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Shannon entropy and avoided crossings in closed and open quantum billiards

Kyu-Won Park,1 Songky Moon,1 Younghoon Shin,1 Jinuk Kim,1 Kabgyun Jeong,2 and Kyungwon An1,*

1School of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
2IMDARC, Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

(Received 25 November 2017; published 12 June 2018)

The relation between Shannon entropy and avoided crossings is investigated in dielectric microcavities. The
Shannon entropy of the probability density for eigenfunctions in an open elliptic billiard as well as a closed
quadrupole billiard increases as the center of the avoided crossing is approached. These results are opposite to
those of atomic physics for electrons. It is found that the collective Lamb shift of the open quantum system and
the symmetry breaking in the closed chaotic quantum system have equivalent effects on the Shannon entropy.
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I. INTRODUCTION

Shannon entropy, first introduced by Shannon in communi-
cation theory [1], is a relevant measure of the average amount
of information for a random variable with a specific probability
distribution function. Shannon entropy is generally equivalent
to von Neumann entropy for a physical observable with eigen-
values or probability densities. Not only is it useful in modern
information theory, but it also has important applications in
quantum physics related to the uncertainty principle [2,3]
and quantum measurement [4,5] as well as in other areas.
Shannon entropy has been applied to the identification of
putative drug targets in a biosystem [6] and descriptor analysis
for distinguishing natural products from synthetic molecules
[7], and it was also used to measure topological diversity related
to economics [8] and to detect defects in acoustic emission [9].
Recently, Shannon entropy has also been used as an indicator
for avoided crossing in atomic systems [10,11].

Avoided crossing is a phenomenon in which the two eigen-
values of a Hamiltonian come close and then repel each other
as a system parameter is varied. It signifies the presence of an
interaction between states in the Hamiltonian. For this reason,
the avoided crossing has been a fundamentally important con-
cept [12] from the beginning of quantum mechanics. It has been
extensively studied theoretically as well as experimentally in
various physical systems [13–16]. Especially in the fields of
molecular systems, the relation between avoided crossing and
the onset of chaos was investigated [17,18]. For convenience
of distinction, avoided crossings in conservative or closed
systems are called avoided level crossings (ALCs), whereas
avoided resonance crossings (ARCs) are their extension to
open or dissipative systems [19]. For strong coupling, both
cases show similar behaviors but may have different physical
origins for avoided crossings. In particular, ALCs in closed
quantum billiards are due to the symmetry breaking in a
block diagonal matrix [20,21], while ARCs can be due to
the openness effects [22–25]. Especially, integrable systems
such as an ellipse or a rectangle can be an interesting platform

*kwan@phya.snu.ac.kr

for studying ARCs since the openness effects are the sole
source [22,24] of avoided crossings. The avoided crossings in
quantum billiards have been investigated in relation to excep-
tional points [26–31], unidirectional emission [32], dynamical
tunneling [33], high-quality factors [34], ray dynamics [35],
and so on. However, Shannon entropy, despite its utility, has
not been applied to the avoided crossings in quantum billiards
to the best of our knowledge.

In this paper, we investigated the relation between Shannon
entropy and avoided crossings under strong coupling in di-
electric microcavities. We then found that Shannon entropy
increases due to coherent superposition of wave functions
as the center of the avoided crossing is approached. This
result is opposite to the previous one obtained for electrons
in atomic systems [10,11], where Shannon entropy decreases
due to electron ionization as we move close to the center of
the avoided crossing. In addition, we compared the openness
effects and the chaotic effects on Shannon entropy. For this,
we adopted an elliptic billiard as an integrable system for
manifesting the openness effects [24] and a quadrupole billiard
[36] as a nonintegrable system for manifesting chaotic effects,
respectively.

This paper is organized as follows. In Sec. II, we compare an
open quantum system and a closed chaotic quantum system. In
Sec. III, we study Shannon entropy for closed and open elliptic
billiards. Shannon entropy for a closed quadrupole billiard is
presented in Sec. IV. Maximal entropy states and the effects of
the self-energy Lamb shift to Shannon entropy are discussed
in Sec. V. Finally, we summarize our work in Sec. VI.

II. COMPARISON BETWEEN AN OPEN QUANTUM
SYSTEM AND A CLOSED CHAOTIC QUANTUM SYSTEM

The avoided crossing takes place when the off-diagonal
terms of the Hamiltonian become prominent. These off-
diagonal terms arise from various sources depending on the
properties of each system. First, let us briefly recapitulate the
avoided crossings due to the openness effects. These openness
effects are well described by a non-Hermitian Hamiltonian,
first developed in nuclear physics [37] and then applied to
other areas such as atomic physics [38], microwave cavities
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[39], solid-state physics [40], dielectric microcavities [24,41],
and so on.

The non-Hermitian Hamiltonian for an open quantum
system can be obtained by introducing the Feshbach projective
operator πS and πB with πSπB = πBπS = 0 and πS + πS = IT.
Here, πS is a projective operator onto a closed quantum system
and πB is a projective operator onto a bath, respectively. The
operator IT is an identity operator for the total system-bath
space. With these operators and the Hamiltonian for the total
system-bath space HT, we define useful operators such as
HS = πSHTπS, HB = πBHTπB, VSB = πSHTπB, and VBS =
πBHTπS, where HS (HB) is a Hamiltonian of the closed quan-
tum system (bath). VSB denotes an interaction from the bath
to the closed quantum system, and VBS denotes the opposite
[22,23]. The non-Hermitian Hamiltonian is then defined as

Heff = HS + VSBG+
B VBS, (1)

with an outgoing Green function G+
B in a bath. The Green

function is defined as G+
B ≡ (μ+ − HB)−1, where μ+ is an

eigenvalue of HB with a small positive imaginary number
added for outgoing states: μ+ ≡ μ + iη and limη→0+ . If HS

with eigenvalue εj for the j th eigenstate |εj 〉 describes an
integrable system (no internal interaction), only the second
term,VSBG+

B VBS, can lead to avoided crossings. In this case, the
outgoing Green function plays a crucial role in the system-bath
interaction. That is, the G+

B can route the state not only to the
same state but also to a different state |εj 〉 �= |εk〉, resulting in
the collective Lamb shift, otherwise it is the self-energy Lamb
shift. Thus, this interaction via the bath (the collective Lamb
shift) can induce an avoided crossing as well as a coherent
superposition of wave functions [42]. On the other hand, the
interaction with the bath itself is just giving rise to mode decay
[24], not the avoided crossings.

There are several well-known topics related to chaotic
effects such as scar formation [43], Anderson localization [44],
trace formula [45], and so on. But here we would rather focus
on the structure of the Hamiltonian itself to deal with avoided
crossing. So, let us recapitulate the Hamiltonian properties for a
closed chaotic system. The energy repulsions in quantum chaos
are well explained by the random matrix theory [20,21,46,47].
When there are n-quantum numbers (O1,O2, . . . ,On) in a sys-
tem with n-degrees of freedom, the system is integrable. If not,
it is chaotic. This property is fundamentally related to symme-
tries in the system. That is, if we can find (n − 1) observables
that commute with Hamiltonian H , i.e., [H,Oi] = 0, giving
a complete basis set |O1, . . . ,On〉, then the Hamiltonian H is
fully diagonal with respect to this complete basis set. If not,
the Hamiltonian is block-diagonal, having off-diagonal terms.
When the symmetries are broken, the size of the block-diagonal
matrix increases with the number of blocks decreasing.

III. COMPARISON BETWEEN SHANNON ENTROPIES IN
CLOSED AND OPEN ELLIPTIC BILLIARDS

Let us consider a closed elliptic microcavity with a major
axis a and a minor axis b. We are interested in its eigenvalues
λk and eigenfunctions ψce(r):

H ceψce
k (r) = λkψ

ce
k (r), (2)

where the superscript “ce” stands for a closed elliptic billiard
with Dirichlet condition ψ(r = R) = 0 along the boundary.
Here r is a two-dimensional position vector, and R represents
the boundary of the billiard. We consider transverse-magnetic
(TM) modes only with ψ(r) corresponding to the electric field.
The eigenvalues are calculated by using the boundary element
method (BEM) [48] with a scanning parameter χ for a =
1 + χ andb = 1

1+χ
(constant area). In Fig. 1(a), the real part kR

of the eigenvalues is plotted as the eccentricity e ≡
√

1 − ( b
a

)2 is

varied from 0.765 to 0.855 with an interval �χ = 10−5. The
intensities of some of the corresponding eigenfunctions are
also shown. A mode crossing is observed near e � 0.805, and
their eigenfunctions are almost unchanged across the mode
crossing. This behavior is well known and expected from
the random matrix theory. The closed elliptic billiard is an
integrable system, and thus it cannot lead to avoided crossings,
resulting in Poisson distributions [20,21,46,47]. However, it
was reported that the closed elliptic billiard may lead to
Demkov-type interaction in some cases [49]. The Demkov-
type avoided crossing occurs over a broad range between two
eigenfunctions giving rise to a new pair of eigenfunctions
localized on periodic orbits. In contrast, the usual Landau-
Zener-type avoided crossing occurs over a short range between
two eigenfunctions with exchange of their characteristics.

Next, let us consider an open elliptic cavity with com-
plex eigenvalues zk and their eigenfunctions ψoe

k (r) of the
non-Hermitian Hamiltonian H oe, where the superscript “oe”
indicates an open elliptic billiard with boundary conditions
ψin(r = R) = ψout(r = R) and ∂nψin(r = R) = ∂nψout(r =
R) for the TM mode. For a fair comparison with the closed
elliptic cavity, we also consider TM modes for the open elliptic
cavity. The Hamiltonian H oe can be expressed as [22,23]

H oe = H ce + VSBG+
B VBS (3)

similar to Eq. (1), exhibiting non-Hermitian properties such as
H oe �= (H oe)†.

In Fig. 1(b), the real part kR of its eigenvalues zk and the
intensities of some of the eigenfunctions ψoe

k (r) are plotted
as the eccentricity is varied. An avoided crossing takes place
near e = ec

∼= 0.81. The eigenfunctions corresponding to G
and J are mixed at the center of the avoided crossing (H and
K), and then exchanged at I and L. Moreover, the probability
distributions (intensity plots) of the mixed eigenfunctions at H
and K show more uniform patterns than the unmixed ones at
G, J, I, and L. We will use Shannon entropy to quantify the
degree of uniformity.

For a given discrete probability distribution ρ(ri) and N

number of states, Shannon entropy is defined as

S(ρ(ri)) ≡ −
N∑

i=1

ρ(ri) log ρ(ri), (4)

where
∑N

i=1 ρ(ri) = 1. We apply this definition to the prob-
ability density for a closed elliptic billiard S(ρce

k (ri)) with
a normalization condition

∑N
i=1 ρce

k (ri) = ∑N
i=1 |ψce

k (r)|2 =
1 for N states or mesh points. We also define a relative
deformation parameter χe for the avoided crossing as

χe = e − ec

e
(5)
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FIG. 1. (a) The real part kR of eigenvalues with their magnified view (inset) near the mode crossing and the intensities of some representative
eigenfunctions for a closed elliptic microcavity with the eccentricity e. The eigenvalues show a mode crossing near e � 0.805 and their
eigenfunctions are almost unchanged across the mode crossing. (b) The real part kR of the eigenvalues with their magnified view (inset) near
the center of the avoided crossing and the intensities of some representative eigenfunctions for an open elliptic microcavity as a function of
the eccentricity. The avoided crossing takes place near e � 0.81 and the eigenfunctions for G and J are mixed at H and K and then exchanged
at I and L.

with ec the eccentricity at the center of the avoided crossing.
By using this relative deformation parameter, we can compare
the results for various systems with different deformation
parameters.

Shannon entropy of the probability density is numerically
calculated for a closed elliptic billiard as a function of χe,
and the result is shown in Fig. 2(a). The filled red-inverted
(black-noninverted) triangles represent Shannon entropy for
a red-dashed (black-dotted) A-B-C (D-E-F) trajectory of the
eigenvalues in Fig. 1(a). We notice that the A-B-C trajectory
has larger values of Shannon entropy than the D-E-F trajectory,
but both of them change little as the eccentricity is varied.
This result is no surprise since both probability densities
remain almost unchanged as the eccentricity is varied, and
the probability densities of the eigenfunctions on the D-E-F
trajectory exhibit a smaller number of antinodes than those on
the A-B-C trajectory.

Likewise, we can have the Shannon entropy of the probabil-
ity density for an open elliptic billiard S(ρoe

k (ri)) with a similar
normalization condition to that of the closed elliptic billiard.
For the open elliptic billiard considered in Fig. 1(b), Shannon
entropy is numerically calculated and the result is shown in
Fig. 2(b) as a function of the relative deformation parameter
χe. The unfilled red-inverted (black-noninverted) triangles
represent Shannon entropy for a red-dashed (black-dotted)

G-H-I (J-K-L) trajectory of the eigenvalues in Fig. 1(b). It is
noted that the behavior of Shannon entropy of the probability
density for the open elliptic billiard is quite different from
that for the closed one. The Shannon entropy values of two
eigenstates in the open elliptic billiard are maximized at the
center of the avoided crossing. Moreover, they are exchanged
across the avoided crossing. The Shannon entropy (unfilled
black-noninverted triangles) associated with the eigenstate on
the J-K-L trajectory is larger than that (unfilled red-inverted
triangles) on the G-H-I trajectory for the negative relative
deformation parameter χe ∼ −0.06. However, after going
through the center of the avoided crossing, the Shannon entropy
denoted by the unfilled black-noninverted triangles becomes
smaller than that represented by the unfilled red-inverted
triangles for the positive relative deformation parameter
χe ∼ 0.06. This exchange of Shannon entropy is consistent
with the pattern exchange of the eigenfunction intensity shown
in Fig. 1(b).

It should be noted that the collective Lamb shift becomes
dominant over the self-energy for large eccentricity in an
open elliptic billiard, as shown in Fig. 1(b), resulting in an
avoided crossing. At the avoided crossing, two interacting
eigenfunctions are mixed together, resulting in more uniform
probability distributions and consequently increased Shannon
entropy, as shown in Fig. 2(b).

062205-3



PARK, MOON, SHIN, KIM, JEONG, AND AN PHYSICAL REVIEW E 97, 062205 (2018)
S(

ce k
)

(a)

e

S (
oe k
)

(b)

e

e 

e 

FIG. 2. Shannon entropy of the probability density for elliptic
quantum billiards as a function of relative deformation parameter χe.
(a) Shannon entropy for the closed elliptic billiard in Fig. 1(a). The
filled red-inverted (black-noninverted) triangles represent Shannon
entropy for the red-dashed (black-dotted) A-B-C (D-E-F) trajectory of
the eigenvalues in Fig. 1(a). (b) Shannon entropy for the open elliptic
billiard in Fig. 1(b). The unfilled red-inverted (black-noninverted)
triangles represent Shannon entropy for the red-dashed (black-dotted)
G-H-I (J-K-L) trajectory of the eigenvalues in Fig. 1(b). The thick
green arrow indicates the deformation at which Shannon entropy
values are listed in Sec. V.

IV. SHANNON ENTROPY IN CLOSED
QUADRUPOLE BILLIARDS

In this section, we consider a closed chaotic billiard. In
particular, we consider a closed quadrupole described by
ρ(r) = 1 + ε cos(2φ) with a deformation parameter ε in the
polar coordinates (r,φ). The eigenvalues λk and eigenfunc-
tions ψ

cq
k (r) are numerically calculated by using BEM [48]

with an interval of �ε = 10−5. The superscript “cq” stands
for “closed quadrupole.” We consider TM modes with the
Dirichlet boundary condition. The resulting trajectories of
eigenvalues and the intensities of some of the eigenfunctions
are shown in Fig. 3 as ε is varied from 0.132 to 0.149. It is seen
that an avoided crossing takes place near ε ∼= 0.141 as in an
open elliptic billiard even though their origins are completely
different from each other, as already discussed in Sec. II. Two
distinct eigenfunctions at A and D are mixed together at B
and E and then undergo a mode exchange at C and F. This
type of avoided crossing is due to the symmetry breaking in
a block-diagonal Hamiltonian for a closed quantum chaotic

FIG. 3. The trajectories of eigenvalues and the intensities of some
representative eigenfunctions in a closed quadrupole billiard. The
upper panel shows the trajectories of eigenvalues with the deformation
parameter ε. The avoided crossing takes place near ε � 0.141. The
lower panel shows that the eigenfunctions for A and D are mixed
together at B and E, and then undergo mode exchange at C and F.

system. It is seen that the probability distributions of the mixed
eigenfunctions at B and E reveal more uniform patterns than
the unmixed ones at A, D, C, and F. Note that ψcq

k (r) describing
a chaotic system cannot form a complete basis set [20,21].

Figure 4 shows the Shannon entropy S(ρcq
k (ri)) of the

probability density for the closed quadrupole quantum billiard
with a similar normalization condition to that of the closed
elliptic billiard. The Shannon entropy is displayed as a function
of the relative deformation parameter χε defined as χε = ε−εc

ε

in the same way as χe in Eq. (5), with εc the deformation
parameter at the center of the avoided crossing. We can thus
compare the results of Figs. 2(b) and 4 with the same relative
deformation parameter. The blue circles (magenta squares)
represent Shannon entropy for the blue solid (magenta dashed)
eigenvalue trajectory in Fig. 3. The Shannon entropies are
maximized near the center of the avoided crossing (χε � 0.0)
and they are exchanged across the avoided crossing, similar to
the Shannon entropies in the open elliptic billiard in Fig. 2(b).

V. MAXIMAL ENTROPY STATE AND EFFECT
OF SELF ENERGY

Figures 2(b) and 4 show similar behaviors, that is, Shannon
entropy is maximized as the center of avoided crossing is
approached and they are exchanged across the avoided crossing
in both cases. These similar behaviors come from the coherent
superposition of wave functions in avoided crossings. How-
ever, the detailed behaviors are slightly different from each
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FIG. 4. Shannon entropy in a closed quadrupole quantum billiard
as a function of the relative deformation parameter χε . The blue
circles (magenta squares) represent Shannon entropy for the blue
solid (magenta dashed) eigenvalue trajectory in Fig. 3. Shannon
entropy is maximized near the center of the avoided crossing, and
they are exchanged across the avoided crossing. The thick green arrow
indicates the deformation at which Shannon entropy values are listed
in Sec. V.

other. The relative difference between two curves away from
the center of avoided crossing in Fig. 2(b) is small (∼0.03)
compared to that (∼0.06) in Fig. 4, and the behaviors of two
curves in Fig. 2(b) are more complicated (curves cross each
other three times) than those in Fig. 4. We suggest that these
slightly different behaviors are due to the mode decay (self-
energy), not the avoided crossing. To check this suggestion, let
us consider a maximal entropy state and the self-energy.

A uniform probability distribution q(x) = 1
N

for N states is
a special one since it gives rise to maximal Shannon entropy,
i.e., S(ρmax) = log N . This maximal entropy can be obtained
in a quantum billiard by identifying the number of states N

with mesh points for numerical calculation of the system.
The maximum entropy for the same number of mesh points
(N = 4166) as used in Fig. 2 is S(ρmax) � 8.381. Note that
the states for the maximal entropy are not eigenstates of the
Hamiltonian: we artificially impose uniform intensities in
billiard systems. Obviously, if the mesh point N is fixed as a
constant value, the maximal entropy is also fixed regardless
of the deformation parameter.

To examine the self-energy (mode decay) effect on Shannon
entropy, let us pay attention to the Shannon entropies at relative
deformation parameter χe

∼= −0.058 indicated by thick green
arrows in Figs. 2(a) and 2(b), well before the avoided crossing.
They are denoted as S

(ce)
1 (red-inverted triangle) and S

(ce)
2

(black triangle) for the closed elliptical billiard, and S
(oe)
1

(open red-inverted triangle) and S
(oe)
2 (open black triangle)

for the open elliptical billiard, respectively. The self-energy
(mode decay) in an open system is an interaction with the
bath itself, and it changes the boundary condition on billiards
such that the wave functions at the boundaries are zero in
closed billiards [Fig. 1(a)] whereas they are nonzero in open

billiards [Fig. 1(b)]. This fact indicates that the self-energy
Lamb shift makes the wave functions themselves dispersed
simultaneously, making them closer to the maximal entropy
state since the maximal entropy state corresponds to the
completely dispersed state. As a result, the absolute values of
Shannon entropy for wave functions in an open billiard become
larger than those in a corresponding closed billiard. At the same
time, the relative difference �S(oe) = |S(oe)

2 − S
(oe)
1 | between

the two values of Shannon entropy in the open billiard becomes
smaller than that in the closed billiard. Specifically, we have
S(ρmax) − S

(oe)
1 = 0.289, S(ρmax) − S

(oe)
2 = 0.261, and thus

�S(oe) = 0.028. Similarly for the closed elliptical billiard,
we have S(ρmax) − S

(ce)
1 = 0.857 and S(ρmax) − S

(ce)
2 = 0.774,

yielding �S(ce) = 0.083, much larger than that of the open
elliptical billiard. A similar trend is observed with the closed
quadrupole billiard, where �S(cq) = 0.062 at χε

∼= −0.058,
also much larger than that of the equally deformed open
elliptical billiard. This fact implies that not only the collective
Lamb shift but also the self-energy can induce a change in
Shannon entropy. For these reasons, the detailed behaviors of
Fig. 2(b) for an open billiard are different from those of Fig. 4
for a closed billiard. Since we focus on the relation between
the avoided crossing and Shannon entropy in this paper, the
detailed analysis on the self-energy effect on Shannon entropy
will be discussed elsewhere.

VI. CONCLUSION

We investigated the relation between Shannon entropy
and avoided crossings under strong coupling in dielectric
microcavities. Before our work, the relation between Shannon
entropy and avoided crossing was investigated in atomic
physics, and the result was opposite to ours, i.e., Shannon
entropy for an electron decreases due to electron ionization
as we move close to the center of the avoided crossing. On
the contrary, Shannon entropy of the probability density for
dielectric microcavities (quantum billiards) increases due to
the coherent superposition of wave functions as the center
of the avoided crossing is approached, but both cases show
exchanges of Shannon entropy as well as mode exchanges.
Shannon entropy of the probability density for a closed elliptic
billiard changes little with the eccentricity, while Shannon
entropy of the probability density for an open elliptic billiard
is maximized at the center of the avoided crossing. This
maximization and exchange of Shannon entropy in an open
elliptic billiard comes from the collective Lamb shift, which
is an energy-level shift due to the interaction of energy levels
with each other via the bath, and it can also induce an avoided
crossing and coherent superposition of wave functions. In a
closed quadrupole billiard, Shannon entropy is also maximized
as the center of the avoided crossing is approached with both
exchange of Shannon entropies as well as mode patterns.
This maximization and exchange of Shannon entropy in a
closed quadrupole billiard comes from the nonlinear dynamical
effects in a chaotic system. Irrespective of the origin of the
avoided crossings, the open elliptic cavity and the closed
quadrupole cavity show similar behaviors to Shannon entropy.
That is, the collective Lamb shift of open quantum systems and
the symmetry breaking in the closed chaotic quantum systems
have equivalent effects on the Shannon entropy.
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