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Envelope and phase distribution of a resonance transmission through a complex environment
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A transmission amplitude is considered for quantum or wave transport mediated by a single resonance coupled
to the background of many chaotic states. Such a model provides a useful approach to quantify fluctuations in
an established signal induced by a complex environment. Applying random matrix theory to the problem, we
derive an exact result for the joint distribution of the transmission intensity (envelope) and the transmission phase
at arbitrary coupling to the background with finite absorption. The intensity and phase are distributed within a
certain region, revealing essential correlations even at strong absorption. In the latter limit, we obtain a simple
asymptotic expression that provides a uniformly good approximation of the exact distribution within its whole
support, thus going beyond the Rician distribution often used for such purposes. Exact results are also derived
for the marginal distribution of the phase, including its limiting forms at weak and strong absorption.
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I. INTRODUCTION

Resonance phenomena have their historical roots in acous-
tics and mechanical vibrations, with numerous applications
ranging from electromagnetism and optics to quantum me-
chanics and particle physics [1–3]. Many of their key features
can be understood within a simple model involving scattering
on a single resonance (e.g., see [4]). Neglecting global phases
and assuming invariance under time reversal, the scattering
amplitude between any two open channels (say, c and c′) is
then described by a multichannel Breit-Wigner formula [1],

S
(0)
cc′ (E) = δcc′ − i

AcAc′

E − ε0 + i
2�0

. (1)

Here ε0 is the resonance energy, whereas A2
c and �0 are the

partial (per channel) and total decay widths, respectively. The
latter is given by the sum �0 = ∑

c A2
c , with index c running

over all channels open at the given scattering energy E. This
ensures the unitarity of the S matrix (at real E).

In many situations, including examples from atomic and
nuclear physics [5–9] and open mesoscopic systems [10–13],
such a resonance state is embedded in the background of
many complicated states. It represents a specific “simple”
(deterministic) excitation [5], the amplitude of which spreads
over the chaotic states. The arising competition between two
damping mechanisms, escape to the continuum and spreading
over the background, results in the suppression of transmission
through such a simple mode when coupling to the background
is increased [14]. In such a context, the model provides a
useful approach for quantifying fluctuations in an established
transmission signal induced by a complex environment, with
the exact results being recently presented for the intensity
distribution [14] as well as for the joint distribution of the
reflection and transmission [15].

In this work, we explore this direction further and develop a
systematic approach for studying joint statistics of the intensity
(envelope) and phase of the transmission amplitude. Such a
problem is important, e.g., for fading and related applications

in wireless communications [16,17]. We derive exact non-
perturbative results for the joint (intensity-phase) probability
density function (jpdf) as well as for the marginal pdf of
the transmission phase. The obtained results are valid at any
coupling strength to the background and arbitrary absorption
that is typically present in real environments. We also discuss
in detail the limiting forms of the distributions in the physically
interesting cases of weak and strong absorption.

II. STATISTICAL MODEL

We follow Refs. [14,15] to account for the influence of
the chaotic background with finite dissipative losses on the
resonance scattering. Within the well-known strength function
formalism [5,18], such an interaction results in the modified
energy dependence that is determined by the substitution
[E − ε0 + i

2�0]−1 → [E − ε0 + i
2�0 − g(E)]−1 in (1). The

strength function g(E) ≡ V †(E − Hbg)−1V describes the cou-
pling to the background Hamiltonian Hbg, with V being a
vector of the (real) coupling amplitudes. The S matrix can
then be represented in the following convenient form:

S(E) − 1 = t(E) [S(0)(E) − 1], (2)

where S(0) stands for the S matrix without the background, see
Eq. (1), and the (scalar) function t(E) is defined as follows:

t(E) = 1 + 2i(ε0 − E)/�0

1 + 2i[ε0 − E + g(E)]/�0
. (3)

By construction, t(E) has the meaning of the transmission
amplitude rescaled in units of that in the “clean” system.

The background typically has a very dense spectrum
involving very many, N � 1, highly complicated (chaotic)
states. This gives rise to wild fluctuations of t(E) on the
local scale of the mean level spacing � ∼ 1/N . We are
interested in those at the resonance energy ε0, corresponding
to the peak of the original signal. When averaged over this
fine structure, the scattering amplitudes acquire an additional
effective damping �↓ ≡ 2Im〈g(ε0 − i0)〉 = 2π‖V ‖2/(N�),
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FIG. 1. Contour plots of the joint distribution (12) of the transmission intensity (T ) and phase (θ ) at the background coupling η = 0.5,1,2
(rows) and absorption rates γ = 0.1,1,2,5 (columns). Darker regions correspond to higher values of the jpdf, with black standing for the values
of 40,5,3.5,3 at γ = 0.1,1,2,5, respectively. The dashed line indicates the boundary T = cos2 θ of the distribution support.

the so-called spreading width [5,18]. This sets a second decay
energy scale in addition to the escape width �0. The ratio

η = �↓/�0 (4)

serves as a natural parameter that describes the competition
between the two decay mechanisms, thus controlling the
background coupling strength [14]. The resonant transmission
amplitude t ≡ t(ε0) can then be represented as follows:

t = (1 + iηK)−1 ≡
√

T eiθ , (5)

where K = 2g(ε0)/�↓. By construction, K has the meaning
of the local Green’s function of the background [19].

Aiming to describe the universal statistics of both the
transmission intensity T and phase θ , we adopt the standard
route [20–22] and model Hbg by a random N × N matrix
drawn from the Gaussian orthogonal ensemble (GOE). The
established connection to the background spectrum enables
us also to take into account finite absorption by introducing
uniform broadening �abs of the background states. Since such
a damping is operationally equivalent to the purely imaginary
energy shift, K ≡ 2

�↓
g(ε0 + i

2�abs) becomes complex [19],

K = u − iv, v > 0, (6)

and normalized as 〈K〉 = −i. The mutually correlated random
variables u and v are known to have universal statistics
described by the following jpdf [19]:

P (u,v) = 1

2πv2
P0(x), x = u2 + v2 + 1

2v
> 1. (7)

The function P0(x) is solely determined by the (dimensionless)
absorption rate γ ≡ 2π�abs/� and is known exactly [23,24].
In particular, it has an important symmetry, being invariant

under the interchange iK → 1/iK . This results in

〈t〉 = (1 + η)−1 (8)

for the mean value of the transmission amplitude at any γ .

III. JOINT DISTRIBUTION OF T AND θ

The intensity T = |t |2 and phase θ = arg(t) of the trans-
mission amplitude (5) are readily found as follows:

T = 1

(1 + ηv)2 + η2u2
(0 � T � 1), (9a)

θ = − arctan
ηu

1 + ηv

(
−π

2
� θ � π

2

)
. (9b)

We will now derive and study the joint probability distribu-
tion Pη,γ (T ,θ ) of these two quantities at arbitrary values of η

and γ .
Let us first consider the case of zero absorption. Then K = u

is real, where the random variable u is known to have the
standard Cauchy distribution [19,25]. The joint distribution of
T and θ is found by an easy integration and reads

Pη,γ=0(T ,θ ) =
∫ ∞

−∞

du

π

δ(tan θ + ηu)

1 + u2
δ
(
T − 1

1 + η2u2

)

= δ(T − cos2 θ )P0(θ ). (10)

The first (singular) factor here represents the conditional pdf
of T and P0(θ ) stands for the marginal pdf of θ given by

P0(θ ) = 1

π (η cos2 θ + η−1 sin2 θ )
. (11)

The phase distribution (11) has a local maximum (minimum)
at θ = 0 for η < 1 (η > 1) and becomes uniform at the special
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coupling η = 1. Note that this function has the following
symmetry:P0(θ )|η = P0(θ ± π

2 )|η−1 under the involution η →
η−1. This can be traced back to the more general symmetry
property satisfied by the joint distribution of transmission and
reflection at arbitrary absorption established in [15].

In the general case of finite absorption, the singularity
of the joint distribution is removed, since T and θ are no
longer functions of each other. The jpdf in question is then
obtained from the known function P (u,v) by making use of
relations (9). To this end, it is convenient first to choose y =
tan θ instead of θ , so |∂y/∂θ | = 1 + y2, and then to compute
the Jacobian |∂(u,v)/∂(T ,y)| = 1/[2η2T 2(1 + y2)]. Noticing
further that v = 1

η
(| cos θ |/√T − 1) � 0 and collecting all

factors together, we arrive at the following exact result:

Pη,γ (T ,θ ) = �(cos θ − √
T )

4πT (cos θ − √
T )2

P0[xη(T ,θ )], (12)

where �(x) is the Heaviside step function and

xη(T ,θ ) = T (1 + η2) − 2
√

T cos θ + 1

2η
√

T (cos θ − √
T )

. (13)

This clearly shows that the transmission intensity and phase
exhibit strong statistical correlations at finite absorption.

The joint distribution (12) is nonzero for 0 � T � cos2 θ .
Its profile within this region is controlled by two parameters
γ and η. In the limit of vanishing absorption, γ → 0, one
can use [19] that P0(x) → δ( 1

x
) which readily yields the zero

absorption result (10). At finite absorption, the function P0(x)
gets exponentially suppressed (∼e−γ x/4) for large x � 1. As a
result, the distribution at small γ is mostly concentrated within
a thin layer ∼γ  1 near the boundary T = cos2 θ . When γ

is increased, the distribution starts exploring its whole support.
Its weight is gradually moved from the central region around
T ∼ 1 − 2η at η  1 to a stripe around T ∼ η−2 at η � 1. All
these features are clearly seen in Fig. 1 showing the density
plots of Pη,γ (T ,θ ) for various values of η and γ .

It is worthwhile to discuss the statistical correlations be-
tween T and θ in more detail. It is natural to expect that such
correlations should go away, when absorption becomes very
strong. In the limit γ � 1, it is actually known [19] that the
function P0(x) simplifies to P0(x) ≈ γ

4 e−(γ /4)(x−1). With this
limiting form, we readily get the following exact asymptotic
expression:

P (asym)
η,γ�1(T ,θ ) =

γ exp
[ − γ (1+η)2

8η

T −2〈t〉√T cos θ+〈t〉2√
T (cos θ−√

T )

]
16πT (cos θ − √

T )2
, (14)

where 〈t〉 is given by (8) and 0 � T � cos2 θ . Therefore, the
correlations remain essential even at strong absorption.

Still, if we were to assume uncorrelated T and θ , it would
imply that 〈√T 〉 = 〈t〉 and 〈θ〉 = 0. One can then perform
an expansion over the fluctuations in (14), keeping up to the
quadratic terms in the exponential there and replacing T and θ

with their mean values elsewhere. This results in the jpdf being
factorized as a product of two Gaussian distributions,

P (gaus)
η,γ�1(T ,θ ) =

exp
[− 1

2σ 2
T

(
√

T − 〈t〉)2 − θ2

2σ 2
θ

]
4πσT σθ 〈t〉 , (15)

FIG. 2. Comparison between the exact jpdf (12), its asymptotic
form (14), and the Gaussian (15) and Rician (18) approximations at
strong absorption. The background coupling η = 0.5 (left panel) or 1
(right panel) and the absorption rate γ = 10 everywhere.

where the corresponding variances are given by

σ 2
T = 4η2

γ (1 + η)4
, σ 2

θ = 4η2

γ (1 + η)2
. (16)

The overall factor 1
2〈t〉 takes automatically into account the

proper normalization. (It appears since it is the variable
√

T ,
not T , that becomes Gaussian distributed at very large γ � 1.)
We note, however, that the Gaussian approximation (15) is
rather crude, because of the finite support of the exact distri-
bution (12). However, one can obtain a better approximation
at strong absorption by studying the statistics of the real and
imaginary parts of t instead. We will do that now.

Let t = tr + iti . Clearly, we have 〈tr〉 = 〈t〉 and 〈ti〉 = 0
for the mean values. The joint distribution of tr and ti can be
derived along the same lines as presented above. Expressing
tr ,ti in terms of u,v and computing the corresponding Jacobian,
we finally get the following exact jpdf (at any γ ):

Pη,γ (tr ,ti) =
P0

(
1 + (1+η)2

2ηs

[
(tr − 〈t〉)2 + t2

i

])
2πηs2

(17)

within the semicircle region s ≡ tr (1 − tr ) − t2
i > 0 and zero

otherwise. Expression (17) clearly reveals significant correla-
tions between the real and imaginary parts of the transmission
amplitude as well. However, tr and ti appear to get uncorrelated
faster than T and θ when absorption grows. Indeed, performing
the fluctuation analysis of (17) at γ � 1, one finds that both
tr − 〈t〉 and ti become uncorrelated normal variables with the
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same variance σ 2
T given by (16). In such an approximation,

finding the amplitude and phase distributions of tr = √
T cos θ

and ti = √
T sin θ reduces to a classical problem studied by

Rice [26] (see also [27]), yielding

P (rice)
η,γ�1(T ,θ ) = 1

4πσ 2
T

e−(T −2〈t〉√T cos θ+〈t〉2)/2σ 2
T . (18)

The Rician approximation (18) resembles the exact asymptotic
form (14) in its structure, but fails to properly take into account
the boundaries of the distribution support. For that reason,
it provides a reasonable approximation only at η ≈ 1, when
the density is mostly concentrated in the center, showing
noticeable deviations otherwise, when the density gets
concentrated near T ∼ 1 (T ∼ η−2) for small (large) η. Note
that our asymptotic result (14) is free from such shortcomings,
providing good uniform approximation even at moderately
large γ . This discussion is further illustrated in Fig. 2.

With the exact result (12) in hand, one can further obtain
both marginal and conditional pdf’s by performing the relevant
integrations. In particular, the distribution of the transmission
intensity can be brought to the form recently derived and
thoroughly studied in [14]. Therefore, we will concentrate only
on the analysis of the phase distribution below.

IV. PHASE DISTRIBUTION

The distribution P(θ ) of the transmission phase is obtained
by integrating (12) over T . Setting T = cos2 θ/(1 + p)2 and
choosing p > 0 as a new integration variable, we arrive after
some algebra at the following convenient representation:

P(θ ) = sec2 θ

2π

∫ ∞

0

dp

p2
(1 + p)P0[x(p,θ )], (19)

where sec θ = (cos θ )−1 and x(p,θ ) is defined as follows:

x(p,θ ) = (1 + p)2 sec2 θ − 2p + η2 − 1

2ηp
. (20)

With an explicit formula for P0 found in [23], Eq. (19) provides
the exact solution to the problem at arbitrary η and γ .

Further analysis is possible in the physically interesting lim-
iting cases of weak and strong absorption, when the function
P0 is known to take simpler exact asymptotic forms [19]. At
γ  1, one has P0(x) ≈ 2√

π
( γ

4 )3/2
√

x + 1 e−(γ /4)(x+1). A close
inspection of Eq. (19) shows that the dominant contribution to
the integral comes from small p  1. In the leading order,
one can approximate γ

4 (x + 1) ≈ μ + ρ/p, where μ and ρ

are certain functions of θ (see below), and replace (1 + p) by
unity in the integration measure. Performing the integration,
one finds the following approximation at weak absorption:

Pγ1(θ ) ≈ P0(θ )[erfc(
√

μ) + 2
√

μ/πe−μ], (21)

where μ = γ

4η
(sec2 θ − 1 + η) and erfc(z) = 1 − erf(z) is the

complementary error function. The bulk of distribution (21)
is essentially given by that at zero absorption, Eq. (11). The
correction factor becomes crucial near the edges, where the
exact distribution has an exponential cutoff ∼e−(γ /4η) sec2 θ .

FIG. 3. Distribution of the transmission phase for the background
coupling η = 0.5 (top), 1 (middle) and 2 (bottom) and the absorption
rate γ = 0.1 (•),1 (◦),2 (�), and 5 (�). The solid lines show the
analytical prediction (19), whereas the symbols stand for numerics
with 104 realizations of 200 × 200 random GOE matrices. The dashed
lines show the zero absorption result (11) for comparison.

In the opposite case of strong absorption, γ � 1, one can
use that P0(x) ≈ γ

4 e−(γ /4)(x−1). The resulting integration can
be done exactly without further assumptions, yielding

Pγ�1(θ ) ≈ γ sec2 θ

4π

[
K0(ξ ) + γ sec2 θ

4ηξ
K1(ξ )

]
e−ν, (22)

with ξ = γ

4η
sec θ

√
sec2 θ − 1 + η2, ν = γ

4η
(sec2 θ − 1 − η),

and Kn(z) being the modified Bessel function. We note that
distribution (22) is properly normalized to unity at any γ . But
it approximates the exact one only for large γ , of course. In the
limit of very large γ � 1, expression (22) tends to a Gaussian
with zero mean and the variance σ 2

θ provided in (16).
Figure 3 illustrates this analysis and shows the phase

distribution for the same values of η and γ as in Fig. 1.
Also shown are the results of numerical simulations of the
transmission phases (9) with random GOE matrices. Since the
explicit form of the exact function P0(x) is fairly involved [23],
we have used instead a much simpler interpolation formula,

P
(int)
0 (x) = C−1

γ (Aγ

√
γ (x + 1) + Bγ )e−(γ /4)(x+1), (23)
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suggested in [19], to draw the analytical curves. Here, the γ

dependent constants Aγ = (eγ/2 − 1)/2, Bγ = 1 + γ

2 − eγ/2,
and Cγ = 4

γ
[2�( 3

2 ,
γ

2 )Aγ + e−γ /2Bγ ], with �(ν,α) being the
upper incomplete gamma function. This interpolation formula
was previously found to work with very good accuracy when
compared to the exact results, including the transmission
distribution [14]. The present case is no exception, as is seen
from the flawless agreement with the numerics.

V. CONCLUSIONS

In this work, we have presented a systematic study of
fluctuations and correlations in the transmission intensity and
phase induced by coupling the transmitting resonance to the
chaotic background. Modeling such a background by RMT,
we have derived the joint (“envelope-phase”) distribution in
the exact form (12) valid at arbitrary coupling to and losses in
the background. The intensity and phase are found to exhibit
strong and nontrivial statistical correlations within certain
finite support of the joint distribution. These correlations
remain essential even in the limit of strong absorption. In the
latter case, we have discussed in detail the relevant approxi-
mations and their accuracy. In particular, simple asymptotic
expression (14) has been obtained that, in contrast to the
Gaussian or Rician approximations, provides uniformly good
approximation within the whole distribution support.

We have also derived the distribution of the transmission
phase and studied its exact limiting forms in the physically
interesting cases of weak and strong absorption. The analytical
results are supported by straightforward numerical simula-
tions performed with random GOE matrices. We note that
recent advances in experimental techniques have provided
access to the full S matrix, including the phases, in various
microwave cavity experiments [28–34]. In particular, exact
nonperturbative results for the statistics of diagonal [23,24]
and off-diagonal [35,36] S matrix elements were tested with
high accuracy in such experimental studies. The approach
developed here depends essentially on two model parameters,
the background coupling (η) and absorption strength (γ ),
which can be extracted from scattering data as discussed
in [37]. Thus, we expect that our results will find further
applications within a broader context of wave chaotic systems.
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