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We study the beating effects of solitons in multicomponent coupled Bose-Einstein condensate systems. Our
analysis indicates that the period of beating behavior is determined by the energy eigenvalue difference in
the effective quantum well induced by solitons, and the beating pattern is determined by the eigenstates of a
quantum well, which are involved in the beating behavior. We show that the beating solitons correspond to
linear superpositions of eigenstates in some quantum wells, and the correspondence relations are identical for
solitons in both an attractive interaction and a repulsive interaction condensate. This provides a possible way to
understand the beating effects of solitons for attractive and repulsive interaction cases in a unified way, based
on the knowledge of quantum eigenstates. Moreover, our results demonstrate many different beating patterns for
solitons in multicomponent coupled condensates, in sharp contrast to the beating dark soliton reported before.
The beating behavior can be used to test the eigenvalue differences in certain quantum wells, and more abundant
beating patterns are expected to exist in more component-coupled systems.
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I. INTRODUCTION

The multicomponent coupled Bose-Einstein condensate
(BEC) provides a good platform to study the dynamics of
vector solitons [1]. Many different vector solitons have been
obtained in the two-component coupled BEC systems, such
as the bright-bright soliton [2], the bright-dark soliton [3], the
dark-bright soliton [4–7], and the dark-dark soliton [8]. Bright-
bright and bright-dark solitons usually exist in the coupled
BEC with attractive interactions [9–12], while dark-bright
and dark-dark solitons usually exist in the coupled BEC with
repulsive interactions [7,13,14]. Recently, it was shown that
it is possible to find a dark-antidark soliton in the BEC with
unequal inter- and intraspecies interaction strengths [15–17].
All those previously reported solitons were stable and had no
beating effects, but some of them can be used to generate
beating solitons. For example, beating dark solitons were
shown to exist in the two-component coupled BEC with equal
inter- and intraspecies repulsive interactions [18–20], which
were generated from the dark-bright soliton with the SU(2)
symmetry property [21]. Based on abundant vector solitons
for more component cases, it is naturally expected that there
should be more exotic beating patterns for more component
coupled BEC systems.

On the other hand, there are also beating antidark solitons
in the two-component BEC with attractive interactions [see
Fig. 1(a)], which can be seen from the results for a rogue wave
and breathers in coupled systems with attractive interactions
[22,23]. Then, we note that the beating patterns of a dark soliton
and an antidark soliton exhibit many similar properties, even
though they exist in different interaction cases. Can we find
a mechanism to understand the beating effects of them in a
unified way? As far as we know, the beating effects have
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not been discussed systemically to uncover the underlying
mechanisms. It is essential to discuss the beating patterns in
detail and to find some fundamental mechanisms for these
different beating behaviors.

In this paper, we study the beating effects of vector solitons
in detail. The analysis suggests that the beating effects of
solitons is determined by the energy eigenvalue difference
and corresponding eigenstates in the effective quantum wells.
The quantum wells have identical forms for both attractive
and repulsive interactions cases. In this way, we show that
beating antidark solitons and beating dark solitons correspond
to the same eigenproblems in a quantum well. Their beating
period and pattern can be understood in a unified way, based
on the well-known knowledge of the linear superposition
of quantum eigenstates. Furthermore, we demonstrate that
there are some new beating patterns in three-component or
four-component coupled BEC systems with the aid of SU(2)
and SU(3) symmetry, such as beating bright solitons with a
double-hump, beating dark solitons with a double-valley, and
beating bright solitons with a triple-hump, in sharp contrast
to the well-known beating dark solitons. These results can be
further extended to discuss more component involved cases,
and the beating behaviors can be understood well based on the
knowledge of quantum eigenstates in quantum mechanics. We
further discuss beating solitons in an arbitrary N -component
coupled BEC. The beating period can also be used to test the
energy eigenvalue differences in some certain quantum wells.

The paper is organized as follows. In Sec. II, we discuss the
relations between beating solitons in a two-component coupled
BEC with attractive interactions and repulsive interactions. A
unified way to understand the beating behaviors is argued. The
beating period is determined by the eigenvalue difference of
energy in an effective quantum well. In Sec. III, the discussions
are extended to three-component cases. More different beating
patterns are demonstrated. We further discuss the beating
effects of a soliton in an arbitrary N -component coupled
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FIG. 1. (a1)–(a3) Beating antidark soliton for two-component coupled BEC with attractive interactions. The three figures show the density
evolution of component ψ1,ψ2 and the superposition of them, respectively. (b1)–(b3) Beating dark soliton for two-component coupled BEC
with repulsive interactions. The three figures show the density evolution of component ψ1,ψ2 and the superposition of them, respectively. Parts
(c1)–(c3) show that the beating solitons in repulsive and attractive cases correspond to the superposition of identical eigenstates in a quantum
well −f sech2[

√
f x]. Our analysis indicates that the beating effects are induced by the coherence superposition of eigenstates in the quantum

well. The beating period is determined by the energy eigenvalue difference in the quantum well. These characters hold well for the beating
solitons in both attractive and repulsive interaction cases. The parameters in soliton solutions are a = 1 and f = 1.

BEC. In Sec. IV, we summarize our results and present some
discussions.

II. THE BEATING EFFECTS OF
TWO-COMPONENT SOLITONS

We first study the beating effects of vector solitons in a
two-component coupled BEC. The dynamical equation can be
written as the following dimensionless coupled model:

i
∂ψ1

∂t
+ 1

2

∂2ψ1

∂x2
+ σ (|ψ1|2 + |ψ2|2)ψ1 = 0,

i
∂ψ2

∂t
+ 1

2

∂2ψ2

∂x2
+ σ (|ψ1|2 + |ψ2|2)ψ2 = 0, (1)

where ψ1 and ψ2 denote the two-component fields in the
coupled BEC systems [1]. In this case, the inter- and in-
traspecies interactions have equal strength, and the model can
be solved exactly by the Darboux transformation, the Hirota
bilinear method, etc. Bright-bright and bright-dark solitons
usually exist in the coupled BEC with attractive interactions
σ = 1 [9–12], while dark-bright and dark-dark solitons usually
exist in the coupled BEC with repulsive interactions σ = −1
[7,13,14]. The bright-bright soliton or the dark-dark soliton
cannot be used to generate beating behavior, since the bright
solitons or dark solitons in two components have identical
distribution profiles and chemistry potential values. It has
been shown that dark-bright and bright-dark solitons can be
used to generate beating solitons. A dark-bright soliton can
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generate a beating soliton, as shown in Fig. 1(b). It is seen
that the beating behavior just emerges in each component, but
there are no beating effects for the whole density of the two
components, and the superposition density profile is a stable
dark soliton. Therefore, it has been called a beating dark soliton
[18–20]. The beating antidark soliton can also be generated
from the well-known bright-dark solitons. Correspondingly,
the superposition density profile is an antidark soliton [shown
in Fig. 1(a)], therefore it is called a beating antidark soliton.
To find a unified way to understand them, we represent them
separately for the attractive and repulsive interaction cases. The
beating antidark soliton can be given as follows with σ = 1:

ψ1 = −(
√

f + a2 sech[
√

f x] eif/2t + a tanh[
√

f x])

× 1√
2
eia2t , (2)

ψ2 = −(
√

f + a2 sech[
√

f x] eif/2t − a tanh[
√

f x])

× 1√
2
eia2t , (3)

where a denotes the amplitude of the plane-wave background
for a dark-soliton component. The beating dark soliton can be
written as follows with σ = −1:

ψ1(x,t) = −(a sech[
√

f x] eif/2t +
√

f + a2 tanh[
√

f x])

× 1√
2
e−i(a2+f )t , (4)

ψ2(x,t) = −(a sech[
√

f x] eif/2t −
√

f + a2 tanh[
√

f x])

× 1√
2
e−i(a2+f )t , (5)

where
√

f + a2 denotes the amplitude of the plane-wave
background for a dark-soliton component. The beating period
is obviously determined by the chemical potential difference
for solitons [20]. The beating behaviors are distinctive for
attractive and repulsive interaction cases. We would like to find
a unified way to understand them, since the beating behavior
for a dark soliton and an antidark soliton always has an identical
oscillation period if the parameter f of solitons is chosen
identically. Why does this character hold for the two different
cases, one for the attractive case and one for the repulsive
case? There may be many different ways to understand this
point. We would like to present one possible way to understand
this character, based on the relations between solitons and
eigenstates in a quantum well. We will show that the classical
linear superposition of eigenstates in quantum mechanics can
be used to explain perfectly the beating behavior of solitons in
both the attractive and repulsive interaction cases.

Calculating that |ψ1|2 + |ψ2|2 = a2 + f sech2[
√

f x] in a
two-component coupled NLS with the attractive interaction
case, and then substituting it into Eqs. (1) and (2) with σ = 1,
one can find that the beating soliton solution is related with
the eigenproblem in a quantum well −f sech2[

√
f x]. The

corresponding eigenequation is

−1

2

∂2ψj

∂x2
− f sech2[

√
f x]ψj = μjψj . (6)

TABLE I. The correspondence between soliton states in a two-
component BEC and eigenstates in a quantum well −f sech2[

√
f x].

It is seen that the solitons in the attractive and repulsive cases
correspond to identical eigenvalues in the quantum well. The beating
period is determined by the eigenvalue difference, which can be
understood well using knowledge of quantum mechanics. “AI,” “QW,”
and “RI” denote attractive interaction BEC, quantum well, and
repulsive interaction BEC respectively.

Solitons in an AI Eigenvalues in a QW Solitons in an RI

dark soliton 0 dark soliton
bright soliton −f/2 bright soliton

We can prove directly that the bright soliton and the dark
soliton, which are used to generate a beating antidark soliton,
are both eigenstates in the quantum well −f sech2[

√
f x]. It

is seen that the bright soliton corresponds to the eigenvalue
−f/2 in the quantum well, and the dark soliton corresponds
to eigenvalue zero in the quantum well. This agrees well with
the results in quantum wells [24,25]. For a beating dark soliton
in the repulsive case, |ψ1|2 + |ψ2|2 = a2 + f tanh2[

√
f x] can

be used to find related eigenstates in a quantum well for the
repulsive cases. With the help of tanh2(x) = 1 − sech2(x),
we can rewrite the potential form as a2 + f tanh2[

√
f x] =

a2 + f − f sech2[
√

f x]. After transferring the constant terms
to chemistry potential terms, the effective quantum well also
becomes −f sech2[

√
f x]. Interestingly, the eigenproblem for

the repulsive case is identical to that in the attractive case, i.e.,
they have the identical eigenequation. This is demonstrated in
Fig. 1(c). It is seen that the eigenvalues of a bright soliton and a
dark soliton, which are used to generate a beating dark soliton,
are also −f/2 and 0 in the quantum well. These characters
are summarized in Table I. In this way, we can establish the
correspondence between solitons and eigenstates in a quantum
well. This provides possibilities to explain the beating effects
of solitons based on the knowledge of eigenstates in quantum
mechanics.

Therefore, the beating solitons are fundamentally linear
superposition forms of eigenstates in a quantum well. In quan-
tum mechanics, arbitrary linear superpositions of eigenstates
are always the solution of the linear Schrödinger equation.
But there is a slight difference in that the linear superposition
coefficients cannot be arbitrary for Eqs. (1) and (2), since they
are nonlinear partial equations. The linear superposition of two
eigenstates will have a beating behavior, and the beating period
is determined by the eigenvalue difference [24]. Namely, the
beating period is

T = 2π

�
, (7)

where � denotes the eigenvalue difference of energy between
the beating behavior of the two eigenstates. For an example,
the beating period T in Fig. 1 is about 12.56 in scaling units,
and the energy difference is � = 1

2 in scaling units, which
agrees well with the quantitative relation. Therefore, there are
no beating effects for superpositions of degenerated solitons,
for which the solitons have identical eigenvalues. This provides
a good way to understand the beating effects of solitons in a
BEC.
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Most of the previous experiments in a BEC demonstrated
that two-component solitons could be produced well using
different density and phase-modulation techniques [6,7,13,14].
Very recently, three-component soliton states were further
observed in a spinor BEC system [26]. Motivated by these
developments, we would like to discuss the beating effects of
solitons in a three-component coupled BEC.

III. THE BEATING EFFECTS OF
MULTICOMPONENT SOLITONS

The three-component coupled BEC can be described by the
following dynamical equations:

i
∂ψj

∂t
+ 1

2

∂2ψj

∂x2
+ σ (|ψ1|2 + |ψ2|2 + |ψ3|2)ψj = 0, (8)

where ψj ’s (j = 1,2,3) denote the three-component fields in
the coupled BEC systems [1]. Most of the previously reported
three-component solitons are degenerate solitons or partially
degenerated solitons [9–11,26], such as a bright-bright-bright
soliton, a bright-dark-dark soliton, a dark-bright-bright soliton,
a dark-dark-dark soliton, etc. For example, for a dark-bright-
bright soliton, the dark soliton component has one node and the
two bright soliton components have identical eigenstates (they
are degenerate). The superpositions of degenerate solitons
cannot produce any beating effects, but the nondegenerate
solitons can produce beating effects that are similar to those
in the two-component cases [9–11,26]. This is because of the
dark soliton and the bright soliton in partly degenerate solitons
for the three-component case, which correspond to identical
eigenstates in the quantum well to those for the two-component
case. Therefore, we do not show them in detail, and these
characters can be seen in previously reported soliton solutions.

In fact, the vector solitons in three-component coupled
systems can have nondegenerate solitons [27,28]. The dark
soliton in one component can have a double-valley structure,
and one bright soliton component can also have a node that
makes the bright soliton have a double-hump. These are quite
different from the ones observed in [26]. Similarly, we can
generate a beating soliton from the eigenstates in a quantum
well −3f sech2[

√
f x]. It is found that the solitons in the three

components correspond to identical eigenstates in the quantum
well for the attractive and repulsive interaction cases. Namely,
the eigenstates of the linear Schrödinger equation,

−1

2

∂2ψj

∂x2
− 3f sech2[

√
f x]ψj = μjψj , (9)

can be used to generate three-component nondegenerate soli-
tons for both the attractive and repulsive interaction cases. This
makes the beating patterns for the attractive interaction case
similar to those in the repulsive case. Therefore, we mainly
discuss the beating solitons in a three-component coupled BEC
with repulsive interactions. Similar behaviors are expected in
the attractive cases.

The eigenstates sech2[
√

f x], sech[
√

f x] tanh[
√

f x],
and (1 − 3 tanh2[

√
f x]) correspond to the eigenvalues

−2f , −f/2, and 0, respectively, in the quantum well
−3f sech2[

√
f x]. From the nodes of the eigenstates, we know

that these eigenstates are the ground state, the first-excited

state, and the second-excited state, which correspond to eigen-
values −2f , −f/2, and 0, respectively. This can be used to
construct nondegenerate vector solitons for a three-component
coupled nonlinear Schrödinger equation with attractive or
repulsive interactions. Since the nonlinear equations have some
additional constraints on the coefficients of three wave func-
tions, we introduce some new coefficients for them, namely
φ1(x) = a3 sech2[

√
f x], φ2(x) = b3 sech[

√
f x] tanh[

√
f x],

and φ3(x) = c3(1 − 3 tanh2[
√

f x]). We can identify the
values of a3, b3, and c3 with the constraint condi-
tion |ψ1|2 + |ψ2|2 + |φ3(x)|2 = a2 + 3f tanh2[

√
f x]. Then

the static vector nondegenerate soliton of the three-
component BEC with repulsive interactions σ = −1 can be
given as ψ1s = 1

2

√
3(a2 − f ) sech2[

√
f x]e−it(a2+f ), ψ2s =√

3(a2 + 2f ) tanh[
√

f x] sech[
√

f x]e−it(a2+ 5f

2 ), and ψ3s =
1
2

√
(a2 + 3f )(1 − 3 tanh2[

√
f x])e−it(a2+3f ). From the nodes

of these eigenstates, we know that ψ1s , ψ2s , and ψ3s are the
ground state, the first-excited state, and the second-excited state
in the quantum well, respectively. Their linear superpositions
can generate many different beating solitons, with the aid of
the SU(2) or SU(3) symmetry admitted by the three-component
coupled nonlinear equations.

For the SU(2) symmetry case, the transformation ma-
trix has many different forms. Their beating patterns are
similar, with identical beating periods. As an example, we

choose S3×3 = (
−
√

1
2 −

√
1
2 0

−
√

1
2

√
1
2 0

0 0 1

). The linear transformation

S3×3(ψ1s ,ψ2s ,ψ3s)T (T denotes the transpose of a matrix) can
be used to construct many different beating solitons. First,
S3×3(ψ1s ,ψ2s ,ψ3s)T describes a superposition of the ground
state and the first-excited state in the quantum well. The dynam-
ical processes of the beating soliton are shown in Fig. 2(a). It is
seen that the beating behaviors are demonstrated on zero back-
ground, in contrast with the beating dark soliton and the beating
antidark soliton shown above. Their superposition is a bright
soliton with a double-hump, therefore this beating soliton is
called a beating bright soliton with a double-hump. This is
similar to the case for which the beating dark soliton is named.
The beating period is about T = 4.18, which agrees well with
4π
3 . Second, S3×3(ψ1s ,ψ3s ,ψ2s)T describes a superposition of

the ground state and the second-excited state in the quantum
well. The dynamical processes for the beating soliton are
shown in Fig. 2(b). It is seen that the beating behaviors emerge
on a plane-wave background, which is similar to the beating
dark soliton discussed before. But there is a sharp difference,
namely the superposition of the beating components is a dark
soliton with a double-valley. Therefore, this beating soliton is
called a beating dark soliton with a double-valley, in contrast to
the beating dark soliton. Third, S3×3(ψ2s ,ψ3s ,ψ1s)T describes a
superposition of the first-excited state and the second-excited
state in the quantum well. The dynamical processes for the
beating soliton are shown in Fig. 2(c). It is seen that beating pat-
terns also emerge on a plane-wave background, and their super-
position is a dark soliton. The dark soliton also has one valley,
therefore this beating soliton is a beating dark soliton. It should
be noted that the beating pattern is different from the beating
dark soliton in the two-component cases, since the eigenstates
are different from those in the two-component cases.
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FIG. 2. The beating solitons in a three-component coupled BEC with repulsive interactions, which are generated from SU(2) symmetry.
Parts (a1)–(a3) show the evolution of a beating bright soliton with a double-hump in the three components, respectively, which are superpositions
of the ground state and the first-excited states in the quantum well −3f sech2[

√
f x]. Parts (b1)–(b3) show the evolution of a beating dark

soliton with a double-valley in the three components, respectively, which are superpositions of the ground state and the second-excited states in
the quantum well. Parts (c1)–(c3) show the evolution of a beating dark soliton in the three components, respectively, which are superpositions
of the first-excited states and the second-excited states in the quantum well. The parameters in the soliton solutions are a = 2 and f = 1.

For SU(3) symmetry, the transformation matrix can be

chosen as S3×3 = (

√
1
3

√
1
3

√
1
3√

1
3 −

√
1
3 exp ( iπ

3 )
√

1
3 exp ( i2π

3 )√
1
3

√
1
3 exp ( i2π

3 ) −
√

1
3 exp ( iπ

3 )

) as an ex-

ample without losing generality. The linear transformation
S3×3(ψ1s ,ψ2s ,ψ3s)T describes the superposition of the ground
state, the first-excited state, and the second-excited state.
The dynamical processes for the beating soliton are shown
in Fig. 3. The beating pattern becomes more complicated,
since the beating period involves more periodic functions in

this case. Their superposition is a dark soliton that has one
valley. Therefore, it is also a beating dark soliton, but its
beating pattern is different from all previously reported ones.
This suggests that more beating patterns can be found in
cases with more components, since a coupled BEC with more
components corresponds to deeper quantum wells, which have
more eigenstates with many different nodes.

Explicitly, an N -component coupled BEC with equal
nonlinear interaction strengths has SU(N ) symmetry. The
eigenstates in the corresponding quantum wells and the related
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FIG. 3. The beating dark soliton in a three-component coupled BEC with repulsive interactions, which are generated from SU(3) symmetry.
Parts (a)–(c) show the evolution of beating dark solitons in the three components, respectively. The beating effects come from the superposition
of the ground state, the first-excited state, and the second-excited state in the quantum well −3f sech2[

√
f x]. The parameters in the soliton

solutions are a = 2 and f = 1.

unitary matrix can be used to construct beating solitons. In
particular, the forms of the unitary matrix can be chosen to
have SU(M) (M � N ) symmetry, which can be used to obtain
very abundant different beating patterns. As examples, we
further demonstrate that many different beating patterns can be
generated from a nondegenerate soliton for a four-component
coupled BEC with repulsive interactions. Meanwhile, it should
be noted that a partially degenerate soliton for multicomponent
cases can also be used to generate many different beating
patterns. We do not discuss the partially degenerate soliton
cases in detail anymore. The dynamical equations for the
four-component coupled BEC with repulsive interactions are
iψ ′

t + 1
2ψ ′

xx − ψ ′†ψ ′ψ ′ = 0, where ψ = (ψ1,ψ2,ψ3,ψ4)T .
In a similar way, we obtain nondegenerate vector
solitons from the quantum well 6f tanh2[

√
f x]. Namely,

the fundamental soliton solution can be derived as
ψ1(x,t) = 1

2

√
5
2 (a2 − 3f ) sech3[

√
f x]e−i(a2+3f/2)t , ψ2(x,t) =

1
2

√
15(a2 + 2f ) tanh[

√
f x] sech2[

√
f x]e−i(a2+4f )t , ψ3(x,t)

= 1
2

√
3
2 (a2+5f )(5 tanh2[

√
f x]−1) sech[

√
f x]e−i(a2+11f/2)t ,

and ψ4(x,t) = 1
2

√
a2 + 6f tanh[

√
f x](5 tanh2[

√
f x] −

3)e−i(a2+6f )t . We introduce a matrix S4×4 to investigate the
beating effects of these solitons based on the symmetry
properties of dynamical equations. The forms of the
unitary matrix can be chosen to have SU(M) (M � 4)
symmetry, which enables us to obtain very abundant different
beating patterns. As an example, we show one case to
demonstrate abundant beating patterns with the aid of SU(3).

If S4×4 = (

√
1
3

√
1
3

√
1
3 0√

1
3 −

√
1
3 exp ( iπ

3 )
√

1
3 exp ( i2π

3 ) 0√
1
3

√
1
3 exp ( i2π

3 ) −
√

1
3 exp ( iπ

3 ) 0

0 0 0 1

), the linear

transformation S4×4ψ can also be used to construct many
different localized waves. Different from the above cases, for
which beating solitons just emerge in two components, the
beating behaviors are demonstrated in three components in
this case. We will show one case of them as an example to
demonstrate the striking dynamics, in contrast to the vector
soliton reported before. The solution S4×4(ψ1,ψ2,ψ3,ψ4)T

can be obtained directly from the nondegenerate solitons.

The dynamics of solitons in the four components are shown
in Fig. 4(a). It is seen that beating solitons emerge in three
components in this case, in contrast to those in Figs. 2 and 3.
The beating pattern can be seen as a beating bright soliton with
a triple-hump. Similarly, we can also exchange the components
to generate different beating solitons. The dynamics of the
soliton solution S4×4(ψ4,ψ2,ψ3,ψ1)T are shown in Fig. 4(b).
It is shown that the beating patterns become more complicated
than those in Fig. 2. This is because the superposition forms
involve more eigenvalues of the same quantum well, and more
eigenvalues will produce more oscillation behaviors. If the
elements of the matrix S4×4 are all nonzero, then we can obtain
more complicated beating patterns, since the beating effects
will be induced by the interference between more eigenstates.

IV. CONCLUSION AND DISCUSSION

In summary, we show that the beating patterns of solitons
are determined by the eigenvalue difference and corresponding
eigenstates in the effective quantum wells. In particular, the
effective quantum wells have identical forms for both attractive
and repulsive interactions. In this way, we show that a beating
antidark soliton and a beating dark soliton correspond to the
same eigenproblems in a quantum well for a two-component
coupled BEC. Their beating period and pattern can be under-
stood in a unified way, based on the well-known knowledge
of the linear superposition of quantum eigenstates. These
characters hold well for cases with more components. A brief
discussion is also given for beating solitons in an arbitrary
N -component coupled BEC. As examples, we demonstrate
that there are some new beating patterns in three-component
and four-component coupled BEC systems, such as beating
bright solitons with a double-hump, and beating dark solitons
with more humps or valleys, in sharp contrast to the beating
dark solitons reported before. We note that internal vibrations
of vector solitons were investigated numerically in [29,30]. The
vibration behavior could be related with the beating effects dis-
cussed above, since the states obtained by a variational method
may involve several eigenstates admitted by the systems.

From the results of beating effects, we know that the beating
period is determined by the corresponding energy eigenvalue
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FIG. 4. The evolution of beating solitons generated from nondegenerate solitons in a four-component coupled BEC with repulsive
interactions. Parts (a1)–(a4) show the evolution of the beating bright soliton case in the four components, respectively. It is shown that
the beating effects of solitons emerge in three components, and there is a stable dark soliton with a triple-valley in the other component. Parts
(b1)–(b4) show the evolution of the beating dark soliton case in the four components, respectively. It is shown that the beating effects of dark
solitons emerge in three components, and there is a stable bright soliton with a single hump in the other component. The parameters in the
soliton solutions are a = 1 and f = 1.

difference in the effective quantum wells. On the other hand,
one can produce the initial density and phase distribution for
beating solitons in BEC systems through the well-developed
density and phase-modulation techniques [6,7,13,14,26]. The
beating period would be measured directly in real experiments
[31]. Therefore, it is possible to measure the energy eigenvalue
difference in many different quantum wells in multicomponent
BEC systems, with the aid of the beating period T = 2π

�
, where

� denotes the energy eigenvalue difference in the quantum
wells.
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