a) and (b): Distribution of discrepancies d
(1)
k

and d
(2)
k for different system sizes N . Solid lines show mean values δ(1)

m and δ(2)
m . Shaded regions show the intervals [0,δ(n)

m + σ (n)
m ] containing

most of d
(n)
k . Panels (c) and (d): Mean discrepancies δ(1)

m and δ(2)
m for different values of K and α. Vertical dotted lines show the onset of synchrony

Kc for chosen values of α.

natural frequencies ωk drawn randomly from the Gaussian
distribution

G(ω) = 1√
2π

e−ω2/2.

For fixed system size N and fixed parameters K and α we
generated 1000 realizations of the natural frequencies ωk . For
each realization we integrated system (1) using the Runge-
Kutta scheme with the constant time step dt = 0.02. Starting
from random initial conditions and discarding a transient of
the length 1000 time units, we used next T = 1000 time units
to calculate the observables R, ζk , and �k . More precisely,
we used formulas (3)–(5) where time averages 〈 . . . 〉 were
replaced with their finite-time analogs

〈 . . . 〉T = 1

T

∫ T

0
( . . . ) dt. (12)

Mean-field velocity (or rotational velocity of order parameter)
was computed from the formula

� = Arg r(T ) − Arg r(0)

T
,

where Arg r(t) denotes the continuously varying argument of
the order parameter r(t).

Given K,ωk, R, and � we computed p and sk from (6) and
(9). Inserting them into formulas (7) and (8) and dividing the
latter by p = KR we obtained two dimensionless expressions

d
(1)
k =

∣∣∣∣ζk − h

(
ωk − �

KR

)
e−iα

∣∣∣∣, (13)

d
(2)
k =

∣∣∣∣�k − �

KR
− Q

(
ωk − �

KR

)∣∣∣∣, (14)

measuring the discrepancy in each of formulas (7) and (8). The
distribution of discrepancies d

(1)
k and d

(2)
k was charcterized by

the mean values

δ(n) = 1

N

N∑
k=1

d
(n)
k , n = 1,2,

and the variances

σ (n) =
√√√√ 1

N

N∑
k=1

(
d

(n)
k − δ(n)

)2
, n = 1,2.

Averaging them over 1000 realizations of the natural frequen-
cies ωk we obtained mean values δ(n)

m and σ (n)
m .

Figures 2(a) and 2(b) show that formulas (6)–(8) are satis-
fied with good accuracy already for moderate system sizes N .
The accuracy is better than 10% already for N � 30 oscillators
and the mean discrepancy decreases inversely proportional to
the system size N .

Figures 2(c) and 2(d) explain how the accuracy of formulas
(6)–(8) depends on the values of the coupling strength K

and the phase lag α. In general, we observe the following
tendency. The accuracy is very good for all values (K,α) where
partially synchronized states exist, except of the values close
to the onset of partial synchronization. In this case interaction
between oscillators is very weak and cannot be identified
with satisfactory resolution. Taking into account the scaling
behavior shown in Figs. 2(a) and 2(b), one may expect that for
increasing system size the region of low accuracy of formulas
(6)–(8) becomes smaller and shrinks for N → ∞.

IV. APPLICATION OF UNIVERSAL RELATIONS

Now we show some applications of universal relations (6)–
(8). In Sec. IV A we formulate a mathematical algorithm allow-
ing to approximate all parameters of the Kuramoto-Sakaguchi
model (1) from the triplet (R,{�k},{ζk}) corresponding to a
partially synchronized state. The accuracy of this approach
is analyzed in Sec. IV B. Next, in Sec. IV C we show that
for phase-locked states the parameter reconstruction problem
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FIG. 3. Data representation and parameter approximation for numerical simulation data from model (1). (a) Computed values of ζk (dots)
and their semicircle fit (solid curve). (b) Approximated phase lag α̂ is the minimum of the function P (α), see formula (16). (c) The best fit (solid
curve) of the dependence between �k and ŝk (dots). (d) Approximated ω̂k vs. actual ωk natural frequencies. Parameter approximation quality:
(a) C1 = 4.3 × 10−5 and (c) 1 − C2 = 1.2 × 10−5.

has infinitely many solutions constituting a two-dimensional
manifold. Finally, in Sec. IV D we show how universal relations
(6)–(8) can be used to discriminate between the Kuramoto-
Sakaguchi model and more complicated Kuramoto-type mod-
els with inhomogeneous coupling topology and nonsinusoidal
phase interaction functions.

A. Parameter approximation

Suppose that we observe a stationary partially synchronized
state in system (1) and measure the instantaneous phases
θk(t) of all oscillators over a time interval of length T . For
sufficiently large T time averages 〈 . . . 〉 in formulas (3)–(5)
are well approximated by their finite-time analogs 〈 . . . 〉T , see
(12). Thus, we can calculate the mean order parameter R, the
effective frequencies �k , and the local order parameters ζk of
the oscillators. For a partially synchronized state we must have
0 < R < 1. Moreover, the effective frequencies �k cannot be
completely locked, i.e., at least some of them must be different.

For the local order parameters, by definition we have |ζk| �
1. Moreover, for partially synchronized states, formula (7)
implies that points ζk are located at the boundary of a unit
semicircle, which is the image of h(s)e−iα for s ∈ R, see
Fig. 3(a). This fact can be used to calculate the phase lag α

from the plot of local order parameters ζk as follows.
Function h(s) defined by formula (10) satisfies the equation

s = h2(s) + 1

2h(s)
∈ R, (15)

therefore, to fit the relation (7) we seek a phase lag parameter
α that minimizes the function

P (α)=
N∑

k=1

[
Im

(
ζ 2
k e2iα+1

2ζkeiα

)]2

= 2B−2Re(Ae2iα), (16)

where

A =
N∑

k=1

(|ζk|2 − 1)2ζ 2
k

16|ζk|4 , B =
N∑

k=1

(|ζk|2 − 1)2

16|ζk|2 .

Simple calculations demonstrate that for |A| 	= 0 function
P (α) has a unique minimum α̂ ∈ (−π/2,π/2) given by

α̂ = −1

2
arg A, (17)

see Fig. 3(b). For infinitely large systems equations (7) are
exact, therefore formula (17) yields true value of phase lag α

in Eq. (1), while for finite-size systems we may expect that α̂

is a good approximation of α. The latter will be verified in Sec.
IV B.

Next, using α̂ we calculate the approximated rescaled
natural frequencies

ŝk = Re

(
ζ 2
k e2iα̂ + 1

2ζkeiα̂

)
. (18)

Because of (8) the points in the (ŝk,�k) graph should follow
�k = � + pQ(ŝk), where p is the frequency scaling factor and
� is the frequency of the order parameter r(t), see Fig. 3(c).
Since for partially synchronized states we have |ŝk| > 1 at least
for some fraction of indexes k, this relationship allows us to
formulate a linear fitting procedure

N∑
k=1

(�k − � − pQ(ŝk))2 = min

determining the parameters p and �. Its solution can be written
explicitly,

p̂ = N��Q − ���Q

N�QQ − �2
Q

, �̂ = 1

N
�� − p̂

N
�Q,

where

�� =
N∑

k=1

�k, ��Q =
N∑

k=1

�kQ(ŝk),

�Q =
N∑

k=1

Q(ŝk), �QQ =
N∑

k=1

Q(ŝk)2.

To quantify the correlation between measured data θk(t) and
formulas (6)–(8) one can use two fitting quality coefficients:

(a) The quality of the semicircle fit is described by the ratio

C1 = minP (α)

maxP (α)
= B − |A|

B + |A| , (19)

which measures how pronounced is the minimum of function
P (α). Ideally C1 must be close to zero. Large C1 corresponds to
poor correlation between the input dataR, ζk,�k , and formulas
(6)–(8).
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(b) The quality of the linear fit is determined by the
corresponding correlation coefficient

C2 = N��Q − ���Q√
N�QQ − �2

Q

√
N��� − �2

�

, (20)

where ��� is defined by analogy with �QQ. |C2| values close
to 1 represent good fit.

If the semicircle fit and the linear fit confirm that measured
data agree with formulas (6)–(8), then all parameters of this
model can be calculated: The phase shift can be obtained using
Eq. (17), and the effective coupling strength and the natural
frequencies can be calculated as follows:

K̂ = p̂/R and ω̂k = �̂ + p̂ŝk. (21)

B. Parameter approximation accuracy

The accuracy of the parameter approximation algorithm
from Sec. IV A was tested by applying it to surrogate data
from numerical simulations of model (1). We used the same
protocol as in Sec. III A. Namely, for fixed system size N

and fixed parameters K and α we generated 1000 realizations
of the Gaussian distributed natural frequencies ωk . For each
realization we integrated system (1) starting from random
initial conditions. Discarding a transient of the length 1000
time units, we used next T = 1000 time units to calculate
the observables R, ζk , and �k from the formulas (3)–(5)
where time averages 〈 . . . 〉 were replaced with their finite-time
analogs 〈 . . . 〉T . The approximation error of the modified
formulas (3)–(5) was computed by

E = max
τ∈[T/2,T ]

|〈 . . . 〉τ − 〈 . . . 〉T |.
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FIG. 4. Parameter approximation accuracy for the Kuramoto-
Sakaguchi model (1) with Gaussian frequency distribution G(ω) and
different sizes N . (a) Reconstruction errors of natural frequencies Eω,
coupling strengthEK , and phase lagEα . (b) Fitting quality coefficients
C1 and C2.

[For the chosen averaging time T = 1000 this error was much
smaller than the corresponding mean discrepancies δ(1,2)

m of
universal relations (6)–(8).]

Computed values R, ζk and �k were processed using
the parameter approximation algorithm from Sec. IV A. For
example, Fig. 3 shows how the algorithm works for model (1)
with N = 100,K = 2.5, and α = π/8.

For each realization we calculated two fitting quality co-
efficients C1 and C2 defined by (19) and (20) as well as the
reconstruction errors

Eω = 1

N

N∑
k=1

|ω̂k − ωk|, EK = |K̂ − K|
K

, Eα = |α̂ − α|
π/4

,

where K,α, ωk are input parameters and K̂, α̂, ω̂k are their
approximated values. A mean error estimate was calculated by
averaging the errors over 1000 realizations. Note that because
of the finite system size N , for a given natural frequency real-
ization there exists a critical coupling strength Ks such that for
K � Ks system (1) has a global phase-locked state attractor.
If in our simulations we encountered such a realization, then
we discarded it and generated a new one until we obtained a
system (1) exhibiting a partially synchronized state.

Figure 4 shows the dependence of the parameter approxima-
tion accuracy on the system size N , while Fig. 5 explains how
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FIG. 5. Parameter approximation accuracy for the Kuramoto-
Sakaguchi model (1) with Gaussian frequency distribution G(ω) and
different values of K and α. Notations Eω,EK,Eα, C1, and C2 are the
same as in Fig. 4. Vertical dotted lines show the onset of synchrony
Kc for chosen values of α.

062207-5



OMEL’CHENKO, SEBEK, AND KISS PHYSICAL REVIEW E 97, 062207 (2018)

-1

 1

-1  1

Im
ζ k

Re ζk
FIG. 6. Local order parameters ζk (dots) of a phase-locked state in

the Kuramoto-Sakaguchi model (1) with uniformly distributed natu-
ral frequencies ωk = −1 + 2k/(N − 1). Parameters: N = 100, K =
1.7, and α = π/8. The tilts of the dotted and solid semicircles
determine phase lags α̂min and α̂max.

this accuracy depends on the values of the coupling strength
K and the phase lag α. Comparing these results with Fig. 2 we
see that the accuracy of the parameter approximation algorithm
varies similarly to the accuracy of universal relations (6)–(8).
In particular, it decreases inversely proportional to the system
size N and remains nearly constant for all values (K,α) where
partially synchronized states exist, except of the values close
to the onset of partial synchronization. Moreover, the fitting
quality coefficients C1 and C2 shown in Figs. 4(b), 5(b), and
5(c) confirm that formulas (6)–(8) indeed are satisfied with
good accuracy in all tests.

C. Parameter approximation for phase-locked states

For large coupling strengths K system (1) exhibits phase-
locked states characterized by identical effective frequencies
�k . In this case all oscillators are entrained to the mean field,
and therefore |ζk| = 1 for all k = 1, . . . ,N . Thermodynamic
limit analysis shows that formulas (6)–(8) remain valid for
phase-locked states, too. However, the reconstruction algo-
rithm from Sec. IV A does not give a unique solution for system
parametersωk,K , andα. Indeed, if we look at the graph of local
order parameters ζk of a phase-locked state, see Fig. 6, we find
that there exist two angles α̂min,α̂max ∈ (−π/2,π/2) such that
for every α ∈ [α̂min,α̂max] all points ζk lie on the semicircle
{h(s)e−iα : s ∈ R}. In this case, we cannot use formula (8) to
determine the parameter p, because for |ζk| = 1 formula (18)
yields |ŝk| � 1 and hence Q(ŝk) = 0. However, if we assume
�̂ = �k (recall that all �k are identical), then for arbitrary
choice of

(α̂,p̂) ∈ [α̂min,α̂max] × (0,∞)

formulas (21) determine parameters K̂ and ω̂k of the system
(1) consistent with the observed triplet (R,{�k},{ζk}). Thus,
the parameter approximation problem has a two-parametric
set of solutions.

D. Identification of the Kuramoto-Sakaguchi model

Partially synchronized states similar to those shown in
Fig. 1(b) can be found not only in the Kuramoto-Sakaguchi
model (1) but also in more complicated Kuramoto-type models
with nonglobal coupling or phase interaction which is not
purely sinusoidal. To identify such situations and distinguish
them from the case of a simpler Kuramoto-Sakaguchi model,
one can use additional mathematical tests based on the univer-
sal relations (A19) and (A20) from Appendix A.

Nonglobal coupling. The Kuramoto-Sakaguchi model (1)
is a special case of the model

dθk

dt
= ωk − Kk

N

N∑
j=1

sin(θk − θj + α), k = 1, . . . ,N, (22)

with nonidentical coupling strengths Kk . Suppose that in
system (22) we observe a partially synchronized state with
a triplet (R,{�k},{ζk}). Using the reconstruction algorithm we
can erroneously identify this state as a state in the Kuramoto-
Skaguchi model and reconstruct its coupling strength K̂ , phase
lag α̂, and natural frequencies ω̂k . To avoid the misinterpreta-
tion, we have to calculate N parameters

K̂k = ω̂k − �k

R Re(ζkeiα̂)
. (23)

According to the formula (A20) from Appendix A, for the
Kuramoto-Sakaguchi model (1) all K̂k must be identical. In
contrast, if coupling topology between oscillators is nonglobal,
then this property is violated. The L∞-variance is sufficient to
characterize this effect:

K = max
k

K̂k − min
k

K̂k.

To illustrate the proposed test we consider the model (22)
with coupling strengths Kk evenly distributed in the interval
[K(1 − ε),K(1 + ε)] with ε > 0, i.e.,

Kk = K

[
1 − ε + 2ε(k − 1)

N

]
. (24)

For fixed ε we computed a trajectory of system (22) and
processed it with the parameter approximation algorithm from
Sec. IV A. Figure 7 shows the dependence of K on ε for
N = 100,K = 2.5, α = π/8 and a particular realization of
Gaussian distributed natural frequencies ωk . As expected,
the variance K is negligibly small for ε = 0 and increases
monotonously for growing ε. For N = 100, mean accuracy
of the coupling strength reconstruction is KEK ≈ 0.032, see
Fig. 4(a). Hence, every measurement K > 0.032 (above the
shaded region in Fig. 7) indicates that the measured triplet
(R,{�k},{ζk}) does not fit the Kuramoto-Sakaguchi model.
This means that for chosen parameters we can reliably detect
inhomogenieties exceeding 7% of K .

Nonsinusoidal phase interaction. Partially synchronized
states can also be found in the Kuramoto-type models with
global coupling but nonsinusoidal interaction between oscil-
lators. For example, this can be the Kuramoto-Daido model,

dθk

dt
= ωk − K

N

N∑
j=1

f (θk − θj ), (25)
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ΔK

ε

 0

 0.5

 0  0.2  0.4

FIG. 7. Variance K for the model (22) and (24) with different
widths ε of the coupling strength distribution (24). Parameters: N =
100, K = 2.5, α = π/8 and some realization of Gaussian distributed
natural frequencies ωk .

where

f (θ ) = sin(θ + α) + γ sin(2θ ). (26)

In order to discriminate between the Kuramoto-Sakaguchi
model (1) and a more complicated model (25), we can look
at the local order parameters of higher orders,

ζ
(n)
k =

〈
(−i)neinθk (t) r(t)n

|r(t)|n
〉
, n = 2,3, . . . .

The Ott-Antonsen theory [25] says [see formula (A19) in
Appendix A] that for purely sinusoidal phase interaction, i.e.,
γ = 0, all partially synchronized states lie in the manifold
satisfying identities ζ

(n)
k = ζ n

k , where ζk ≡ ζ
(1)
k . To detect

deviations from this property we can monitor the expressions

n = max
k

∣∣∣∣∣1 − ζ
(n)
k

ζ n
k

∣∣∣∣∣, n = 2,3, . . . .

Figure 8 shows the dependence of 2 on γ for N = 100,K =
2.5, α = π/8 and a particular realization of Gaussian dis-
tributed natural frequencies ωk . The indicator function 2 is
almost vanishing for γ = 0 and is separated from zero for

Δ 2

γ

 0

 0.7

-1 -0.75 -0.5 -0.25  0  0.25

FIG. 8. Indicator function 2 for the Kuramoto-Daido model
(25)–(26) with γ ∈ [−1,0.25]. Other parameters: N = 100, K =
2.5, α = π/8 and some realization of Gaussian distributed natural
frequencies ωk .

γ 	= 0. To make this criterion preciser we take into account that
the mean discrepancy δ(1)

m , see Sec. III A, can be considered
as expected accuracy of local order parameters ζk . Then the
accuracy of ζ 2

k equals 2δ(1)
m and the accuracy of 2 is likely to

be 4δ(1)
m . Now, if 2 > 4δ(1)

m (shaded region in Fig. 8), then we
can conclude that phase interaction function f (θ ) is not purely
sinusoidal but contains higher-order harmonics.

V. PRACTICAL EXAMPLES

In this section we demonstrate the application of the
universal relations (6)–(8) and the reconstruction algorithm
from Sec. IV A in two realistic experiments.

A. Circadian oscillators

We consider a population of N = 100 circadian oscillators
[27]. Each oscillator is described by a three-dimensional
system of ordinary differential equations (ODEs)

dMk

dt
= vs,k

Kn
I

Kn
I + P n

N,k

− vm,k

Mk

Km + Mk

, (27)

dPC,k

dt
= ksMk − vd

PC,k

Kd + PC,k

− k1PC,k + k2PN,k, (28)

dPN,k

dt
= k1PC,k − k2PN,k, (29)

where Mk is nuclear mRNA (e.g., Period), PC,k , and PN,k are
the cytosolic and nuclear clock protein concentrations in the
kth cell, and the kinetic parameters are set to n = 4,KI =
1 nM,Km = 0.5 nM, ks = 0.417 1/h,vd = 1.167 nM/h,Kd =
0.13 nM, k1 = 0.417 nM/h, and k2 = 0.5 nM/h. The inherent
heterogeneities of individual cells are modelled by choosing
parameters vm,k in Eq. (27) from a Gaussian distribution with
a standard deviation of 4 × 10−3 nM/h and a mean value of
0.5 nM/h. The coupling between oscillators is global and is
defined by [28]

vs,k(t) = v0 + �[Mav(t) − Mk(t)],

where v0 = 0.83 nM/h, � = 0.02 1/h and

Mav(t) = 1

100

100∑
k=1

Mk(t).

Physically, the coupling increases the maximum transcription
rate of a cell based on the difference between the mRNA level
of the kth cell and the mean group levels through a multistep,
vasoactive intestinal peptide (VIP) receptor-mediated mecha-
nism [28].

The mRNA level of the kth cell Mk(t) is used to determine
the geometric phase of the corresponding oscillation,

φk(t) = arg[Mk(t) − 〈Mk(t)〉 − iṀk(t)],

where 〈Mk(t)〉 denotes the time average of Mk(t). Then we
apply formulas of the universal relations, using the geomet-
ric phases φk instead of the unknown physical phases θk .
Figure 9(a)–9(e) shows results for a particular numerical
experiment at an intermediate coupling strength that generates
a partially synchronized state. The experimental data fit well
the semicircle, with a tilt that corresponds to a large positive
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FIG. 9. Data representation and parameter approximation for numerical simulation data from a model of circadian cells [panels (a)–(d)]
and for two laboratory experiments with chemical oscillators [panels (e)–(l)]. Panels (a), (e), and (i): Computed values of ζk (dots) and their
semicircle fit (solid curve). Panels (b), (f), and (j): Approximated phase lag α̂ is the minimum of the function P (α), see formula (16). Panels
(c), (g), and (k): The best fit (solid curve) of the dependence between �k and ŝk (dots). Panels (d), (h), and (l): Approximated ω̂k vs. actual ωk

natural frequencies. Reconstruction quality: (a) C1 = 0.002 and (c) C2 = 0.999, (e) C1 = 0.006 and (g) C2 = 0.983, and (i) C1 = 0.005 and
(k) C2 = 0.987.

phase shift α̂ = 1.260. This positive phase shift, which cor-
responds to the speeding up of the oscillations, was noted
in the previous work [28] and has important consequence
on the synchronization properties. For example, in this given
partially synchronized population, all the unsynchronized cells
have large natural frequencies. We note that the large phase
shift could induce chimera states (e.g., coexistence of coher-
ent and incoherent oscillations even without heterogeneities
[29–31]) in network topologies of the circadian oscillator
system.

The approximated coupling strength is K̂ = 0.010 and there
is excellent correlation between the approximated and the
actual natural frequencies, as shown in Fig. 9(d). We note that
the two frequencies are not identical; instead, there is an offset
of about 0.0090 rad/h. This offset exists because the shifted
interaction function in the phase model (1) has nonzero value
at zero phase difference. However, the coupling between the
cells occurs through concentration differences; therefore, at
zero phase difference the effect of coupling on the frequencies
should be zero. The approximated natural frequencies ω̂k can
be considered as dynamical frequencies, which have the same
distribution as the original frequencies but could have an offset.

If we can assume that the coupling is through differences, then
the offset can be approximated as K̂ sin α̂ = 0.0095 rad/h,
which is in excellent agreement with the offset in the figure
(0.009 rad/h).

The numerical simulations with the model thus predict
that the universal relations could exist for the circadian gene
expressions. Experimental implementation can use imaging of
the circadian protein levels of the SCN slice cell population,
e.g., using PER2-luciferase knock-in reporter [32]. The SCN
cells have high levels of synchrony (close to phase-locked
state) [32], nonetheless, as shown in Sec. IV C, even in this
case a range of the phase lag parameter could be obtained that
should reveal an important dynamical property of the circadian
system.

B. Electrochemical oscillators

We test the existence of universal relations with the ex-
perimental data measured for a system of N = 80 chemi-
cal oscillatory units. The experimental systems consists of
oscillatory nickel dissolution on a multielectrode array [15].
(See Appendix B for detailed description of the experimental
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setup.) On the surface on each of the electrodes in the
array, an oscillatory chemical reaction takes place (nickel
electrodissolution). At constant circuit potential the rate of
dissolution can be measured as the current, and the phases of
the oscillations can be reconstructed with the Hilbert transform
method [15]. Global coupling among the oscillators occurs
when the electrodes are coupled to a potentiostat through a
common (shunt) resistance. When the coupling is sufficiently
strong, a partially synchronized states occur that was attributed
to a Kuramoto transition by careful analysis of the order
parameter as a function of coupling strength [15]. Now we
use only a single data set to analyze the partially synchronized
state. Figures 9(e)–9(h) show that complex parameters ζk and
effective frequencies �k (dots) do concentrate around the
curves corresponding to universal relations predicted by the
thermodynamic limit. This permits us to determine the values
of all natural frequencies ω̂k , see Fig. 9(h), as well as coupling
strength K̂ = 0.181 and phase lag parameter α̂ = −0.009. The
nearly zero value of α̂ confirms the results of independent
experiments that for coupling through resistance the phase shift
parameter is nearly zero [33].

We also performed experiments in which a small capaci-
tance was attached in parallel with the coupling resistance. In
such scenario, the coupling signal cannot be described with
difference of variables but instead occurs through a mediating
dynamical variable (potential drop over the RC circuit). As
shown in Figs. 9(i)–9(l), the universal relations still hold well
and gave K̂ = 0.115 and a negative phase shift α̂ = −0.719.
The experiments thus confirm that the universal relations
arise for complex coupling mechanism that can be effectively
described with a phase lag in the interaction function.

Note that the phases of electrochemical oscillators above
were obtained via the Hilbert transform of the corresponding
current signals [15], and therefore the phases used in the param-
eter approximation algorithm not necessarily were physical
phases of these oscillators. Although in our experiments we did
not detect any loss of the parameter approximation accuracy,
this can be different in other situations where the choice
of unsuitable phase may result in uncontrolled systematic
errors of the parameter approximation algorithm. In such
cases, to avoid the problem one has to employ the protophase
transformation [20,34,35].

VI. CONCLUSIONS

We showed that the local order parameter plot of a partially
synchronized system exhibits universal features that can be in-
terpreted with the Kuramoto-Sakaguchi model. The semicircle
fit representation of the partially synchronized state is thus a
promising diagnostic tool that can be used to investigate the
dynamics of coupled oscillators. In particular, the noninvasive
nature of the method makes it suitable for data obtained
from living or engineered systems, where intervention (e.g.,
changing coupling strengths) could be costly or dangerous.
The existence of the universal relations allows an initial
approximation of coupling strength, phase-lag parameter, and
the natural frequency of the oscillators. Similar techniques rely
on fitting of the instantaneous frequencies to model equations
[36,37]. The universal relations provide alternative means to
such parameter reconstructions. An advantage of using our

parameter approximations is that they provide a simple visual
representation through a semicircle fit, they rely on formulas
containing time-averaged quantities, and the accuracy of the
approximation improves for large system size. (With the fitting
technique the accuracy typically decreases with increasing
system size [36].) Moreover, the universal relations provided a
range of self-consistency checks, e.g., for presence of network
interactions and higher-order terms in the interaction functions.
With full (instead of partial) synchronization, an upper and
lower bound for the phase shift parameters can be defined,
and a two-parametric set of approximated natural frequencies
and coupling strengths can be calculated. If the experimental
data are found to be consistent with the Kuramoto-Sakaguchi
model, then a large array of techniques, based on phase model
machinery, can be used for predictions and design of the system
behavior, e.g., for desynchronization [4], optimal network
architecture [38], or patterns induced by external entrainment
[39]. Furthermore, the universal relations allow decomposition
of extent of partially synchronized states in three contributing
factors: (i) heterogeneity of natural frequencies, (ii) coupling
strength, and (iii) coupling phase lag (e.g., delay). Such
decomposition could greatly aid revealing the underpinning of
collective behavior in large oscillator arrays, e.g., in densely
connected brain regions responsible for generation of epileptic
seizures [40].

We note that while the coupling among the oscillators
was assumed global (all-to-all), this may not restrict the
applications to situation where there is a physical link among
every single node pairs in the network. A more common form
of global coupling occurs through external constraints, where
small change in one node dynamics is compensated globally
to keep averaged quantity (e.g., temperature) constant. In fact,
in the electrochemical experiments the potentiostat provided
constant circuit potential (or driving force) for the reactions,
which is a source of the global interactions.

In Sec. IV D we explained that universal relations (6)–(8)
only allow us to judge whether a given system is of the
Kuramoto-Sakaguchi type or not and, in the case of the
positive answer, to estimate its parameters. But what can one
do if the answer is negative? A possible way to avoid such
situation is to develop the concept of universal relations for a
more general class of phase oscillator models. For example,
relations similar to (7) were reported for a Kuramoto-type
model with distributed natural frequencies, coupling strengths,
and phase lags [41–43]. Equipping them with analogs of
formulas (6) and (8) one may hope to extend the applicability
of universal relations at least in this particular direction.
Other models, for which explicit universal relations can be
derived using the Ott-Antonsen approach, include coupled
theta-neurons [44] and the Winfree model [45]. Even for
some Kuramoto models with nonsinusoidal phase interaction
functions there is a chance to obtain explicit universal relations
using the self-consistency analysis proposed in Ref. [46].
We plan to address some of these issues in our future
work.
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APPENDIX A: THERMODYNAMIC LIMIT THEORY
FOR THE KURAMOTO MODEL

Phase reduction is a universal approach to reduce math-
ematical complexity of a system of nearly identical weakly
coupled limit cycle oscillators independently of their nature.
In the case of N globally (e.g., all-to-all) coupled oscillators it
yields an N dimensional ODE system for phases θk ∈ R,

dθk

dt
= ωk − K

N

N∑
j=1

f (θk − θj ), k = 1, . . . ,N, (A1)

where ωk ∈ R are natural frequencies of the oscillators and
f : R → R is a 2π -periodic interaction function.

In many practical cases one can assume that frequencies ωk

are drawn randomly from a specific distribution g(ω) and that
function f is well approximated by the leading Fourier har-
monics only, i.e., f (θ ) = sin(θ + α), where α ∈ (−π/2,π/2).
Thus one obtains the Kuramoto-Sakaguchi model [8]

dθk

dt
= ωk − K

N

N∑
j=1

sin(θk − θj + α), k = 1, . . . ,N, (A2)

which we discuss below.
In the limit N → ∞ the state of the phase oscillators {θk(t)}

in system (A2) can be described by a probability density
function ρ(θ,ω,t), which obeys the continuity equation

∂ρ

∂t
+ ∂

∂θ
(ρv) = 0, (A3)

where

v(θ,ω,t) = ω + K

2i
[e−iαr(t)e−iθ − eiαr(t)eiθ ] (A4)

is the continuum version of the velocity field in Eq. (A2), and

r(t) =
∫ ∞

−∞
dω

∫ 2π

0
ρ(ω,θ,t)eiθdθ (A5)

is the Kuramoto order parameter [47]. Moreover, for any
complex variable a we use a to denote its complex conjugate.

It is well known [25] that long-time dynamics of solutions
to Eq. (A3) have tendency to settle down at the so-called Ott-
Antonsen manifold consisting of the distributions of the form

ρ(θ,ω,t) = g(ω)

2π

{
1 +

∞∑
n=1

[zn(ω,t)einθ + zn(ω,t)e−inθ ]

}
,

(A6)

where z(ω,t) satisfies the inequality |z| � 1 and solves the
differential equation

dz

dt
= iωz(ω,t) + K

2
e−iαGz − K

2
eiαz2(ω,t)Gz (A7)

with Gz denoting the integral operator

(Gz)(t) =
∫ ∞

−∞
g(ω)z(ω,t)dω. (A8)

From (A6) it follows that

z(ω,t) =
∫ 2π

0

ρ(θ,ω,t)

g(ω)
eiθdθ. (A9)

For coupled oscillator system (A2) the integral in the right-
hand side of (A9) is approximately equivalent to the sum

1

#{k : ωk ≈ ω}
∑

k :ωk≈ω

eiθk

that resembles the definition of the Kuramoto order parameter
(2) with summation carried out over oscillators with ωk ≈ ω

only. This means that function z(ω,t) is a local synchrony
characteristics with values depending on natural frequencies
ω, and therefore we call it the local order parameter.

Considering Eq. (A7) one usually is interested in the
existence and stability of the following two types of solutions:
(i) completely incoherent state z(ω,t) = 0 and (ii) partially
synchronized states:

z(ω,t) = a(ω)ei�t , (A10)

where for different values of ω ∈ supp g one has either
|a(ω)| = 1 (coherence) or |a(ω)| < 1 (incoherence).

In Refs. [21,22] it has been shown that independent of the
choice of distribution g(ω), the amplitude a(ω) of a stable
partially synchronized state is always given by the formula

a(ω) = h

(
ω − �

p

)
, (A11)

where

h(s) =
{

(1 − √
1 − s−2)s for |s| > 1

s − i
√

1 − s2 for |s| � 1
,

is a universal function and (�,p) ∈ R × (0,∞) is a pair of
numbers satisfying the self-consistency equation

1

K
eiα = i

p

∫ ∞

−∞
g(ω)h

(
ω − �

p

)
dω. (A12)

In other words, stationary partially synchronized solutions
of Eq. (A3) constitute a two-parametric family with explicitly
known distribution ρ(θ,ω,t). The latter is obtained if we insert
(A10) and (A11) into (A6).

Using this distribution we can compute various averaged
quantities. For example, inserting ρ(θ,ω,t) into (A5) and
taking into account the self-consistency equation (A12) we
obtain

r(t) = − p

K
ieiαei�t

and hence

|r(t)| = p/K. (A13)

Next we can calculate the mean phase velocity of the
oscillators with natural frequencies ωk ≈ ω. This will be

1

#{k : ωk ≈ ω}
∑

k :ωk≈ω

v(θk,ωk,t).

For a given distribution ρ(θ,ω,t) we can replace the latter
averaging with the formula∫ 2π

0

ρ(θ,ω,t)

g(ω)
v(θ,ω,t)dθ.
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Note that since we take into account only oscillators with ωk ≈
ω, we average only over the phase variable θ and use in the
integrand conditional probability distribution ρ(θ,ω,t)/g(ω)
instead of the bivariate distribution ρ(θ,ω,t). Omitting com-
putation details, which can be found in Ref. [22, Section 3.3],
in the result we obtain

�(ω) =
∫ 2π

0

ρ(θ,ω,t)

g(ω)
v(θ,ω,t)dθ

= ω − Re

[
p h

(
ω − �

p

)]

= � + p Q

(
ω − �

p

)
, (A14)

where

Q(s) =
{

s
√

1 − s−2 for |s| > 1,

0 for |s| � 1

is another universal function.
Similarly, for every positive integer n we can calculate

another quantity

ζ (n)(ω) = 1

#{k : ωk ≈ ω}
∑

k :ωk≈ω

(−i)neinθk (t) r(t)n

|r(t)|n ,

which is relevant to the amplitude a(ω) of the local order
parameter (A10). Indeed, by analogy with the mean phase
velocity we obtain

ζ (n)(ω) =
∫ 2π

0

ρ(θ,ω,t)

g(ω)
(−i)neinθ r(t)n

|r(t)|n dθ

=
[
h

(
ω − �

p

)
e−iα

]n

, (A15)

hence ζ (n)(ω) = (a(ω)e−iα)n.
Numerical simulations suggest that in the thermodynamic

limit N → ∞ partially synchronized states of Eq. (A2) have
the ergodicity property such that ensemble averages (A14) and
(A15) can be calculated as time averages for fixed choice of
ω. Therefore we obtain

�(ωk) = ωk − Re

[
p h

(
ωk − �

p

)]

= � + p Q

(
ωk − �

p

)
, (A16)

ζ (n)(ωk) =
[
h

(
ωk − �

p

)
e−iα

]n

. (A17)

Moreover, if R denotes the time-average of |r(t)|, then accord-
ing to (A13) we should have

R = p/K. (A18)

Combining formulas (A16)–(A18) we also obtain other rela-
tions. For example, formula (A17) implies

ζ (n)(ωk) = [ζ (1)(ωk)]n. (A19)

Furthermore, expressing p from (A18) and h[(ωk − �)/p]
from (A17) and inserting them into (A16) we obtain

�(ωk) = ωk − KR Re
[
ζ (1)(ωk)eiα

]
. (A20)

Formulas (A16)–(A20) are exact for N → ∞ only; how-
ever, they seem to be a good approximation for large but fixed
N , too. Their accuracy is studied in the main text of the paper.
There we also discuss some of their practical applications.

APPENDIX B: EXPERIMENTAL SETUP

A standard three electrode electrochemical cell is used
for the experiments where the reference electrode is
Hg/Hg2SO4/sat. K2SO4, the counterelectrode, is a platinum-
coated titanium rod, and the working electrode is an array of 80
nickel wires embedded in epoxy such that only the 1.00-mm
diameter surface is exposed to the 3 M H2SO4 electrolyte (see
Fig. 10). The temperature is held at 10◦C with a circulating
bath.

A constant circuit potential (V = 1120 mV) is applied
with a potentiostat (ACM Instruments GillAC), and the smooth
current oscillations are collected at a rate of 200 Hz.

Each nickel electrode is connected to the potentiostat
through the collective (Rcol) and individual resistances (Rind)
as shown in Fig. 10. The collective (shunt) resistance intro-
duces global coupling among the electrode potentials of the
electrodes [15]. With Rcol = 0.5 Ohm and Rind = 1 kOhm a
partially synchronized state was observed in the experiments.

Nonisochronicity is introduced into the system by the
addition of capacitance parallel to both resistances; collective
capacitance (Ccol) and individual capacitance (Cind). The level
of nonisochronicity induced by the capacitance was studied
previously [33]. In the experiments with phase shift in the
interaction function, Ccol = 1.1 mF and Cind = 220 μF were
applied.

FIG. 10. Diagram of the experimental setup. C: Counterelectrode;
R: reference electrode; W: working electrode. The individual resis-
tances and capacitances are filled while the collective resistance and
capacitance are hollow.
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