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Mean-field model for the density of states of jammed soft spheres
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We propose a class of mean-field models for the isostatic transition of systems of soft spheres, in which the
contact network is modeled as a random graph and each contact is associated to d degrees of freedom. We study
such models in the hypostatic, isostatic, and hyperstatic regimes. The density of states is evaluated by both the
cavity method and exact diagonalization of the dynamical matrix. We show that the model correctly reproduces
the main features of the density of states of real packings and, moreover, it predicts the presence of localized
modes near the lower band edge. Finally, the behavior of the density of states D(ω) ∼ ωα for ω → 0 in the
hyperstatic regime is studied. We find that the model predicts a nontrivial dependence of α on the details of the
coordination distribution.
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I. INTRODUCTION

While the vibrational behavior of crystalline solids—the
density of states and heat capacity, for example—is well
known, the disorder present in the structure of noncrystalline
systems such as glasses, granular materials, and foams
leads to intriguing anomalies that are still not completely
understood. Both in crystals and in disordered solids in d

dimensions the (vibrational) density of states (DOS) D(ω) in
the low-frequency regime—i.e., on large scales—is given by
the Debye law, D(ω) ∼ ωd−1. However, disordered systems
present a nontrivial deviation from Debye’s theory at higher
frequencies. This motivated a large amount of literature on the
general properties of D(ω) and of the structure factor in the
disordered case, from both the numerical and the experimental
point of view [1,2].

For example, the so-called “boson peak”—an excess of
modes with respect to Debye’s prediction—is a common
feature of the DOS of disordered solids. It has been interpreted
as a precursor of instability in harmonic regular lattices with
spatially fluctuating elasticity [3] and it seems to be linked
to the Ioffe-Regel crossover frequency [4,5]. It has also been
suggested that the boson peak is simply a smeared version
of the van Hove singularity, a well-known feature of crystals
[6]. A different point of view on this topic came from the
study of the dynamic structure factor in supercooled liquids,
which has been successfully tackled using Euclidean random
matrix theory [7–10]. From this perspective, the boson peak
phenomenon can be interpreted as a phonon-saddle transition
[11]. The relation between disorder and the boson peak is,
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however, still a matter of debate, alongside other spectral
properties of disordered solids.

In the present paper, we want to study the properties of D(ω)
in a mean-field model for soft spheres near the jamming point.
The simplest model of a disordered system of soft spheres
is an elastic network with some kind of randomness in it.
Random elastic networks have a long tradition in the literature.
For example, an effective-medium theory (EMT) has been
developed for the study of a system of oscillators on a regular
lattice of springs with random stiffness [12]. In all these models
it emerged quite clearly that one of the essential features that
strongly affects the properties of the DOS is the average degree
of a node in the network, as first observed by Maxwell in his
study on the stability of solids [13,14]. By means of a constraint
counting, Maxwell showed that, given a system of particles in
d dimensions, global mechanical stability requires an average
number of contacts per particle given at least by z̄ = 2d, despite
the fact that z = d + 1 contacts on each particle are enough to
pin it in a given position.

Applying Maxwell’s argument and using a variational
approach, a general qualitative picture of D(ω) in a disordered
elastic solid has been obtained in the last decade [15]. In
particular, assuming δz := z̄ − 2d > 0, it is expected that
D(ω) has a plateau for ω � ω∗ ∝ δz, and that the plateau
extends up to the origin for δz → 0+ [2,16]. The frequency
ω∗ increases with compression [17], due to the fact that z̄

increases by consequence as well. The value ω∗ is directly
connected to the boson peak and to an Ioffe-Regel crossover
[4]. Indeed, using EMT, DeGiuli et al. [18] found that the
boson peak frequency scales as ωbp ∼ √

ωeω∗, where ωe is a
frequency at which strongly scattered modes appear and which
depends on the compressive strain. A numerical study of the
contact network of an overjammed system of soft spheres near
the jamming point shows that there is a relation between the
average number of contacts z̄ and the packing fraction ϕ, i.e.,
δz ∝ (ϕ − ϕc)1/2 for ϕ � ϕc, ϕc being the jamming transition

2470-0045/2018/97(6)/062157(14) 062157-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.062157&domain=pdf&date_stamp=2018-06-29
https://doi.org/10.1103/PhysRevE.97.062157


BENETTI, PARISI, PIETRACAPRINA, AND SICURO PHYSICAL REVIEW E 97, 062157 (2018)

packing fraction [2,19,20]. The two variables z̄ and ϕ therefore
play an equivalent role. On the other hand, if z̄ < 2d, the
stability condition is violated and the system is hypostatic:
an extensive number of zero (floppy) modes appears and D(ω)
has a gap for 0 < ω < ω0 for a certain frequency ω0 [21].
These results suggest quite clearly that, independently from the
amount of disorder, stability is determined by two parameters:
the average coordination z̄ and the compressive strain applied
to the system. Furthermore, on the transition between stability
and instability, the frequency of the boson peak vanishes and
its amplitude diverges.

Despite the fact that the general features of the DOS in
the three regimes are well established, the low-frequency
properties of D(ω) for δz > 0 are still a matter of investigation.
In this regime, using an EMT approach, DeGiuli et al. [18]
predicted

D(ω) ∼

⎧⎪⎪⎨
⎪⎪⎩

ωd−1

ω
d/2
∗

, ω � ωe

ω2

ω2∗
, ωe � ω � ω∗

constant, ω � ω∗.

(1)

The same behavior has been obtained in the study of the
soft perceptron, the simplest possible mean-field model for
jamming [22]. The lowest-frequency behavior in Eq. (1)
corresponds to the phonon contribution, which is absent for
d → +∞. What happens in finite dimension if the phonons
are removed, however, is a nontrivial question. Indeed, both
EMT and the perceptron model, which are mean-field theories,
suggest that, for ω → 0, D(ω) ∼ ω2 once the Goldstone modes
are neglected. On the other hand, Gurarie and Chalker [23]
and Gurevich et al. [24] predicted a D(ω) ∼ ω4 scaling as a
general behavior of the DOS in random media for ω → 0 in
finite dimension. Numerical evidence is available in favor of
both the mean-field [25] and the finite-dimensional [26–30]
predictions. Different authors dealt with the presence of
phonons in finite dimension in different ways, e.g., by a random
external field in spin glasses to break translational invariance
[26,28], or, in structural glasses, carefully tuning the system
size [27], isolating the localized low-frequency modes [29],
or performing a random pinning [30]. How to recover the
finite-dimensional scaling from the infinite-dimensional one
is still an open problem. Moreover, recent studies suggest that
the protocol adopted for cooling the system might be relevant
in the final low-frequency power-law behavior. In Ref. [31],
for example, it has been shown that D(ω) ∼ ω3 in glasses
obtained quenching from temperatures much higher than the
glass transition temperature.

The low-frequency regime for δz > 0 is interesting also for
its localization properties. The presence of (quasi) localized
modes in the lower edge of the spectrum, alongside the
presence of localized modes in the upper edge [32], has
been observed in systems of soft spheres [33] but also in the
instantaneous normal modes spectrum of low-density liquids
[10,34]. In these cases the localized low-frequency modes
tend to hybridize with extended Goldstone modes, becoming
weakly localized.

The presence of localized low-frequency modes is common
in many disordered models. For example, localized states
appear on the edge of the spectrum in models with disorder on
random graphs and Bethe lattices [35]. Localized eigenstates

have been found also on the spectrum edges of Euclidean
random matrix models on random graphs [36]. However,
this property is out of the reach of mean-field models for
jamming having infinite connectivity [22]. The presence of
localized low-frequency modes is relevant, because they are
precursors of instabilities in the unjamming transition and of
local rearrangements in sheared glasses [37,38]. Once again,
the frequency ω∗ plays the role of crossover frequency between
the region of extended modes and the region of modes that are
localized on few particles, which typically have low coordi-
nation [39,40]. Moreover, the delocalization of low-frequency
modes increases as ϕ → ϕc and d increases [25].

The complexity of the scenario above motivated us to study
a mean-field model in which Goldstone modes are absent by
construction, that can be treated by the cavity method and
that is still reminiscent of the finite dimensionality of real
amorphous packings. We consider a treelike random graph,
which is our model for the (equilibrium) contact network in
an amorphous packing. The lack of an underlying lattice regu-
larity automatically forbids Goldstone modes. Each vertex in
the graph corresponds to a sphere, and each edge is associated
to a d-dimensional random unit vector joining the centers of
two spheres in contact. The Hessian matrix M is therefore
constructed using this set of random vectors on the graph, and
the DOS is computed from the spectrum of M and averaging
over all realizations. This model has been investigated by Parisi
[41] on random regular graphs, and explicit expressions for
the first moments of the corresponding DOS on Erdős-Rényi
random graphs are available [42].

The model discussed above has been inspired by the one
introduced by Manning and Liu [43], the so-called “diagonal-
dominant (DD) random matrix model.” In the DD model
the Hessian matrix M is constructed using an Erdős-Rényi
random graph with average coordination z̄, in such a way
that a random scalar quantity is associated to each edge. This
model is therefore intrinsically “one-dimensional.” Isostaticity
corresponds to z̄ = 2 and thus there is no hypostatic regime.
A similar “one-dimensional” model has been very recently
considered in Ref. [44], where the DOS of a ring of springs
with random cross bonds has been studied in the presence of
disorder in the elastic constants.

Starting from the results of Ref. [41], in this paper we
consider a more general class of graphs that are also locally
treelike, a fact that allows us to apply the cavity method to
obtain information about both the DOS and the localization
properties of the model. The predictions of the cavity method
will be compared with the results obtained through an exact
diagonalization procedure and the method of moments.

The paper is organized as follows. In Sec. II we describe
in detail the model under investigation and the methods that
we have adopted to solve it. In Sec. III we present our results
for three possible cases (hypostatic, isostatic, and hyperstatic
regimes). We compare the results obtained with fixed and
with fluctuating coordination, stressing the main differences
between the two cases. Finally, in Sec. IV we give our
conclusions.

II. MODEL AND METHODS

Let us consider a system of N soft spheres in d dimensions,
whose centers are in positions {ri}i=1,...,N , ri = (rμ

i )μ=1,...,d
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FIG. 1. Pictorial representation of a small overjammed system
(N = 256) of soft spheres in d = 3 dimensions with its corresponding
contact network. The overjammed configuration has been obtained
assuming periodic boundary conditions. To simplify the network
figure the contacts across the boundary are not shown.

being a d-dimensional vector in the Euclidean space. We
assume that the spheres interact by a finite-range repulsive
potential U (x) depending on the modulus of their Euclidean
distance only. We also assume that there are Nc total “contacts”
among the spheres, two spheres being in contact if there is a
nonzero interaction between them. A given configuration of
the spheres can therefore be naturally associated to a contact
network, i.e., a graphG = (V,E) with vertex setV of cardinality
N , and edge set E of cardinality Nc, in such a way that the ith
sphere corresponds to the vertex i ∈ V and the edge e = (i,j )
is an element of E if, and only if, the ith sphere and the j th
sphere are in contact (see Fig. 1). The average coordination
number of the graph, i.e., the average number of contacts of
each sphere, is given by

z̄ := 2Nc

N
. (2)

Denoting by xij := ri − rj the distance between the ith
sphere and the j th sphere, the Hamiltonian of the system
depends on the set of distances {xij }(i,j )∈E only, and it can be
written as

Ĥ =
∑

(i,j )∈E
U (‖ri − rj‖) ≡

∑
(i,j )∈E

U (‖xij‖). (3)

Given a set of equilibrium positions of the spheres, we can eas-
ily write down a quadratic Hamiltonian function that describes
the fluctuations of the system around the given minimum (an
inherent structure) by means of a harmonic approximation
of the Hamiltonian in Eq. (3). Let δi be the fluctuation of
the ith sphere around its equilibrium position ri . We assume
that, at equilibrium, ‖ri − rj‖ = ‖xij‖ = 1 for all (i,j ) ∈ E
and, moreover, we will neglect the so-called “initial stress”
contribution [14], that indeed vanishes at jamming. Up to an
additive constant and a global multiplicative factor, a quadratic
approximation of Eq. (3) gives us

H[δ] :=
∑
ij

d∑
μ,ν=1

δ
μ

i M
μν

ij δν
j . (4a)

The element Mij of the Hessian matrix M = (Mij )ij is a d×d

matrix given by

Mij =

⎧⎪⎨
⎪⎩

−|xij 〉〈xij | if (i,j ) ∈ E,∑
k∈∂i

|xik〉〈xik| = − ∑
k∈∂i

Mik if i = j,

0 otherwise.

(4b)

In the expression above, ∂i is the set of neighbors of the vertex
i in the graph, i.e., the set of all the spheres in contact with
the sphere i. For the sake of brevity, here and in the following
we use a bra-ket notation, representing, for example, by |x〉
the vector x ∈ Rd and by |x〉〈y| = (xμyν)μν the outer product.
Observe that the translational invariance constraint

N∑
k=1

M
μν

ik = 0 ∀i ∈ V, ∀μ,ν = 1, . . . ,d (4c)

is satisfied. The DOS D(M; ω) of the system can be obtained
directly from the spectral density �(M; λ) of the Hessian matrix
in Eqs. (4), by means of the change of variable D(M; ω) =
2ω�(M; ω2). In particular, the vibrational DOS D(M; ω) is a
comb of Nd Dirac deltas,

D(M; ω) = 1

Nd

Nd∑
k=1

δ(ω − ωk) ≡ 2ω�(M; ω2), (5)

where ωk = √
λk , λk being the kth eigenvalue of the dynam-

ical matrix M. Observe that in the system described by the
Hamiltonian in Eqs. (4), d zero modes are always present, due
to the fact that the translational invariance allows δi �→ δi + λ

for any λ ∈ Rd , and therefore there will always be a δ(ω)/N
contribution in the DOS.

To introduce and study the effects of randomness, we adopt
a mean-field approximation [41]. We first suppose that the Nc

quantities xij appearing in Eqs. (4) are independently generated
random d-dimensional Gaussian unit vectors. Moreover, we
suppose that the graph G is a random graph in which the
coordination z is distributed according to certain probability
distribution pk such that Pr(z = k) = pk for k ∈ N. For each
value of d, we require that the coordination number zi of the
ith vertex always satisfies the local stability condition zi �
d + 1, and therefore pk = 0 for k < d + 1. The translational
invariance constraint in Eq. (4c) appears to be crucial in a
random matrix model for the vibrational DOS of a disordered
solid [43] and it will be preserved. In this way randomness is
introduced both in the edge weights and in the topology of the
graph. We are interested in the properties of the DOS in the
thermodynamical limit N → +∞ and keeping z̄ constant.

In this paper, we will study two different random graph
ensembles, always assuming d = 3, if not otherwise specified.

We will first consider random regular graphs, i.e., graphs
having pk = δk,z̄. We will denote this model byGz̄,0. Following
Ref. [41], we have analyzed the three cases z̄ = 5, z̄ = 6, and
z̄ = 7, corresponding to a hypostatic, isostatic, and hyperstatic
system, respectively.

We have then considered a second, more realistic class of
graphs, in which fluctuations in the coordination are allowed.
In an element of this second class of graphs, the coordination of
each vertex i is given by zi = z0 + ζi , where z0 � d + 1 = 4
is a constant and ζi is a Poisson random variable having mean
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FIG. 2. An instance of the G4,3 model for N = 200 with a low-
frequency eigenmode represented on it. The intensity of the color
is proportional to the amplitude of the corresponding eigenmode on
each site. It is evident that the eigenmode is localized on a site with
z = 4, the lowest possible coordination.

ζ̄ . It follows that, in this case, pk = ζ̄ k−z0 e−ζ̄

(k−z0)! for k � z0, and
zero otherwise. An element of this class can be thought of as
an Erdős-Rényi random graph “superimposed” on a random
regular graph. We will denote this model by Gz0,ζ̄ (see, e.g.,
Fig. 2). In our analysis, we have chosen z0 and ζ̄ in such a
way that either z̄ < 6, z̄ = 6, or z̄ > 6, corresponding to the
hypostatic, isostatic, and hyperstatic case, respectively. This
model reproduces in a reasonable way the real coordination
distribution of sphere packings near jamming [45,46] and
allows us to consider the effects of fluctuating coordination
[47].

Both types of random graphs are locally treelike and the
models combine a mean-field approximation (the random
graph topology) with the finite number of degrees of freedom
of each contact, which is reminiscent of a finite dimensionality.

A. Density of states and the cavity method approach

As usual in the study of disordered systems, we are inter-
ested in the properties of our model averaged over disorder,
and in particular in the average DOS, namely,

D(ω) := E[D(M; ω)] = 2ωE[�(M; ω2)] =: 2ω�(ω2), (6)

where the average E[·] is performed over all instances of the
problem. After some manipulations of the Dirac deltas, it can
be shown [8] that the DOS D(ω) can be written as

D(ω) = − lim
ε→0

lim
N→∞

2ω

Ndπ
E[Tr Im R(ω2 + iε)], (7)

where we have introduced the resolvent

R(λ) := 1

λINd − M
. (8)

Here and in the following Ik is the k×k identity matrix. In this
approach we make, as usual, the assumption that the quantity
D(ω) is self-averaging. We denote by Rij the d×d submatrix
of R corresponding to the couple of (not necessarily distinct)
sites (i,j ). Assuming that no vertex plays a special role in the
ensemble of realizations, the DOS can be expressed in terms

of the averaged trace of the local resolvent Rii , i.e.,

D(ω) = − lim
ε→0

lim
N→∞

2ω

dπ
E[Tr Im Rii(ω

2 + iε)]. (9)

Before proceeding further, let us comment on some proper-
ties of the Hessian matrix under analysis. For each realization
of our system, the matrix M has dimension dN×dN , but it has
rank Nc = ∑

i∈V zi/2 = Nz̄/2, where zi is the coordination
number of the ith vertex. Therefore, if z̄ < 2d, there are
N (d − z̄

2 ) zero modes. In that case, a contribution (1 − z̄
2d

)δ(ω)
to the DOS D(ω) appears, corresponding to a singularity in the
trace of the local resolvent for λ → 0 of the type

E[Tr R(λ)] = 2d − z̄

2λ
+ o

(
1

λ

)
. (10)

By the same argument, moreover, no singularity is expected
for λ → 0 for z̄ = 2d. This is nothing other than Maxwell’s
criterion, which implies instability for z̄ < 2d due to the
presence of an extensive number of zero modes.

A typical approach for the solution of Eq. (6) in the
thermodynamical limit is the cavity method [48–50], which is
exact on a Bethe lattice and can be applied when the underlying
topology is a treelike graph. Using this approach, it can be
proved (see Appendix A) that the local resolvent R satisfies in
probability the equation

R(λ)
prob=

[
λId +

z∑
k=1

|xk〉〈xk|
1 + 〈xk|Gk(λ)|xk〉

]−1

, (11a)

where z is distributed according to pk , the degree distribution of
the graph, and {xk}k=1,...,z are z random Gaussian unit vectors
in d dimensions. The {Gk}k=1,...,z are z local cavity fields
satisfying a similar equation

G(λ)
prob=

[
λId +

η−1∑
k=1

|xk〉〈xk|
1 + 〈xk|Gk(λ)|xk〉

]−1

, (11b)

the main difference being the fact that the random variable z

is replaced by the random variable η, which is distributed with
probability distribution [51]

p̂η = ηpη∑
k kpk

. (11c)

Equations (11) provide a recipe for the numerical evaluation of
E[Tr Im R] through a population dynamics algorithm [52]. We
therefore tackled the problem of the DOS of our model both
numerically solving Eqs. (11), through exact diagonalization
(ED) via the implicitly restarted Lanczos method [53] and
through the method of moments [54] (see Appendix B). In
particular, using ED we obtained the lowest part of the average
spectrum, calculating the 50 lowest eigenmodes (or 100 for the
smaller system sizes), whereas the rest of it has been obtained
from the matrix M using the method of moments.

B. Eigenvectors localization

We also investigate the localization phenomenon near the
band edges in the model proposed above. Let us denote by |k〉
the eigenmode of the matrix M corresponding to the eigenvalue
λk , M|k〉 = λk|k〉, and by |ki〉 its projection on the site i. In
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FIG. 3. DOS and participation ratio [Eq. (13)] for the G5,0 model (a) and the G4,1 model (b) in the hypostatic case, z̄ = 5, using the cavity
method (black dots) and ED (color symbols). The numerical integration of the cavity method equations has been performed using ε = 10−8

and a population of at least 107 fields for ω < 0.2, and a population of 106 fields for the rest of the interval. The ED results were obtained for
N = 500 (red squares), N = 1000 (blue circles), and N = 2000 (green crosses).

this paper, we will always assume that the eigenvectors are
labeled in such a way that k < k′ ⇒ λk � λk′ . We use as an
indicator for the localization of the eigenvector |k〉 the inverse
participation ratio (IPR)

Yk :=

N∑
i=1

|〈ki |ki〉|2
(

N∑
i=1

〈ki |ki〉
)2 . (12)

The IPR scales as O(1) if the eigenvector |k〉 is localized, or
O(N ) if it is delocalized. The quantity above can be evaluated
once the eigenvectors are known from an ED procedure on a
given instance of the problem. To average over disorder we
calculate the quantity

Y (E[ωk]) := E[Yk], (13)

i.e., the average of the participation ratio of the kth eigenmode
as a function of the corresponding average frequency.

We can also study the localization properties of the eigen-
vectors with the cavity method, introducing, among the many
possibilities [41], the quantity

Ŷ (ω) :=
E

[ ∑
k:λk∼ω2

|〈k|k〉|2
]

{
E

[ ∑
k:λk∼ω2

〈k|k〉
]}2

= lim
ε→0

E{Tr[R†(z)R(z)]2}
{E[Tr Im R(z)]}2

∣∣∣∣
z=ω2+iε

. (14)

The last equality allows us to estimate Ŷ (ω) using the cavity
method. It shares the same properties of Y (ω), i.e., diverges in
the localized region and it is O(1) in the delocalized region.

The localization and delocalization properties can also be
detected using a different approach. The expected value of the
square of

ηω := Im Tr R(ω2 + iε)
∣∣
ε→0 (15)

should diverge in the localized regime and therefore it can
be seen as a localization indicator as well. The divergence of
E[η2

ω] can be evaluated either directly or, as we will see below,
studying the probability density of ηω [41].

III. RESULTS

In this section we present our results for the DOS D(ω) and
the IPR near the lower band edge. The tools that we use are
the ones described in Sec. II. We also consider the cumulative
function

�(ω) :=
∫ ω

0
D(u)du. (16)

We will distinguish between the hypostatic, isostatic, and
hyperstatic cases. As previously stated, in all cases under
consideration, we have assumed d = 3.

A. The hypostatic case

a. Density of states. Let us start from the G5,0 model, and
therefore in the hypostatic regime. A hypostatic network is a
good model for the so-called “floppy materials,” such as dense
suspensions, gels, and glasses of low valence elements, which
show an abundance of zero modes. In Fig. 3(a) we compare
the results of the cavity method and ED on the full spectrum
for small sizes of the system for z̄ = 5, finding an excellent
agreement. Both the ED and the cavity results suggest that
a gap is present for ω < ω0 ≈ 10−1, as expected in floppy
materials [21]. The detail of the small frequency regime is
shown in Fig. 4. Note that, for ω < ω0 and finite ε, a small,
nonzero contribution is predicted by the cavity method (see the
inset). This contribution is, however, related to the unavoidable
finiteness of the value of ε adopted in the numerical calculation
to solve Eqs. (11). More specifically, the presence of zero
modes implies that a Dirac delta appears in the origin in D(ω).
The finiteness of ε causes a smoothening of the Dirac function
that, in absence of any other contribution—i.e., in the gap
region for ε � λ � ω2

0—gives a Tr Im R(λ) ∼ ελ−2 scaling
near the origin. The ED and cavity method results have been
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G5,0 model (left) and the G4,1 model (right) using the cavity method
(black) and ED (color).

superimposed. As expected, a zero density is found for ω < ω0,
whereas the two methods are in agreement for ω > ω0.

A qualitatively similar result has been obtained for the G4,1

model, where we find again a gap for ω < ω0 ≈ 10−1 [see
Fig. 3(b) and the detail in Fig. 4). The value of the frequency
ω0 in the G4,1 model appears to be very close to the one found
in the G5,0 model, showing a weak dependence on the details
of the model other than the value z̄. As anticipated, we expect
that ω0 → 0 as z̄ → 2d = 6. Taking advantage of the fact that
in the G4,ζ̄ model we can smoothly vary z̄, we have computed
by cavity method the DOS for 5 < z̄ < 6 [see Fig. 5 (left)], and
indeed we have observed that ω0 decreases as z̄ increases, and
the gap closes for z̄ → 6. Moreover, the scaling ω0 ∝ 2d − z̄,
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FIG. 5. Cumulative function � obtained using the cavity method
in the G4,ζ̄ model for different values of z̄ = 4 + ζ̄ < 6. We observe
that the value of ω0 decreases and the gap closes as soon as z̄ → 6.
The smooth lines are represented as guides for the eye. On the right
panel, the same data are plotted with the x axis rescaled by 6 − z̄ (the
distance from the isostatic transition).

predicted by Düring et al. [21], holds in our model [see again
Fig. 5 (right)].

b. Localization properties. Both the G5,0 model and the G4,1

model present the same localization features. With reference
to Figs. 3(a) and 3(b), the ED results suggest the presence
of a localized region in the upper edge of the spectrum.
The participation ratio Y−1(ω) becomes indeed infinitesimal
slightly before the DOS goes to zero (a fact that is more
evident in the G4,1 model), and, moreover, it scales as O( 1

N
) for

ω � 2.4. In the low-frequency regime, instead, Y (ω) remains
O(1) for all the considered sizes up to the lower band edge,
suggesting that no mobility edge is present and all eigenstates
in the lower part of the spectrum are delocalized.

B. The isostatic case

a. Density of states. Let us now consider our model on
a random regular graph with z̄ = 6. As expected from the
constraint counting argument, in the G6,0 model there is no
gap and D(ω) shows a plateau up to low values of ω (see
Figs. 6(a) and 7). A constant D(ω) for small values of ω implies
that �(λ) ∼ λ−1/2 for λ → 0 and that �(ω) ∝ ω for ω → 0.
These properties have been verified numerically, and the ED
results are compatible with our cavity prediction, as shown
in Fig. 7. Both in D(ω) and in Ŷ−1(ω) there is, however, an
anomalous behavior near ω = 0. Both the cavity and the ED
results suggest the presence of an integrable singularity in the
DOS that is compatible with a logarithmic divergence. Note
that it can be proved that no singularity is present in the model
for d → +∞ [41].

Similar results have been obtained in the G4,2 model, as
we show in Fig. 6(b) and in Fig. 7. This suggests that the
isostaticity condition z̄ = 2d = 6 is enough to guarantee that
there is no gap in the DOS, irrespective of the presence of
local fluctuations in the value of z. As in the G6,0 model, for
very small values of ω both methods indicate the presence of
an integrable singularity in the origin in the DOS, which in
this case appears to be of the type D(ω) ∼ d0 + d1

ωβ for some
constants d0 and d1 and with β ≈ 0.3 (see Fig. 7).

A more precise analysis of this singularity is not possible
with the quality of the data that we have in the ω > 0.01 range.

b. Localization properties. As in the hypostatic case, the
participation ratio 1

Y
scales as O( 1

N
) for ω � 2.5 in theG6,0 and

G4,2 models [see Figs. 6(a) and 6(b)], suggesting that localized
states are present above this threshold. Near the lower band
edge we find a value of the IPR that is larger than that of the
bulk, yet does not scale with the size of the system. In particular,
in the G6,0 model the IPR increases by a factor 10 for ω → 0
for all considered sizes of the system (see Fig. 7), whereas its
growth is more evident in the G4,2 model, where it increases
by three orders of magnitude (see Fig. 7) without, however,
showing any scaling with N . The low-frequency eigenvalues
are therefore still delocalized, but the larger IPR is a signal of
an avoided localization transition at ω = 0.

The incipient localization at very low frequencies can be
detected studying the distribution of the imaginary part of the
local resolvent ηω for different values of ω, as described in
Sec. II. Due to the fact that in this caseE[ηω] ∼ 1

ω
for ω → 0, in

Fig. 8 we plot the distribution pω(θ ) for θ := ωηω for different
values of ω. In the ω → 0 limit, a fat tail appears in the G6,0
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Ŷ

(ω
)

2.4 2.6 2.8

10

10

ω

1 /
Y

(ω
)

(a)

0

0.2

0.4

0.6

D
(ω

)

Cavity

M. of moments

0

0.1

0.2

0.3

D
(ω

)

N =500

N =10

N =2×10

0 0.5 1 1.5 2 2.5 3
10

10

10

ω

1 /
Ŷ
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FIG. 6. DOS, localization indicator Ŷ , and participation ratio 1
Y

for the G6,0 model (a) and the G4,2 model (b) in the isostatic case, z̄ = 6,
using the cavity method (black), the method of moments (red), and ED. The numerical integration of the cavity method equation has been
performed using ε = 10−8 and a population of at least 107 fields for ω < 0.2, and a population of 106 fields for the rest of the interval. For the
method of moments, 50 moments were used, averaging over 25 instances of a matrix M with N = 106. The method of moments gives very
highly fluctuating results for ω < 0.1 that have not been represented. ED results for this region are shown in Fig. 7.

model, and in particular we find pω(θ ) ∼ θ−3. Such a tail
would imply a divergent E[η2

ω] and therefore localization. The
exponent can be justified by means of a qualitative argument.
In Eq. (11a) the imaginary part of the resolvent ηω is related to
the inverse of a Wishart matrix of the type W = 1

d
XT X, where

X is a z×d matrix with random Gaussian entries [41,55,56].
The probability density of the smaller eigenvalue λ0 of W
scales as ρ(λ) ∼ λ(z−d−1)/2, i.e., in our case (z = 6, d = 3), as
ρ(λ) ∼ λ, that indeed corresponds to a pω(θ ) ∼ θ−3 scaling for
θ ∼ 1

λ
.

A similar behavior is found in the G4,2 model, but with a
different scaling, namely, pω(θ ) ∼ θ−2 for large values of θ .
This implies, again, a divergentE[η2

ω] for ω → 0. The different
tail scaling in the G4,2 model can be explained analyzing the
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FIG. 7. Detail of the DOS D(ω), the cumulative function �(ω),
and the participation ratio at low frequency for the G6,0 (left) and the
G4,2 (right) models. The results were obtained using ED (color) and
the cavity method (black dots).

average coordination of the kth eigenvector |k〉,

〈zk〉 = E

⎡
⎢⎢⎢⎣

N∑
i=1

zi〈ki |ki〉
N∑

i=1
〈ki |ki〉

⎤
⎥⎥⎥⎦ (17)

that in Fig. 9 we plot as a function of the average frequency
ω̄k := E[ωk] of the kth eigenvectors. The plot shows that
low-frequency modes mostly occupy nodes with low coordi-
nation. Assuming that 〈z〉 → 4 as soon as ω → 0, the scaling
argument proposed for the G6,0 model can be applied again,
and it predicts pω(θ ) ∼ θ−2.

The considerations above suggest that in both the G6,0 and
G4,2 models there is an (avoided) localization transition at ω =
0, and the low-frequency modes are extended states that, in the
case of the G4,2 model, have low average coordination.

C. The hyperstatic case

a. Density of states. Finally, let us consider the hyperstatic
case that, for d = 3, corresponds to coordination values z̄ > 6.
In this case, a quasigap opens, and D(ω) has a power-law
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FIG. 8. Distribution of the imaginary part of the resolvent θω :=
ωηω in the isostatic case for both the G6,0 model (left) and the G4,2

model (right).
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FIG. 9. Average coordination 〈z〉 as a function of ω̄ in the low-
frequency region for the G4,2 model (left) and the G4,3 model (right),
obtained using ED.

behavior for ω → 0, i.e., D(ω) ∝ ωα for some value of α > 0.
As anticipated in the Introduction, the properties that determine
the value of α are still a matter of investigation and different
results have been found in mean-field models and numerical
simulations in finite dimension. Understanding how the finite
dimensionality affects the mean-field behavior is of great
interest.

The results for the DOS in the G7,0 model are shown in
Fig. 10(a). Once again, an excellent agreement between the
theoretical prediction of the cavity method and the method
of moments in the bulk of the spectrum is found. The low-
frequency regime is numerically more difficult to evaluate:
large system sizes are needed to approach zero frequency with
ED. Furthermore, the cavity method itself intrinsically presents
some limitations in resolution, due to the finite population
in the population dynamics algorithm and the finite value
of ε in the numerical integration of Eqs. (11). Nevertheless,
from the results in Fig. 11(a) we can still find that, for ω <

10−1, approximately �(ω) ∝ ω5 and therefore D(ω) ∝ ω4,
a result that is compatible with theoretical predictions and
numerical evidences for finite-dimensional disordered systems
[23,24,26,27] and spin glasses on sparse graphs [28]. Apart
from fitting the low-frequency behavior of �(ω), the exponent
α can be also extracted from the scaling with N of the

lowest eigenvalue of the spectrum. Indeed, given a power-law
behavior D(ω) ∼ ωα for the DOS near the origin, and denoting
by ω̄1 := E[ω1] the average value of the first mode frequency,
we have that∫ ω̄1

0
D(ω)dω ∼ 1

Nd
⇒ ω̄1 ∼ 1

N1/(α+1)
. (18)

This relation has been verified on our data, as shown in
Fig. 11(c), and we find α = 4.0(2).

A power-law behavior, in the same regime, is also found for
the G4,3 model. However, the power-law exponent, extracted
with the same methods discussed above, is different and we
find, in this case, �(ω) ∝ ω2, i.e., D(ω) ∝ ω. This is also
confirmed by the scaling of the first eigenvalue with respect
to N , as shown in Fig. 11(c), which gives α = 1.049(8).
The differences in these results suggest that there is a strong
dependence on the topological details of the model, and
especially on the lowest admissible coordination, despite the
fact that z̄ is the same. Indeed, the lowest part of the spectrum
is populated by eigenstates having low average coordination.
In Fig. 9 we show that for ω < 0.1 the average eigenvalue
coordination 〈z〉—evaluated using the formula in Eq. (17)—is
below 5, and asymptotically approaches 4 as ω → 0 (see also
Fig. 12).

To stress the role of the lowest accessible coordination in
the power-law exponent α, we have also considered the G5,2

model and the G6,1 model, both having z̄ = 7 but with different
lowest possible coordination, i.e., 5 and 6, respectively. In these
cases we observe an intermediate value of the exponent α

[see Fig. 11(b)]. In Fig. 11(b) we have also plotted the 〈z〉
as a function of ω, showing that low-frequency modes are
characterized by a low average coordination 〈z〉, close to the
lowest coordination allowed by the topology of the graph.

To further exemplify this fact, let us consider a different
value of z̄ in the hyperstatic regime: theG4,2.1 andG6,0.1 models.
Both have the same average coordination z̄ = 6.1, but they are
constructed on a different underlying random regular graph. In
the G6,0.1 model the isostatic condition is realized for every
node in the network. Repeating the usual analysis on both
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FIG. 10. DOS, localization indicator Ŷ , and participation ratio 1
Y

for the G7,0 model (a) and the G4,3 model (b) in the hyperstatic case z̄ = 7,
using the cavity method (black), the method of moments (red), and ED. The numerical integration of the cavity method equation has been
performed using ε = 10−8 and a population of at least 107 fields for ω < 0.2, and a population of 106 fields for the rest of the interval. For the
method of moments, 50 moments were used, averaging over 25 instances of a matrix M with N = 106. The method of moments gives very
highly fluctuating results for ω < 0.2 that have not been represented. ED results for this region are shown in Fig. 7.
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FIG. 11. ED and cavity method results for the hyperstatic regime. (a) Cumulative function (top) and the participation ratio (bottom) at low
frequency for the G7,0 (left) and G4,3 (right) models. The arrows indicate the value of the average of the first nonzero frequency ω̄1 := E[ω1]
for each system size. (b) Cumulative function (top) for several systems with z̄ = z0 + ζ̄ = 7, namely, the G7,0, G6,1, G5,2, and G4,3 models. On
the bottom, the average coordination 〈zk〉 as a function of the frequency of the kth eigenvector [see Eq. (17)]. (c) Scaling of the average of the
first mode frequency with N in the hyperstatic case. The lines are fitted functions. The fits were performed excluding sizes N < 104, since
for smaller values of N ω̄1 is typically located in the bulk and not in the low-frequency tail of the distribution [see Figs. 11(a) and 13]. The
parameter a of the fit N−a is related to the exponent α by a = (α + 1)−1 [see Eq. (18)], giving α = 4.3(8), 0.67(8), 4.0(2), and 1.049(8) for
G6,0.1, G4,2.1, G7,0, and G4,3, respectively.

models, we obtain the results in Figs. 11(c) and 13. Similarly
to what happens in the z̄ = 7 case, the results of both the cavity
method calculation and ED suggest a different value of α in
the two cases: α = 0.67(8) for the G4,2.1 model and α = 4.3(8)
for the G6,0.1 model. Note that in the G4,2.1 model the value of
α is closer to the exponent value observed for the G4,3 model
that indeed has the same lowest admissible coordination.

b. Localization properties. We present our results on the
localization properties of the eigenstates in the G7,0 model in
Fig. 11(a). High-frequency modes are localized and the IPR
scales with the system size for ω � 2.6. We also find that
there is a low-frequency mobility edge and that for ω � 10−1

the IPR Y (ω) scales with the system size. Similarly, localized
states are found in the G4,3 model approximately below the
same frequency [see Fig. 11(a)]. These results show that, in
the hyperstatic regime, at low frequencies a localized region
is present. Moreover, taking into account the behavior of 〈z〉
discussed above, in all the analyzed modelsGz0,ζ̄ having ζ̄ �= 0,
soft modes appear to be localized on nodes which have very
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FIG. 12. Fraction of eigenvalues with different 〈z〉 as a function
of ω in the G4,3 model. Here we consider the system size N = 5000.

low coordination (see, e.g., Fig. 2), a fact that is compatible
with results of soft sphere systems [45]. This fact clarifies why
the low-frequency behavior of the DOS strongly depends on
the lowest possible coordination allowed in the graph topology.

D. Higher dimensions

The behavior of the vibrational DOS in higher dimensions
can be studied by changing the dimension of the vector
connecting two spheres in contact, xij in Eq. (3). Analyses
for d = 4 on a random regular graph topology show that the
DOS follows the expected hypostatic, isostatic, and hyperstatic
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FIG. 13. Cumulative function �(ω) for the G6,0.1 model and for
the G4,2.1 model using the cavity method (black) and ED (color).
The numerical integration of the cavity method equation has been
performed using ε = 10−8 and a population of 106 fields. The arrows
indicate the value of the average of the first nonzero frequency for
each system size.
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FIG. 14. DOS for d = 4 evaluated on a random regular graph
topology for different values of coordination z̄. In the inset, detail of
the low-frequency regime. The data have been obtained using ED on
the entire spectrum for small values of N . Smooth lines represent the
cavity prediction in this case.

behavior (see Fig. 14). Specifically, a gap is present in the
hypostatic regime, z̄ = 7, which disappears in the isostatic
case z̄ = 2d = 8 and gives way to the expected plateau. In the
hyperstatic regime, z̄ = 9, there is a quasigap, and the density
of states exhibits a power law D(ω) ∝ ω6 (see inset of Fig. 14).

IV. DISCUSSION AND CONCLUSIONS

In the present work we have discussed a mean-field model
for the isostatic transition of soft spheres. The model merges
mean-field properties (a contact network defined on a random
graph) with finite dimensionality (each contact is associated
to a d-dimensional vector). We have correctly recovered the
main features of the physical isostatic transition, namely, the
fact that the average coordination of the graph z̄ determines
the general properties of the density of states of the system,
z̄ = 2d being the isostatic point.

If z̄ < 2d we find a gap in the DOS, and we have verified the
scaling of its width with the distance from the isostatic point.
For z̄ → 2d the gap closes.

For z̄ > 2d a quasigap opens. With respect to other mean-
field models, such as the perceptron, the model introduced here
is able to reproduce additional features that are deeply related
to finite-dimensional effects. For example, a localized region
is observed at low frequencies. Furthermore, the modes in this
region have average coordination typically very close to the
lowest possible coordination allowed in the graph, i.e., they
are localized on weakly connected nodes.

The model has enabled us to study the power-law be-
havior of the DOS D(ω) ∼ ωα for ω → 0 in the hyperstatic
regime, in the absence of Goldstone modes. Using both exact
diagonalization techniques and the cavity method, we have
observed that the exponent α strongly depends on the details
of the coordination distribution of the underlying contact
network. In particular, the power-law behavior is determined
by the aforementioned localized modes and therefore by the
lowest accessible coordination in the graph, and not by the
average value z̄. Indeed, different models with the same average
coordination z̄ but different minimum admissible coordination
show different power-law behaviors near the origin. The effect

of the finite dimensionality on α, and therefore of the finite
connectivity, is relevant. It is, however, worth mentioning that
in our model the initial stress contribution has been neglected. It
has been very recently observed that this term might be crucial
to obtain a D(ω) ∼ ω4 behavior in the overjammed phase [57].
In this sense, the fact that no universal exponent is found in our
model might be related to the absence of this contribution.

This model is an attempt to go beyond the infinite-
dimensional models for sphere packings. In the spirit of previ-
ous contributions [11,22,43], it relates the spectral properties
of disordered systems to a random matrix theory model,
combining it with an underlying random graph topology.
Moreover, it exemplifies the coordination effects in mean-field
models with respect to the spectral properties of amorphous
solids [18]. A large number of open problems remain, such as
the precise relation between α and the coordination distribution
in the contact network, and further investigations are needed
to fill the gap between the finite-dimensional packing problem
and the available mean-field models.
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APPENDIX A: DERIVATION OF THE CAVITY EQUATIONS

To derive Eq. (11b) on a sparse graph, let us follow the
approach of Refs. [49,50]. We consider a generic matrix M of
size Nd×Nd, such that its element Mij is a d×d submatrix.
Pictorially, we can associate the matrix M to a graph, in such
a way that each latin index corresponds to a node of the
graph, and the submatrix Mij is associated to the link (i,j ).
We also assume that the coordination distribution of the graph
is pk . Assuming that M is an element of a given ensemble, we
are interested in the average DOS of M with respect to this
ensemble in the N → +∞ limit.

It is useful to consider a matrix obtained from M creating a
“cavity” in the graph, i.e., removing a node and/or a link. Let
us start from the graph corresponding to M and let us select,
uniformly at random, one of its edges. We then select one of
the end points of this edge, also at random. This is the node that
will be removed. It is called the cavity node, and we label it by
0. We say that the site 0 is connected to the site i if M0i �= 0
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and/or Mi0 �= 0. It has coordination η0, which is distributed as

p̂η = ηpη

∞∑
k=1

kpk

. (A1)

Observe that if pk = δk,z, then p̂η = pη = δη,z. If instead the
coordination follows a Poisson distribution with mean λ, pk =
λk

k! e
−λ, then p̂η = λη−1

(η−1)!e
−λ with η � 1, i.e.,

∑
η ηp̂η = λ + 1.

The cavity graph is simply the graph without the node
0. Once the node is removed, its η0 neighbors will have
coordination ηi − 1, i = 1, . . . ,η0, where ηi are random vari-
ables distributed again as in Eq. (A1). This will be essential
for writing down recursive equations. The matrix Mc of the
new graph has size (N − 1)d×(N − 1)d. To proceed in full
generality, we will also assume that the removal of the site
affects the value of Mij → Mc

ij for i,j �= 0, due to some

required properties of the global matrix that must be preserved,
and so the new matrix is not simply a submatrix of the old one
with d rows and d columns removed.

The cavity graph is useful due to the fact that we can find
an equation for the elements Gkk with k ∈ ∂0 of the cavity
resolvent,

G(λ) := 1

λI(N−1)d − Mc (A2)

to be solved in probability.
Let us now assume that site 0 is reintroduced but connected

to only η0 − 1 of its neighbors [58]. Then, d new rows and
d new columns are added to the matrix Mc, obtaining a new
matrix M+ that has the same dimension of the original matrix
but still a “cavity,” i.e., a missing link. As before, the addition
of a site affects in general the entire matrix. The coordination
distribution of the site 0 is now the same that its neighbors had
before its insertion. The new resolvent can be calculated as

1[
G+]αβ

00 (λ)
=

[
N∏

k=0

∫
ddϕk

]
exp

(
−1

2

N∑
k,l=0

d∑
μ,ν=1

ϕ
μ

k [λI(N+1)d − M+]μν

kl ϕν
l

)
[

N∏
k=0

∫
ddϕk

]
ϕα

0 ϕ
β

0 exp

(
−1

2

N∑
k,l=0

d∑
μ,ν=1

ϕ
μ

k [λI(N+1)d − M+]μν

kl ϕν
l

)

=
⎡
⎣λId − M+

00 −
∑
k,l �=0

M+
0k · 1

λδklId − M+
kl

· M+
l0

⎤
⎦

αβ

. (A3)

Remembering now that, for k,l �= 0

λId − M+
kl =

[
1

G(λ)

]
kl

− (
M+

kl − Mc
kl

)
, (A4)

and denoting by �kl := M+
kl − Mc

kl we can write [8]

1[
G+]αβ

00

=
⎡
⎣λId − M+

00 −
∑
k,l �=0

M+
0k · 1[

1
G

]
kl

− �kl

· M+
l0

⎤
⎦

αβ

.

(A5)

Let us now specify the equations above to our problem.
In the case of a symmetric dynamical matrix in the form
in Eq. (4b), due to the rule in Eq. (4b), for i,j �= 0, �ij =
−δij M+

i0. Using the fact that M+
00 = −∑

k∈∂0 M+
k0, the recur-

sive equation becomes

1[
G+]αβ

00

=
[
λId +

∑
k∈∂0

M+
k0

−
∑

k,l∈∂0

M+
0k ·

1[
1
G

]
kl
+ δklM+

k0

·M+
l0

]αβ

. (A6)

The sums in the equation above run over the η − 1 neighbors
of the vertex 0. In the case of a sparse random graph we have
that any two neighbors of 0, let us say k and l, are almost surely

not directly connected for N → +∞ and therefore[
1

G

]
kl

= −M+
kl ≡ 0. (A7)

Moreover, if we assume that the off-diagonal submatrices Gij

are subleading for i �= j ,[
1

G

]
kk

= 1

Gkk − ∑
l∈∂k Gkl · [ 1

G

]
ll

· Glk

≈ 1

Gkk

. (A8)

Using this observation, and the fact that M+
0k is a projector,

Eq. (11b) can be obtained from∑
k∈∂0

M+
k0 −

∑
k,l∈∂0

M+
0k · 1[

1
G

]
kl

+ δklM+
k0

· M+
l0

=
∑
k∈∂0

∞∑
n=0

(
−M+

0k · 1[
1
G

]
kk

)n

· M+
k0

=
∑
k∈∂0

M+
0k

1 + Tr
(

1
[ 1

G ]kk

· M+
0k

)

≈
∑
k∈∂0

M+
0k

1 + Tr(Gkk · M+
0k)

. (A9)

Observe that the right-hand side of the previous equation
depends only on the elements of G corresponding to the
neighbors of the cavity site 0 before its insertion. Due to
the randomness in the model, it is not true in general that a
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fixed-point solution of Eq. (11b) exists. However, we expect
that the equation is true in probability, and we can search
for a fixed point in the space of probability distributions of
G, solving the equation by means of a population dynamics
algorithm. The fixed-point population of G that is found
corresponds to a resolvent evaluated on a node of the graph with
η − 1 neighbors. The “true” local resolvent R for a site with
z neighbors distributed with probability pz can be obtained
performing one last step, given by Eq. (11a), extracting the z

required elements Gk from the cavity field population.

APPENDIX B: THE METHOD OF MOMENTS

In this appendix, we summarize the method of moments that
we used to compute the DOS of the Hessian matrix in Eq. (4b).
We will give here the procedure only, without providing the
necessary proofs that can be found in the literature [54].
The method, as opposed to ED, does not determine the single
eigenvalues if the number of moments used are less than
the rank of the Hessian matrix. Instead, it gives the envelope of
their density. This has the advantage of allowing access to the
entire spectrum even when using a limited number of moments.

Let us start by assuming that an N×N matrix M is given
and that we want to evaluate a spectral density function of the
form

φp(λ) :=
N∑

k=1

|〈p|k〉|2δ(λ − λk). (B1)

In the equation above, λk is the kth eigenvalue of the matrix M
with corresponding eigenvectors |k〉, M|k〉 = λk|k〉, and |p〉 is
a given vector. If we introduce the Stiltjes transform

R(z) :=
∫ ∞

−∞

φp(λ)

z − λ
dλ, (B2)

then the following relation holds:

φp(λ) = − 1

π
lim
ε→0

Im R(λ + iε). (B3)

The non-negative function φp(λ) can be used as a weight
function to generate a sequence of orthogonal polynomials
pn(z) by imposing∫

λnpn(λ)φp(λ)dλ = 0. (B4)

These polynomials satisfy the relation

p−1(λ) = 0, (B5a)

p0(λ) = 1, (B5b)

pn(λ) = (λ − an)pn−1(λ) − bn−1pn−2(λ), n = 1,2, . . .

(B5c)

where

an := ν̄n−1

νn−1
, bn := νn

νn−1
, (B6)

and

νn :=
∫

p2
n(λ)φp(λ)dλ, ν̄n :=

∫
λp2

n(λ)φp(λ)dλ (B7)

are the generalized moments of φp(λ).

The method relies on the nontrivial fact that the coefficients
an and bn in the recurrence relation for the polynomials pn(λ)
are the same as those in the representation of R(z) as a
continued Jacobi fraction, i.e.,

R(z) = 1

z − a1 − b1

z − a2 − b2

z − a3 + · · ·

. (B8)

This implies that, truncating the continued fraction expansion
for R to some order M , we can estimate φp by means of a
finite set of coefficients {an,bn}, i.e., a finite set of generalized
moments. Moreover, it turns out that the generalized moments
can be evaluated very easily by a sequence of matrix multipli-
cations. Starting from the normalized vector

|t0〉 := 1√〈p|p〉 |p〉, (B9)

we can apply to it the recursive relation

|tn+1〉 = (M − an+1IN )|tn〉 − bn|tn−1〉, (B10)

and extract the coefficients using

νn = 〈tn|tn〉, ν̄n = 〈tn|M|tn〉. (B11)

By evaluating {an}n=1,...,M and {bn}n=1,...,M up to a certain order
M we can finally reconstruct R(z) and then φp(λ) by means of
Eq. (B3). The spectral density

ρ(λ) = 1

N

N∑
i=1

δ(λ − λi) (B12)

can be obtained averaging φp(λ) over all possible vectors |p〉,
being |〈p|k〉|2 = 1

N
.

When a high number of moments is used (M ≈ 100)
numerical stability is further improved by performing a Gram-
Schmidt orthonormalization of the vectors |tn〉 at every itera-
tion step. Finally, a truncation term T (z) can be added to take
into account the neglected terms in the continued fraction, i.e.,

R(z) = 1

z − a1 − b1

z − a2 · · · − bn

z − an + T (z)

. (B13)

Assuming thatan → a andbn → b whenn → ∞, with at most
small oscillations around these values, T (z) can be estimated
from

T (z) = 1

z − a − bT (z)
. (B14)

For details on the stability and precision of the method, we
refer to Refs. [54].
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