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Slow spin dynamics and self-sustained clusters in sparsely connected systems
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To identify emerging microscopic structures in low-temperature spin glasses, we study self-sustained clusters
(SSC) in spin models defined on sparse random graphs. A message-passing algorithm is developed to determine
the probability of individual spins to belong to SSC. We then compare the predicted SSC associations with the
dynamical properties of spins obtained from numerical simulations and show that SSC association identifies
individual slow-evolving spins. Studies of Erdos-Renyi (ER) and random regular (RR) graphs show that spins
belonging to SSC are more stable with respect to spin-flip fluctuations, as suggested by the analysis of fully
connected models. Further analyses show that SSC association outperforms local fields in predicting the spin
dynamics, specifically the group of slow- and fast-evolving spins in RR graphs, for a wide temperature range
close to the spin-glass transition. This insight gives rise to a powerful approach for predicting individual spin
dynamics from a single snapshot of an equilibrium spin configuration, namely from limited static information. It
also implies that single-sample SSC association carries more information than local fields in describing the state
of individual spins, when little information can be extracted from the system’s topology.

DOI: 10.1103/PhysRevE.97.062154

I. INTRODUCTION

Spin-glass models of disordered systems are characterized
by a rich structure of the free-energy landscape and a nontrivial
dynamics at low temperatures. Mean-field analyses [1–3]
typically characterize the static properties of models based on
a set of macroscopic order parameters [4,5], providing insight
into their equilibrium properties and dynamical behavior [3,6].

Fully and sparsely connected models have been extensively
studied using powerful tools such as the replica and cavity
methods [4,7]. While the different temperature regimes are
well understood in terms of the (free-) energy landscape, it is
more difficult to describe their manifestation at the microscopic
level. Interesting cases where this connection is clearer are
constraint satisfaction problems studied at zero temperature,
which give rise to solution clusters containing frozen variables
in intermediate regimes prior to the satisfiability transition
[8–13]. In addition to the insight gained, understanding the
microscopic properties and their links to the system dynamics
are essential for devising approximate optimization algorithms
for specific instances.

Studies of the relation between system equilibrium prop-
erties and its dynamical behavior [14,15] show that it is
possible to interpret system dynamical characteristics in terms
of its ground-state structural properties. Moreover, they reveal
interesting properties of the low-temperature dynamics such
as the spontaneous timescale separation between slow and
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fast evolving spins. This phenomenon has been observed
also in numerical experiments in systems defined on finite-
dimensional lattices [16,17], giving rise to the notion of
rigidity lattice [18]. Another approach linking equilibrium
and dynamical properties [19], reveals that metastable states
relate to fixed points of the generalized belief propagation
(BP) in the two-dimensional (2D) Edwards-Anderson model.
Similar problems have been studied in the context of glassy
and jammed systems, where machine-learning algorithms have
been used to identify local structures susceptible to local
rearrangements [20].

Our approach aims to link equilibrium and dynamical
properties of spin models on random graphs via the concept of
self-sustained clusters (SSC) and the use of BP methods. The
central objects of our approach are SSC, introduced in the study
of the SK [21] and 3-spin Ising models [22]. By definition, the
field induced by in-cluster spins, on spins belonging to an SSC,
has a higher magnitude than the one induced by out-cluster
spins. SSC can be regarded as metastable formations that
correspond to suboptimal system configurations and explain
the emergence of slow-evolving spins in fully connected
models.

Here we focus on systems with simple discrete disorder
(J =±1) defined on Erdos-Renyi (ER) and random regular
(RR) graphs. We develop and apply a BP algorithm to identify
SSC variables in these settings and run dynamical simula-
tions at different temperatures to study the relation between
slow-evolving spins and SSC variables. More precisely, after
equilibration for a long time, we sample a configuration and
infer its SSC structure; this is then contrasted against its
microscopic dynamics, starting from this configuration and
monitoring the dynamical properties of individual spins, such
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as their flipping probability. We identify a strong relation
between SSC association and slow-evolving spins for both ER
and RR graphs, supporting the insight provided by our previous
work [21] on densely connected models. We then compare the
information contained in SSC membership variables to that of
local fields on spin dynamics and find that SSC outperform
local fields in identifying the slow- and fast-evolving spins
for a wide temperature range around the spin-glass transition,
especially in the RR case (due to the variable node connectivity
of ER models the correlation is less emphasized). After
defining the SSC framework of sparse graphs, we give details
on the protocol employed for the simulations and analyze the
obtained results.

II. FORMATION OF SELF-SUSTAINED CLUSTERS

Consider a pairwise Ising model on a sparse graph G with
link weights {Jij } and a given spin configuration s. In this
paper, we study models with quenched coupling Jij = ±1 with
equal probabilities. We introduce an SSC membership variable
σi equal to 1 when spin i belongs to an SSC and equal to
0 otherwise. This SSC condition is enforced by an indicator
function,

I(σ |s,G) =
N∏

i=1

{
(1 − σi) + σiθ

[
u2

i − v2
i − ε

]}
, (1)

taking the value of 1 if the set σ = {σi}i=1,...,N identifies a
SSC and zero otherwise, where ui and vi are the in-cluster and
out-cluster induced fields, respectively, defined by

ui =
∑
m∈∂i

Jimσmsm and vi =
∑
m∈∂i

Jim(1 − σm)sm, (2)

where ∂i denotes the set of neighbors of node i. The sum of
the two fields constitutes the total field

hi =
∑
m∈∂i

Jimsm = ui + vi. (3)

The resilience parameter ε is defined by the condition u2
i >

v2
i + ε and indicates the strength of the cluster. The set of all

the possible σ vectors that satisfy Eq. (1) corresponds to all
the possible SSC structures given the spin configuration s. It
is important to notice that the trivial realizations σi = 0 ∀i and
σi = 1 ∀i satisfy Eq. (1): They correspond to the cases where
there are no SSC or when the only SSC is the complete system,
respectively.

III. BELIEF PROPAGATION EQUATIONS

The variable σi depends on the state of the variables σj∈∂i

defined on all the neighbors of node i. It is convenient to
define a factor graph, but a conventional factor graph gives
rise to many short loops that hamper convergence and proper
calculation of the marginals. As in similar cases [23], we will
introduce a superfactor graph of supervariables Sij = (σij ,σji)
comprising the states of variable pairs σij =σi and σji =σj .
The variable σi is copied in all the supervariables associated
with node i, as shown in Fig. 1, while the different indices
j in σij refer to neighboring links. We consider the double-
index variables as independent states but enforce their equality
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FIG. 1. A superfactor graph corresponding to the original graph
at the bottom right of the figure. Each supervariable contains two
variables of the original graph. For each node of the original graph G
we have a superfactor and for each link we have a supervariable.
All the variables σik, ∀k ∈ ∂i are forced to be the same by the
superfactors’ constraint. The superfactor and original graphs share
the same topology.

through the superfactors,

ψS

î
(S∂̂i) = ψ̂i(σ ∂̂i)

∏
k∈∂i

δσik,σi
(4)

defined on the original node i and denoted by î in the
superfactor graph, where ψ̂i(σ ∂̂i) is given by

ψ̂i(σ ∂̂i) = {
(1 − σi) + σiθ

[
u2

i − v2
i − ε

]}
. (5)

More details are provided in the Appendix.
The BP equations for this supergraph read

ν̂i→(ij )(Sij ) ∝
∑

Ski∈S∂̂i\Sij

ψS

î
(S∂̂i)

∏
k∈∂i\j

η(ki)→̂i(Ski), (6)

where, given the pairwise nature of the interactions in the origi-
nal graph, messages from the supervariables to the superfactors
take the form

η(ij )→ĵ (Sij ) ∝ ν̂i→(ij )(Sij ). (7)

These equations can be simplified in a single line to

mi→j (σi,σj ) ∝
∑
σ ∂i\j

ψ̂i(σ ∂̂i)
∏

k∈∂i\j
mk→i(σk,σi), (8)

where we define the messages mi→j (σi,σj )=η(ij )→ĵ (Sij )=
ν̂i→(ij )(Sij ). Marginals of the supervariables can be computed
from the equation

η(ij )(Sij ) ∝ ν̂i→(ij )(Sij )νĵ→(ij )(Sji) (9)
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FIG. 2. A toy model which comprises 38 spin variables. Unfrus-
trated links are marked in green and frustrated links in red. Positive
J and s are denoted by solid lines and circles, respectively, while
negatives J and s are denoted by dashed lines and circles, respectively.
White nodes represents p(σi =1)=0 and black p(σi =1)=1; the gray
region identifies nodes for which p(σi)>0.5.

and can be used to compute single-node marginals

p(σi) =
∑
σj

η(ij )(Sij ) =
∑
σj

mi→j (σi,σj )mj→i(σj ,σi). (10)

Single-node marginals have to satisfy a consistency check
since p(σi) could be computed from

∑
σk

η(ik)(Sik) for all nodes
k∈∂i. Thus, after convergence, this condition is checked to
assess the quality of the obtained marginals.

IV. TOY MODEL

To illustrate how the BP method identifies SSC nodes, we
constructed a toy model comprising 38 spins as shown in
Fig. 2. In this case a specific configuration s is considered and
the corresponding SSC memberships marginals p(σi),∀i, are
calculated. Node colors represent the value of p(σi) in a gray
scale; white represents p(σi =1)=0 and black p(σi =1)=1.
The gray region identifies nodes for which p(σi)>0.5.

We observe that spins which do not experience frustration
(green edges or variables) are more likely to belong to an
SSC, but this is true only if their neighbors are also part
of the SSC. For instance, while both nodes A and B do
not experience frustration p(σA)=0.91 while p(σB)=0. It is
instructive to investigate why the neighbors of B are not part
of the SSC: nodes D and F receive conflicting messages from
their neighbors and thus the local fields acting on them are
0; hence they cannot be part of an SSC and, consequently,
node B is not part of an SSC either. The situation of node
C is similar to that of node D. Interestingly, we observe that
node E is part of the SSC. This is counterintuitive because

in the sampled spin configuration this node is frustrated,
having all the links unsatisfied. However, since two of its
neighbors are part of the SSC and the three links can be
satisfied by a single spin flip, node E is identified as being
within an SSC, having a probability p(σE)=0.66. The last
consideration is also clearly related to the notion of dynamical
timescale separation; following a single flip, spin E experiences
the same large absolute value of the local field with all of
its links satisfied. Spins that belong to regions with smaller
degree of frustration are less likely to flip, at least singularly.
The dynamics is local and such spins are already close to a
configuration that minimizes the energy in the local region. The
evidence that the SSC association is robust enough to recognize
such nontrivial spin associations suggests that it may be used
to effectively identify slow evolving variables in spin-glass
dynamics, as we argue in the next sections.

V. RESULTS

We consider spin-glass models of N =1000 spins defined
on ER and RR topologies and implement a sequential Glauber
dynamics in the spin-glass phase starting from a random
configuration. For (mean) connectivity equal to c, the critical
inverse temperatures for the spin-glass transition are known
for both models [24] to be

βER
c = arctanh

(
1√
c

)
, βRR

c = arctanh

(
1√

c − 1

)
. (11)

To carry out our experiments we first equilibrate the system
and then monitor the flipping dynamics. This is implemented
in two stages:

(i) From initial conditions to equilibrium: We implement
Glauber dynamics at an inverse-temperature β1 and wait for t1
dynamical sweeps, where one sweep is defined by updating
the whole system, we sample a single configuration (the
significance of t1 is explained later). In this configuration
we study the SSC structure by running the BP algorithm
with ε=0.1, which allows us to associate each spin with the
corresponding SSC-membership probability p+

i =p(σi =1).
(ii) Flipping dynamics: We then conduct the following

experiment: Starting from the sampled configuration from
stage one, we study at least 200 trajectories of the system
at different inverse temperatures β2 for t2 sweeps; for each
temperature we consider the number of flips per spin. We
readily obtain the flip rates ρi of spin i by dividing the number
of its spin-flips at stage two by t2. If the self-sustained structure
contains information about the system dynamics, flip rates ρ

and SSC marginal probabilities p+ should be anticorrelated,
and a scatter plot of these two quantities for all variables should
demonstrate this behavior.

To quantitatively measure the relation between SSC associ-
ation and flip rate, we rank spins according to their p+ values
by defining a rank rj such that r1 = argmini(p

+
i ) and rN =

argmaxi(p
+
i ). We further define a normalized rank r̃ = r/N ,

and a function of cumulative flip rate as

f (r̃) = 1

Z

N∑
j=1

ρrj
�(r̃ − r̃j ), (12)
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FIG. 3. Scatter plot of p+
i and ρi for dynamics on (a) a Erdos-Renyi graph of mean connectivity c = 6 and (b) a random regular graph of

connectivity c = 6. A configuration is sampled at β1 = 5 after t1 = 104 sweeps. As discussed in the text, from this configuration we ran 1000
simulations that we observed for t2 = 100 Monte Carlo Sweeps (MCS), which can been used to compute ρi . The symbols {+,o, ∗ ,x, and �}
refer to dynamics at β2 =3,1,0.7,0.4, and 0.1, respectively. Spin-glass transition inverse temperatures are βER

6 ∼0.387 and βRR
6 ∼0.420.

where Z is the normalization constant Z = ∑N
i ρi and

�(r̃ − r̃j ) is the step function, returning one for a positive
argument and zero otherwise. The function f (r̃) is thus similar
to the receiver operating characteristics (ROC) curve, when the
SSC association is considered as a predictor for slow dynamics,
and provides the fraction of total flips explained by the low p+
variables. For instance, one can see that the gradient of f (r̃)
is proportional to the flip rate of spin with rank equal to r̃

[i.e., f ′(r̃) ∝ ρrj
for r̃j � r̃ < r̃j+1], implying that the steeper

the slope of f (r̃), the faster the flip rate of spins ranked at
r̃ . If f (r̃) is steeper for small r̃ than for large r̃ , ranked by
the SSC probabilities, then spins with small SSC probabilities
tend to flip faster. In this case, the area under the ROC curve
(AUC) f (r̃) quantifies the information contained in the SSC
marginal probabilities about the future flip rate or the negative
coorelation between them. The values of AUC are bounded
between 0 � AUC � 1. The absence of information yields
an AUC value of 0.5, and the more negative the correlation
between SSC probabilities and future flip rates, the larger the
AUC value.

A. Dependence on flipping temperatures β2

Figure 3 show a scatter plot of p+
i and ρi for ER and

RR topologies of (mean) connectivity 6, respectively, where
in both cases p+

i are computed on the configuration sam-
pled after t1 =104 sweeps at β1 =5 in stage one, and ρi is
measured for dynamics starting from this configuration at
β2 =3,1,0.7,0.4,0.1 in stage two. While for large β2 there is
a strong relation between spins with high SSC membership
marginals p+

i and small flip rate ρi , this relation disappears as
β2 decreases. Furthermore, as shown in the insets of Figs. 4(a)
and 4(b), the ROC curve at β2 = 0.1 almost diagonal, implying
that there is no statistical dependence between p+

i and ρi in
this case. Nevertheless, the ROC curves separate from the
diagonal line and point to a meaningful predictive power of
the p+

i ranking as β2 increases, implying a stronger tendency
for spins with small (large) SSC probabilities p+

i to flip faster
(slower). To quantify this connection we compute the values of
AUC under the ROC curves. As shown in Figs. 4(a) and 4(b),
AUC increases from a value of 0.5 at small β2 to a value close
to 1 as β2 increases, implying a change from zero correlation
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FIG. 4. The AUC values for the ROC curves defined by Eq. (12), of cumulative flip rate by ranking spins according to their SSC marginal
probabilities, obtained for (a) Erdos-Renyi graphs and (b) random regular graphs with N = 1000 vertices and degree connectivity c = 6, as a
function of flipping inverse temperature β2, with waiting time t1 = 104, sampling inverse temperature β1 = 5, and flipping time t2 = 100 over
200 trajectories. Each data point is averaged over 10 realizations of graph topologies. Inset: The ROC curves at different β2 on (a) Erdos-Renyi
graphs and (b) random regular graphs. The closer the sampling temperature β2 is to the configuration temperature β1 the more accurate is the
SSC association is as a predictor of slow spin dynamics.
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FIG. 5. The AUC obtained on ER graphs with (a) c = 5 and (b) c = 6, and RR graphs with (c) c = 5 and (d) c = 6, with N = 1000, waiting
time t1 = 104, and flipping time t2 = 100, at different sampling temperatures β1 as a function of flipping temperatures β2 over 200 trajectories.
Each data point is averaged over 10 realizations of graph topologies.

between p+
i and ρi at a large temperatures (small β2) to a strong

correlation at a low temperatures (large β2).
These results can be interpreted as follows: the SSC struc-

ture of the configurations sampled at very low temperatures
after a long waiting time describes a metastable arrangement
of spins with long-range correlations. At low temperatures
in stage two the SSC spins remain close to the sampled
configuration of stage one, especially for SSC-associated spins
with p+

i ∼1, which flip less frequently than those with smaller
p+

i values. The inverse spin-glass transition temperatures in
these two cases are βER ∼0.387 and βRR ∼0.420, which are
roughly the values of β2 that show the onset of an abrupt
increase in AUC from AUC = 0.5 as shown in Figs. 4(a) and
4(b). This also explains why the relation between p+

i and ρi can
be observed in a larger range of temperatures compared to the
RR case in the ER case shown in Fig. 3(a): While β2 = 0.4 is
in the spin-glass phase for the ER model, it is not so for the RR
model. We also notice in Fig. 3 that for both cases the sampled
configuration includes spins with p+

i =0. Interestingly, these
spins flip more frequently at high β2 (for instance, β2 =3,5)
where the dynamics exhibit many slow variables and a few
fast evolving ones: A possible explanation for this is that,
at high β2, spins with fields close to zero flip with a very
high probability as soon as their field crosses from positive to
negative value and vice versa; additionally, close-to-zero fields
will be more common at high β2 since many spins are highly
aligned with bipolar values, and an even number of strongly

aligned contributions would balance the field value of those
spins with p+

i =0. At lower β2 this behavior is mitigated by
the lower flip probability at field values close to zero as well
as by the broader distribution of field values as many spins are
less-strongly aligned. In general, these results show that spins
with a higher SSC probability tend to be dynamically more
stable and vice versa. It further implies that SSC can be used
as a tool to predict individual spin dynamics based on a single
snapshot of equilibrium spin configuration.

B. Dependence on sampling temperatures β1

To examine the relation between SSC probabilities and flip
rates we plot in Figs. 5(a)–5(d) the AUC values at different
sampling temperatures β1 and flipping temperatures β2 for
the cases of odd and even degrees in ER and RR graphs.
Except for the case of RR graphs with c = 5 of Fig. 5(c),
all other cases show a similar behavior: The AUC increases
with decreasing flipping temperatures (i.e., increasing β2) at
all sampling temperatures β1; the AUC also increases with
lower sampling temperatures (i.e., higher β1). It implies that
the power of SSC probabilities is most significant at both low
sampling and flipping temperatures for the cases of Figs. 5(a),
5(b) and 5(d). This can be explained by the fact that at a very
low flipping temperature such as β2 = 5, SSC sampled in stage
one are stable for a long time. Thus, spins identified to be in
SSC tend to flip fewer times in stage two, unless the SSC is
destabilized.
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FIG. 6. Scatter plot of p+
i and ρi for dynamics on an RR graph of connectivity equal to 5. A configuration is sampled at β1 =5 after

(a) t1 =104 sweeps and (b) t1 =106 sweeps. As discussed in the text, from this configuration we ran 1000 simulations that we observed for
100 MCS, which can been used to compute ρi . The symbols {+,o, ∗ ,x, and �} refer to dynamics at β2 =3,1,0.7,0.4, and 0.1, respectively.
Inverse spin-glass temperature in this case is βRR

c=5 ∼ 0.464.

However, we note that a low sampling temperature (high β1)
in stage one does not necessarily lead to the highest identifying
power at all flipping temperatures in stage two. For instance,
as shown in Figs. 5(a) and 5(b) of ER graphs, the values of
AUC with β1 = 5 are lower than that with β1 = 1 or 1.5 for
an intermediate range of flipping temperatures with β2 around
1. In a way, this is not surprising since the probabilities for
SSC association are sampled at a given temperature and are
therefore most relevant for predicting the dynamics at that
temperature. We note that SSC sampled at β1 = 1 or 1.5 are
in the glassy phase but close to the transition temperatures,
making them more relevant for that temperature range than to
SSC that are sampled at a much lower temperature (e.g., β1 =
5). Similar behaviors are observed for RR graphs with c = 6
in Fig. 5(d). These results show that low-temperature SSC
do not always have the strongest predictive power across the
whole range of flipping temperatures at stage two, particularly
when at very low temperatures the dynamics is frozen on the
timescales t2 analyzed here.

Hence, one may expect that cases with a matching pair of
sampling and flipping temperatures, i.e., β1 = β2, lead to the
highest AUC at all β2. The results for this case are shown
in Figs. 5(a), 5(b) and 5(d) denoted by thick dashed lines
without a symbol. As we can see, these AUC values are close
to the highest attained values at all β2, but they are not exactly
the highest for the cases with small β2 ∼ 0.1 to 1. This is
expected since SSC sampled at a high temperature (i.e., small
β1 = β2) are easily destabilized by thermal fluctuations, and
hence they have a small predictive power for the flip rate.
On the other hand, SSC sampled at intermediate temperatures
with β1 = 1 or 1.5, which are below but close to the phase
transition temperatures, identify very successfully structures
of slow evolving variables in the high-temperature regime.

Finally, we discuss the case of c = 5 for RR graphs shown
in Fig. 5(c). As we can see, the results are generally consistent
with the other cases of Figs. 5(a), 5(b) and 5(d), where AUC
values increase with decreasing β1 and β2, except that at a
very low sampling temperatures (e.g., large β1 = 2 or 5),
AUC values decrease with β2. This behavior may be related
to recent findings in the closely related minimal defensive
alliance problem [25] in RR graphs with uniform couplings,

where small alliances are more difficult to identify by lowering
the temperature in the case with c = 5 than for c = 6. These
may lead to the degradation in predictive power of SSC
dynamics sampled at very low temperatures.

C. Dependence on waiting time t1 and flipping time t2

To further examine the identifying power of SSC marginal
probabilities, we study the effect of different waiting times
t1 in stage one for the same flipping times t2 in stage two.
Figures 6(a) and 6(b) show the scatter plots of p+

i vs. ρi for two
waiting times t1 =104 and t1 =106 sweeps for RR topologies
of connectivity c = 5, the correlated behavior described above
is more emphasized when longer waiting times are used; i.e.,
data points (of p+

i vs. ρi) at low temperatures have steeper
and more well-defined slopes in the case t1 = 106. The AUC
values corresponding to Figs. 6(a) and 6(b) are shown in Fig. 7
as the lines with cross and square symbols, where AUC values
in the cases with t1 = 106 are substantially higher than those
with t1 = 104. In general, the longer the waiting time t1, the
higher the AUC for all flipping temperatures β2 as shown in
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0 1 2 3 4 5
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0.5
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A
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10000
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t1 = 10000

FIG. 7. The AUC values obtained for random regular graphs with
N = 1000 and c = 5, with β1 = 5 and different waiting times t1 in
stage one, but the same flipping time t2 = 100 in stage two. Inset: The
AUC values with the same waiting time t1 = 10 000 in stage one but
a different t2 in stage two.
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FIG. 8. Scatter plot of p+
i and ρi for the dynamics on an RR graph of connectivities (a) c = 3 and (b) c = 4. A configuration is sampled

at β1 =5 after t1 =104 sweeps. As discussed in the text, from this configuration we ran 1000 simulations that we observed for t2 = 100 MCS,
which can been used to compute ρi . The symbols {+,o, ∗ ,x, and �} refer to dynamics at β2 =3,1,0.7,0.4, and 0.1, respectively. Spin-glass
transition inverse temperatures are βRR

c=3 ∼0.615 and βRR
c=4 ∼0.524.

Fig. 7. This implies that the snapshots of SSC structures taken
after a long time are more stable and more representative of the
equilibrium configurations and hence can identify stable spins
with a greater accuracy.

We also notice that the timescale separation between fast
and slow spins at low temperatures disappears in the case of c =
5 shown in Figs. 6(a) and 6(b) compared to the case of c = 6
in Fig. 3(b). Consistently, our algorithm does not find spins
where p+

i =0 in the case with c = 5. In order to investigate
this effect further, we extended the analysis to RR topologies of
different connectivities, studying the cases of c = 3,4. We find
that timescale separation at low temperatures appears only for
even connectives in RR graphs. We attribute this behavior to the
strong residual field in odd degree connections in comparison
to the even case, were close-to-zero fields may exist due to
balanced contribution from neighboring spins. To support this
conjecture we consider RR graphs of connectivities c = 3,4,
observing the expected behavior as shown in Fig. 8. In the first
case c = 3 we do not find very large or very small values of p+

i

and, consistently, the timescale separation emerging for even
degree connectives is much weaker. On the other hand, in the
second case c = 4 the results resemble those of Fig. 3.

We then examine the dependence of the results on the
flipping times t2 in stage two given the same equilibration time
t1 in stage one. As we can see from the inset of Fig. 7, the
longer the flipping time, the smaller the AUC values. This is
an expected behavior as the longer the time we measure the flip
rate, the more likely the SSC in the sampled configurations, of
spins with large p+ values, become destabilized. In summary,
the identifying power of SSC is stronger given a longer waiting
time t1 and a shorter flipping time t2.

D. Dynamics on Erdös-Rényi graphs

In the case of ER graphs, the dynamics at β ∼βER exhibits a
broader range of flipping frequencies. This effect is not visible
in the RR case and is due to its degree heterogeneity as can be
observed in Figs. 9 and 10. We also observe that the dependence
on t1 discussed in Fig. 6 for the RR case is not as evident in
the ER case.

E. Comparison of identifying power of SSC and local fields

Finally, to benchmark the forecasting power of SSC, we
compare the prediction by the SSC marginal probabilities p+

i
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FIG. 9. Scatter plot of p+
i and ρi for the dynamics on an ER graph of mean connectivity 5. A configuration is sampled at β1 =5 after (a)

t1 =104 sweeps and (b) t1 =106 sweeps. From this configuration we ran 1000 simulations that we observed for t2 = 100 MCS to compute
ρi . The symbols {+,o, ∗ ,x, and �} refer to dynamics at β2 =3,1,0.7,0.4, and 0.1, respectively. Inverse spin-glass temperature in this case is
βER

c=5 ∼ 0.420.
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FIG. 10. Scatter plot of p+
i and ρi for the dynamics on an ER graph of mean connectivity equal to 3. A configuration is sampled at β1 =5

after (a) t1 =104 sweeps and (b) t1 =106 sweeps. From this configuration we ran 1000 simulations that we observed for t2 = 100 MCS to
compute ρi . The symbols {+,o, ∗ ,x, and �} refer to dynamics at β2 =3,1,0.7,0.4, and 0.1, respectively. Inverse spin-glass temperature in this
case is βER

c=3 ∼ 0.523.

with that of the local field hi = ∑
k∈∂i Jij sj . In the sampled

configuration at stage one, we compute the local fields of each
individual spin and expect that the higher the local field of a
spin is the slower its flip rate would be at stage two. In this
case, similarly to p+

i , one can rank spins in ascending order of
local field magnitude and use Eq. (12) to obtain an AUC value
which characterizes the identifying power of local fields for
the future flip rate.

We show the fractional difference of the two predictions
in Fig. 11(a) in four different cases of RR and ER graphs
with even- and odd-degree connectivities. As we can see,
the differences are mostly positive in the RR case, meaning
that SSC outperform local fields in predicting the flip rate
of spins but not so in the ER case. Moreover, we observe
an underperformance of the SSC-association predictor on ER
graphs with small β2 and RR graphs with with large β2. The
reason for this may be due to the fact that hi is correlated with
the degree ci in ER graphs. As a result, connectivity and thus
local fields in ER graphs, are already good predictors of flip
rate at high temperatures. The underperformance by SSC in
RR graphs with c = 5 may be due to the decrease in AUC
values with β2 as shown by the dashed line with β1 = β2 in
Fig. 5(a). On the other hand, we note that SSC outperforms
local fields by almost 20% at β2 = 0.5 in both cases with c = 5
and c = 6, roughly the corresponding transition temperatures
in RR graphs. This may imply that SSC has the strongest
identifying power over local fields in the cases when the
systems are close to the phase transition in the RR graphs.

In the inset of Fig. 11(a), we show the AUC values of flip rate
obtained by SSC probabilities p+

i and local fields in the case of
RR graphs with c = 6. As we can see, the AUC values obtained
by SSC are higher than that obtained by the local fields for most
values of flipping temperature β2, which means that SSC has
a stronger identifying power than local fields in this case.

To further understand the identifying power of SSC, we
analyze the flip-rate distribution. Since flip rate is continuous,
we bin the flip rate into 100 equally distributed bins in the
range between 0 and 1 and compute the flip-rate distribution
Q(ρ) over all spins, Qslow(ρ), over spins with the top 20%
of p+

i or |hi | values (presumably slow spins), and Qfast(ρ)
over spins with the bottom 20% of p+

i or |hi | values. We
compute the Kullback-Leibler (KL) divergence between Q(ρ)

with Qslow(ρ) as

Dslow = −
∑

j

Qslow
j log

Qslow
j

Qj

, (13)

where j is the bin index. Similarly, we can define the KL
divergence Dfast for fast spins. The larger the KL divergence,
the larger the difference between Qslow or Qfast is from the
overall spin distributions Q and the more different is the
behavior of the identified group of slow or fast spins from
the whole group, which points to a stronger identifying power
of the predictors.

As we can see in the inset of Fig. 11(b), the Dslow measure
for the SSC predictor is larger than that obtained for local
fields in the case of RR with c = 6, meaning that SSC have
a stronger identifying power than local fields in identifying
slow spins. The fractional difference of Dslow by the two
predictors is plotted in Fig. 11(b), showing that the SSC-based
predictor outperforms local fields one in identifying slow spins
in RR graphs with both c = 5 and c = 6 for the examined
range of flipping temperatures β2. Interestingly, the highest
outperformance is found near β2 ≈ 0.5, similarly to those
observed for AUC in Fig. 11(a) and close to the transition
temperatures. On the other hand, for ER graphs, the values of
Dslow predicted by SSC and local fields are similar.

Finally, we examine the identifying power of fast spins by
the two predictors. As shown in Fig. 11(c) and the inset, the
SSC-based predictor outperforms the local fields-based one
in the case of RR with both c = 5 and c = 6, similarly to the
results in terms of AUC and Dslow. It implies that even when
the connectivity in the graph is uniform, SSC can still provide
a good prediction for slow and fast spins compared to the
prediction by local fields. In other words, by only considering a
snapshot of the system, SSC marginal probabilities carry more
information about the state of an individual spin than its local
field. For ER graphs, the SSC-based predictor outperforms
local fields one for large β2 but underperform at intermediate
β2. It may implies that SSC are not good at identifying fast
spins in ER graphs as fast spins are mostly nodes of small
degrees experiencing small field magnitudes. As a result, local
field magnitude may already be a good predictor for fast spins
in ER graphs.
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FIG. 11. Comparing the difference in values of (a) AUC, (b) KL
divergence Dslow between the flip-rate distributions of slow spins (i.e.,
large-p+ or large-field spins) and all spins, and (c) KL divergence
Dfast between the flip-rate distributions of fast spins (i.e., small-p+ or
small-field spins) and all spins, obtained by the SSC-based prediction
and local fields. The results are obtained for t1 = 10 000, t2 = 100 on
graphs with N = 1000, and by setting β1 = β2. The data at β2 = 0.1
are omitted since the AUC values Dslow and Dfast are very small in
this case and result in large fluctuations in the fractional difference.
Insets: The AUC and the two KL divergences Dslow and Dfast values
in the case of RR graphs with N = 1000 and c = 6.

We showed that given a snapshot of the system at equi-
librium, SSC provide a powerful predictor for the dynamical
properties of individual spins, especially in uniform connec-
tivity profiles. As the rationale of SSC can be extended to
systems in other areas, these results suggest that the same
methodology can be used to devise generic tools for identifying

the dynamical properties of variables in a wide range of
applications based on limited static information.

VI. SUMMARY

We developed a theoretical framework linking dynamical
and equilibrium properties of spin-glass models on sparse
graphs based on the concept of SSC, which can be viewed
as regions of interdependent mutually stabilizing spins. We
show that the SSC structure of a given sampled configura-
tion predicts the dynamical properties of the system, such
as the microscopic timescale separation in certain systems
and regions of slow-evolving variables in spin systems. This
supports the conjecture made in our previous work where we
studied analytically the properties of SSC in fully connected
models. We show that the marginal probabilities for a spin to
be associated with an SSC has a stronger identifying power
than its local field magnitude in identifying its subsequent
flip rate; our results suggest that SSC-based indicators may
be especially useful in the case of RR graphs close to their
transition point. We provide a new microscopic perspective
on the low-temperature dynamics of spin-glass systems with
the potential of developing new algorithmic optimization tools
for hard computational problems through the destabilization
of SSC. Furthermore, our results show that the SSC paradigm
can be used as a tool to predict individual spin dynamics based
on a single snapshot of equilibrium spin configuration, which
can be extended to applications in other areas.
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APPENDIX

Factor graphs and belief propagation equations

This section explains the need for a superfactor graph of
supernodes that comprise variable pairs due to the emergence

FIG. 12. The original graph topology (left) specified by the tree
G and corresponding factor graph for the SSC problem (right), which
clearly include many small loops.
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of many loops if a single-variable factor graph is introduced.
Let us consider the graph on left side of Fig. 12. In this graph,
we would like to compute the marginals for σ ’s values. To this
aim, we introduce the factor graph on the right side of Fig. 12.
Typically, the message factor î sends to node i can be written as

ν̂i→i(σi) ∝
∑
σ ∂̂i\i

ψ̂i(σ ∂̂i)
∏

k∈∂̂i\i
ηk→̂i(σk), (A1)

while the message node k sends to factor î becomes

ηk→̂i(σk) ∝
∏

k̂∈∂k\i
νk̂→k(σk). (A2)

This is a standard procedure to compute marginals on treelike
topologies; the interested reader can find more details in
Ref. [26]. This factor graph contains small loops due to the
dependence of variables on the neighbors of their neighbors.
In other words, the state of variable σi depends on the state
of all of its neighbors, whose state depend on σi itself. This
is a notorious problem for implementing BP and inferring the
related marginals. To overcome this problem we introduce a
modified factor graph with supervariables formed by variable
pairs as explained in the main text, see Fig. 1, where there are
no small loops, since its structure is the same as that of the
original graph. We can also observe that this supergraph can
be created by considering a superfactor for each node, and a
supervariable for each link of the original graph.
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