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Marginal process framework: A model reduction tool for Markov jump processes
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Markov jump process models have many applications across science. Often these models are defined on a
state space of product form and only one of the components of the process is of direct interest. In this paper
we extend the marginal process framework, which provides a marginal description of the component of interest,
to the case of fully coupled processes. We use entropic matching to obtain a finite-dimensional approximation
of the filtering equation, which governs the transition rates of the marginal process. The resulting equations
can be seen as a combination of two projection operations applied to the full master equation so that we
obtain a principled model reduction framework. We demonstrate the resulting reduced description on the totally
asymmetric exclusion process. An important class of Markov jump processes are stochastic reaction networks,
which have applications in chemical and biomolecular kinetics, ecological models, and models of social networks.
We obtain a particularly simple instantiation of the marginal process framework for mass-action systems by using
product Poisson distributions for the approximate solution of the filtering equation. We investigate the resulting
approximate marginal process analytically and numerically.
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I. INTRODUCTION

Markov jump processes (MJPs) have many applications
across science and engineering. The master equation (ME) [1],
which governs the time evolution of the probability distribution
of the process, is generally too complicated to solve analyti-
cally and frequently infeasible to solve numerically. A popular
alternative is the stochastic simulation (Gillespie) algorithm
[2], which produces samples of trajectories of the process. For
larger systems, however, this approach can be computationally
very expensive, especially if the system exhibits multiscale
behavior.

In many cases, the MJP is defined on a product-form state
spaceX × X̂ and only one component is of direct interest while
the other component can be considered a nuisance variable.
The question arises whether it is possible to derive a reduced
description for the stochastic process corresponding to the
component of interest only. Mathematically, the remaining
component then has to be marginalized out of the full stochastic
process. This approach has been used for reaction networks in
the case when the variables of interest do not influence the
nuisance variables [3] and also in other contexts [4], mostly to
speed up stochastic simulations.

A large number of other model reduction methods have
been proposed in the literature. Many of these are based on
timescale separation or abundance separation, a nonexhaustive
list being [5–11]. Other approaches based on marginalization
have recently been published [12–14] and focus on stochastic
differential equation models.

In this article we extend the marginalization approach
of [3,4] to a general MJP with full coupling between the
variable of interest and the nuisance variable. Marginalization
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requires the solution of the (in general, infinite-dimensional)
filtering equation, which describes the evolution of the con-
ditional probability of the nuisance variable given the tra-
jectory of the marginal process. We use entropic matching
[15,16] to obtain a finite-dimensional approximation. The
filtering equation and entropic matching can be interpreted
as the result of projection operations consecutively applied
to the full ME of the joint process. In this way, we obtain
a principled model reduction method. Our focus is on the
marginal process framework as a theoretical tool for model
reduction rather than as a method for more efficient stochastic
simulation.

A particularly important class of MJPs with applications in
chemical kinetics, biological population models, and models of
social interactions are reaction networks. For reaction networks
with mass-action kinetics, a particularly simple reduced de-
scription is obtained when a product Poisson ansatz distribution
is used for the approximate solution of the filtering equation.
We call the resulting reduced model the Poisson marginal
process and investigate it in detail. Analogously, for exclusion
processes, a product Bernoulli ansatz distribution leads to what
is the simplest possible reduced model within our framework.
We investigate this reduced process for the example of the
totally asymmetric exclusion process (TASEP) on the line with
open boundaries.

This paper is organized as follows. After describing the
problem setting in Sec. II, we provide an outline of the proposed
method in Sec. III, using a simple model of constitutive
gene expression as a running example. The general form of
the marginal process framework is derived in Sec. IV. The
finite-dimensional approximations necessary for a tractable de-
scription of the marginal process are discussed in Sec. V, where
we also apply our method to the TASEP as a first example. The
Poisson marginal process for mass-action reaction networks is
discussed in Sec. VI.
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II. SETTING

We consider an MJP (X,X̂) = (X(t),X̂(t))t�0 on a product-
form state space X × X̂, where X and X̂ are countable sets.
The marginal probability distribution pt (x,x̂) = Pr(X(t) =
x,X̂(t) = x̂) of such a process [with initial distribution p0(x,x̂)
at time 0] is governed by the ME

d

dt
pt (x,x̂) = [Lpt ](x,x̂)

=
∑
y,ŷ

{L(x,x̂ |y,ŷ)pt (y,ŷ)−L(y,ŷ |x,x̂)pt (x,x̂)},

where L(x,x̂ | y,ŷ) is the rate of transitioning from state (y,ŷ)
to state (x,x̂). We set L(x,x̂ | x,x̂) = 0 for all (x,x̂) ∈ X × X̂
for convenience. We will also require the backward evolution
operator L†, which acts on functions ψ : X × X̂ → R and is
given by

[L†ψ](x,x̂) =
∑
y,ŷ

L(y,ŷ | x,x̂){ψ(y,ŷ) − ψ(x,x̂)}. (1)

It is the adjoint of L with respect to the pairing (p,ψ) :=∑
x,x̂ p(x,x̂)ψ(x,x̂). Recall that L† governs the moment equa-

tions of the stochastic process. Thus, for a function ψ(x,x̂),
the expectation 〈ψ〉t with respect to the distribution pt (x,x̂)
evolves according to

d

dt
〈ψ〉t =

∑
x,x̂

ψ(x,x̂)
d

dt
pt (x,x̂) =

∑
x,x̂

ψ(x,x̂)[Lpt ](x,x̂)

=
∑
x,x̂

pt (x,x̂)[L†ψ](x,x̂) = 〈L†ψ〉t . (2)

We are particularly interested in reaction networks, consisting
of N + N̂ species and R reactions that are specified as

N∑
n=1

snjXn +
N̂∑

n=1

ŝnj X̂n →
N∑

n=1

rnjXn +
N̂∑

n=1

r̂nj X̂n (3)

for j = 1, . . . ,R. Here we have divided the set of all species
into the species X1, . . . ,XN of interest, the subnet, and the
remaining species X̂1, . . . ,X̂N̂ , the environment. We are in-
terested in the case when the copy numbers of some of the
species might be small, so a fully stochastic description in
terms of an MJP is necessary. The process X = (X1, . . . ,XN )
then describes the state of the subnet species, while X̂ =
(X̂1, . . . ,X̂N̂ ) describes the state of the environment species.
The state space is given by X = NN

0 and X̂ = NN̂
0 . For a

state (x,x̂), for each j = 1, . . . ,R there exists a transition
to the state (x + νj ,x̂ + ν̂j ) with rate hj (x,x̂) and change
vector (νj ,ν̂j ) with νj = (r1j − s1j , . . . ,rNj − sNj ) and ν̂j =
(r̂1j − ŝ1j , . . . ,r̂N̂j − ŝN̂j ). The operators L and L† take the
form

[Lp](x,x̂) =
R∑

j=1

{hj (x − νj ,x̂ − ν̂j )p(x − νj ,x̂ − ν̂j )

−hj (x,x̂)p(x,x̂)},

[L†ψ](x,x̂) =
R∑

j=1

hj (x,x̂){ψ(x + νj ,x̂ + ν̂j ) − ψ(x,x̂)}.

In all examples treated in this article, we will employ mass-
action kinetics, which are given by hj (x,x̂) = �cjfj (x)f̂j (x̂)
with

fj (x) =
N∏

n=1

(xn)snj

�snj
, f̂j (x̂) =

N̂∏
n=1

(x̂n)ŝnj

�ŝnj
, (4)

where (x)s = x(x − 1) · · · (x − s + 1) denotes the falling fac-
torial, cj is a reaction rate constant, and we have introduced the
system size � in terms of which we will analyze the behavior
of the approximate marginal process.

We will also require a description of the process (X,X̂)
in terms of the R reactions. We associate with each reaction
channel j a counting process Yj (t) which counts the number
of firings of reaction j over the time interval [0,t]. The process
(Y1, . . . ,YR) can again be seen as a reaction network of the form
(3) with values in NR

0 , which can only change by increments
of size 1 in any one of its components at a single time. The
state of the original process (X,X̂) is recovered from the state
of these counting processes via

X(t) =
R∑

j=1

Yj (t)νj , X̂(t) =
R∑

j=1

Yj (t)ν̂j .

III. OUTLINE OF THE METHOD

As explained in the Introduction, our goal is to derive a
marginal process description for the process of interest X.
While the joint process (X,X̂) is Markovian, this is no longer
the case for the marginal process X. The effect of the nuisance
variables X̂ is implicitly contained in the memory of the
process X. We now illustrate our proposed method on a simple
reaction network from biology. We focus on the underlying
ideas and postpone derivations to later sections.

A very simple model of constitutive gene expression is given
by the reaction network

∅ c1−→ mRNA
c2−→ ∅,

mRNA
c3−→ mRNA + protein, protein

c4−→ ∅. (5)

Assuming that we are interested primarily in the protein
dynamics, we will consider the mRNA to be a nuisance species.
Our goal is to obtain a marginal description of the protein
dynamics. Thus, the mRNA plays the role of the nuisance
variable X̂ and the protein the role of the variable of interest
X. Assuming mass-action kinetics, the transition rates of the
four reactions in the state (x,x̂) are given in Table I.

The steps to obtain a tractable approximate description
of the marginal process are as follows. (i) Determine how
the transition rates of the marginal process at time t depend
on the process history x[0,t]. (ii) Find a description for these
marginal transition rates in terms of an evolution equation
driven by the process X. The resulting equations are generally

TABLE I. Transition rates for the reaction network (5) when the
process is in state (x,x̂).

∅ → mRNA mRNA → ∅ mRNA → mRNA + P P → ∅
�c1 c2x̂ c3x̂ c4x
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infinite dimensional but provide an exact description of the
marginal process. (iii) Choose an approximation to obtain
finite-dimensional equations. We will now carry out these steps
for our simple example network.

(i) Description of the marginal process. Since the first two
reactions in Table I do not change the state of X, the marginal
process consists of two reactions, corresponding to the last two
reactions in Table I. Generally, since the marginal process is
no longer Markovian, the transition rates for these reactions
will depend on the entire history x[0,t] instead of just on the
current state x(t). However, the transition rate of the fourth
reaction in Table I does not depend on the mRNA abundance.
Consequently, its marginal transition rate remains unchanged
and is given by c4x(t). In particular, it depends only on the
current state x(t) of the marginal process. In contrast to this,
the rate for the third reaction does depend on the mRNA
abundance. As will be derived in Sec. IV A, the corresponding
marginal transition rate is given by c3E[X̂(t) | x[0,t]]. This
is an intuitive result, expressing the fact that in absence
of information about the mRNA abundance, the marginal
transition rate is given by the expectation of the transition rate
conditional on all available information, i.e., conditional on the
entire process history x[0,t].

(ii) Filtering equation. We are now tasked with computing
the expectation E[X̂(t) | x[0,t]]. A convenient way to do this is
to derive an evolution equation, driven by the marginal process
X(t), for the so-called filtering distribution πt (x̂) := Pr(X̂(t) =
x̂ | x[0,t]) with respect to which this expectation is computed.
The resulting equation is called the filtering equation. As the
process X is a jump process, the trajectory x[0,t] is piecewise
constant. The filtering equation for πt (x̂) will thus consist of
two parts: continuous evolution (described by a differential

t

t

X

X̂

FIG. 1. Schematic illustration of the concepts involved in the
construction of the marginal process, based on the example network
(5). Bottom: Bold curve curve and shaded area show mean and
plus or minus one standard deviation of the filtering distribution.
The marginal process trajectory (top) drives the evolution of the
filtering distribution and the filtering distribution mean determines
the transition rates of the marginal process X. Note that jumps of the
filtering distribution occur only if the marginal process increases by
a jump.

equation) as long as X remains constant and discontinuous
jumps whenever X jumps. This is schematically illustrated in
Fig. 1. As will be derived in Sec. IV C, the continuous evolution
is given by

d

dt
πt (x̂) = �c1[πt (x̂ − 1) − πt (x̂)]

+ c2[(x̂ + 1)πt (x̂ + 1) − x̂πt (x̂)]

− c3[x̂ − 〈x̂〉t ]πt (x̂). (6)

Here the expectation 〈x̂〉t is computed with respect to the
distribution πt (x̂) itself. The first two terms on the right-hand
side of (6) simply correspond to the ME for the mRNA alone,
the dynamics of which do not depend on the protein abundance.
The last term describes how the information that is contained
in the trajectory x[0,t] impacts our state of knowledge about
the mRNA abundance. Note that the right-hand side of this
equation does not depend on the state of the marginal process
X. This is because the reaction network has a feedforward
structure. In general, the filtering equation will depend on the
state of X.

As explained above, the filtering distribution will also jump
instantaneously whenever the driving process X jumps (see
Fig. 1). At a jump of X at time t , the corresponding jump
πt+ − πt− of the filtering distribution will depend on which
reaction caused the change in X. Since the protein decay
reaction does not depend on the mRNA abundance, no infor-
mation about mRNA abundance is obtained when this reaction
fires. Therefore, πt+ − πt− = 0 in this case, in analogy to
the continuous part (6) of the filtering equation in which the
protein decay reaction likewise plays no role. When the protein
abundance increases via the third reaction in Table I, however,
we instantaneously receive a finite amount of information
about the mRNA state. To understand this, note, for example,
that the third reaction can fire only if there is at least one mRNA
molecule present. Thus, the filtering distribution immediately
after the jump, πt+(x̂), certainly has to satisfy πt+(0) = 0. As
will be shown in Sec. IV C, the jump in the filtering distribution
when the third reaction fires is given by

πt+(x̂) = x̂

〈x̂〉t− πt−(x̂). (7)

In principle, (6) and (7) provide a full, exact description of the
marginal process, allowing us to compute the marginal tran-
sition rates at any time t from the history x[0,t] of the marginal
process X. For some simple processes, the corresponding
equations can be solved in closed form, as will be demonstrated
in Sec. IV D. In general, however, these equations constitute an
infinite-dimensional system that does not provide a sufficiently
simple description of the marginal process dynamics. We thus
have to look for finite-dimensional approximations.

(iii) Finite-dimensional approximation. Since we are in-
terested only in the expectation 〈x̂〉t = E[X̂(t) | x[0,t]] of the
filtering distribution πt (x̂), it seems reasonable to consider
the first-order moment equations for (6) and (7). However,
the equations for the mean 〈x̂〉t are not closed, because the
second-order moment 〈x̂2〉t enters: We obtain

d

dt
〈x̂〉t = �c1 − c2〈x̂〉t − c3

(〈x̂2〉t − 〈x̂〉2
t

)
(8)
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FIG. 2. Monte Carlo evaluation of the approximation quality of the Poisson marginal process and of timescale separation. Distributions of
protein abundance at stationarity from 50 000 Monte Carlo runs for each case. The parameters are c1 = γ , c2 = γ /2, c3 = 1, and c4 = 0.1.
Rows correspond to system sizes � = 0.1 for (a–d), � = 1 for (e–h) and � = 10 for (i–l). Columns correspond to mRNA process speeds of
(a), (e), and (i) γ = 0.5, (b), (f), and (j) γ = 2, (c), (g), and (k) γ = 5, and (d), (h), and (l) γ = 25. Note that the Poisson marginal process has a
somewhat heavier right tail than the exact marginal process, especially at low system size and low value of γ . The algorithm used for stochastic
simulation of the marginal process is explained in Appendix A.

from (6) and

〈x̂〉t+ = 〈x̂2〉t−
〈x̂〉t− (9)

from (7). To find a tractable description of the marginal process,
we employ moment closure to obtain a finite-dimensional
system of equations. As will be explained in more detail
in Sec. VI, in this article we want to obtain the simplest
possible description of the (approximate) marginal process and
so choose a first-order closure, incorporating the mean of the
filtering distribution only. A natural choice for such a closure
ansatz is the Poisson distribution. Writing θ (t) for the mean of
the Poisson ansatz distribution, we obtain

d

dt
θ (t) = �c1 − c2θ (t) − c3θ (t) (10)

from (8) and

θ (t+) = θ (t−) + 1 (11)

from (9). These equations complete our description of the
approximate marginal process, which we denote by X′ (and
refer to as the Poisson marginal process) to distinguish it from
the exact marginal process X. Using (10) and (11), we can
compute the marginal transition rates at time t based on the full
history x[0,t] of the approximate marginal process X′. We use
the fact that knowing the history x[0,t] is equivalent to knowing
the histories (y3)[0,t] and (y4)[0,t] of the two processes Y3 and
Y4 (as defined in Sec. II) that count firings of the third and
fourth reactions. Solving (10) and (11) in terms of the process
histories, we obtain for the marginal rate of the third reaction

the expression

c3

[
e−(c2+c3)t θ (0) +

∫ t

0
e−(c2+c3)(t−τ ){�c1dτ + dy3(τ )}

]
.

The Stieltjes integral here reduces to a sum, because (y3)[0,t] is
piecewise constant.

In order to evaluate the quality of our chosen approximation,
we can compute the mean and the variance of the approximate
marginal process X′ and of the exact marginal process X.
Using results from Sec. VI A, we find that the means of the
exact and approximate marginal processes coincide at all times,
assuming the initial conditions are chosen appropriately. At sta-
tionarity, the means are given by 〈x〉∞ = 〈x ′〉∞ = �c1c3/c2c4.
The variances of the processes, however, differ. We compute
the relative error of the variance approximation at stationarity
and find

〈x ′2〉∞ − 〈x2〉∞
〈x2〉∞ − 〈x〉2∞

= c2
3

2c2(c2 + c3 + c4)
.

One particular regime where the error vanishes is timescale
separation, when c1,c2 → ∞ with c1/c2 constant. It is thus
natural to compare our approach with an approximation that
directly invokes timescale separation. As mentioned in the
Introduction, there exist a large number of approaches. For
our simple network, however, there is one particularly natural

option (e.g., [5]): We consider the process ∅ k3−→ protein
c4−→

∅ with the rate constant k3 = �c3c1/c2. One easily checks
that at stationarity, the timescale separation ansatz reproduces
the correct mean. We compare the approximation of the full
distributions at stationarity numerically in Fig. 2. We see
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that the Poisson marginal process systematically improves on
timescale separation.

IV. MARGINAL PROCESS FRAMEWORK

In this section we introduce the marginal process framework
in full generality and derive the necessary equations for the case
of a general MJP defined on a product-form state space. We
then specialize to the case of reaction networks, where it is
useful to additionally introduce a slightly modified version of
the marginal process.

A. Marginal process

As explained in Sec. III, the marginal process X is in general
no longer Markovian, so the transition rates at time t will
depend on the entire history x[0,t] of the process over the time
interval [0,t], instead of just on the current state x(t). We now
proceed to compute these marginal transition rates in a way
analogous to [17].

For the marginal process, the probability for a transition
into the state y ∈ X to happen in the time interval [t,t + 	t],
conditional on the process history x[0,t] [and assuming y 	=
x(t)], is given by

Pr(X(t + 	t) = y | x[0,t])

=
∑
x̂,ŷ

Pr(X(t + 	t) = y,X̂(t + 	t) = ŷ | X(t) = x(t),

X̂(t) = x̂) Pr(X(t) = x(t),X̂(t) = x̂ | x[0,t])

=
∑
x̂,ŷ

L(y,ŷ | x(t),x̂) Pr(X(t) = x(t),

X̂(t) = x̂ | x[0,t])	t + o(	t)

= E[K(y | x(t),X̂(t)) | x[0,t]]	t + o(	t),

where K(y | x,x̂) = ∑
ŷ L(y,ŷ | x,x̂) is the total rate for

jumps from the state (x,x̂) leading to any state in {y} × X̂.
Thus, the marginal transition rate is given by

E[K(y | x(t),X̂(t)) | x[0,t]], (12)

i.e., by the expectation of the total transition rate conditional
on the entire history of the marginal process up to time t .

The distribution Pr(X̂(t) = x̂ | x[0,t]) with respect to which
the expectation is computed is the filtering distribution for
the stochastic process X̂ given the “observed” trajectory
x[0,t] of the stochastic process X. The filtering distribution
is the solution to the problem of estimating the state of the
unobserved variable X̂(t) given the available information x[0,t]

about the observed variable.
We see that, in order to obtain a useful description of the

marginal process, we require a sufficiently simple description

of the filtering distribution, or at least of the marginal transi-
tion rates E[K(y | x(t),X̂(t)) | x[0,t]] that are computed with
respect to the filtering distribution. One way to obtain such
a description is to formulate an evolution equation for the
filtering distribution driven by the marginal process X. For
the case of two fully coupled Markov jump processes, we are
not aware of the required results existing in the literature, so we
provide an elementary derivation. For an overview of stochastic
filtering in general, see [18].

B. Filtering equation

The filtering distribution πt (x̂) := Pr(X̂(t) = x̂ | x[0,t]) is,
in principle, defined over the state space X̂ of the nuisance
variable. It is however convenient and natural to consider it as
a distribution over the joint state space X × X̂ via

πt (x,x̂) := Pr(X(t) = x,X̂(t) = x̂ | x[0,t])

= δx(t),x Pr(X̂(t) = x̂ | x[0,t]),

where δx,y is the Kronecker delta. This simply expresses the
fact that conditional on x[0,t], the state of X(t) is known to be
x(t) with probability one. Depending on the situation, either of
these two views will be more convenient, so in the following
we will repeatedly switch between considering the filtering
distribution to be defined either on X̂ or on X × X̂.

For the derivations below, the following two operators will
be useful: a summation operator S and an evaluation operator
Py (which depends on a state y ∈ X), both of which act on
functions ψ : X × X̂ → R. They are defined by

[Sψ] =
∑
x,x̂

ψ(x,x̂),

[Pyψ](x,x̂) = δy,xψ(y,x̂). (13)

We can now derive the filtering equation. The filtering
distribution πt will evolve according to a differential equation
in between jumps of the process X and will jump whenever X

jumps. The intuition here is that, over an infinitesimal time
interval dt , if the observed process X does not jump, we
receive only an infinitesimal amount of information so that the
change in the filtering distribution should also be infinitesimal.
When, however, X does jump, we receive a finite amount of
information and, correspondingly, the filtering distribution has
to jump too (see also Fig. 1).

Assuming that we have observed the process X over a
time interval [0,t + 	t], these observations can be partitioned
into the observations x[0,t] up to time t and the observation
x(t + 	t). We assume 	t sufficiently small such that at most
one jump occurred during the time interval [t,t + 	t]. Using
Bayes’ theorem, we have

Pr(X̂(t+	t) = x̂ | x(t+	t),x[0,t])

=
∑
y,ŷ

Pr(X(t+	t) = x(t+	t),X̂(t+	t) = x̂ | X(t) = y,X̂(t) = ŷ)
Pr(X(t) = y,X̂(t) = ŷ | x[0,t])

Pr(X(t+	t) = x(t+	t) | x[0,t])

= [e	tLπt ](x(t+	t),x̂)∑
ŷ[e	tLπt ](x(t+	t),ŷ)

= πt (x(t+	t),x̂)+	t[Lπt ](x(t+	t),x̂)+o(	t)∑
ŷ{πt (x(t+	t),ŷ)+	t[Lπt ](x(t+	t),ŷ)}+o(	t)

.

062147-5



LEO BRONSTEIN AND HEINZ KOEPPL PHYSICAL REVIEW E 97, 062147 (2018)

Multiplying this equation by δx(t+	t),x , using that

πt+	t (x,x̂) = δx(t+	t),x Pr(X̂(t + 	t) = x̂ | x(t + 	t),x[0,t]),

and noting the definition of P and S in (13), we find

πt+	t = Px(t+	t)πt + 	t[Px(t+	t)Lπt ] + o(	t)

δx(t+	t),x(t) + 	t[SPx(t+	t)Lπt ] + o(	t)
. (14)

In the denominator, we also used that∑
ŷ

πt (x(t + 	t),ŷ) = δx(t+	t),x(t).

We now have to distinguish the cases x(t + 	t) = x(t)
and x(t + 	t) 	= x(t). When x(t + 	t) = x(t), i.e., X re-
mained constant over the time interval [t,t + 	t], we have
Px(t+	t)πt = πt . Subtracting πt from (14), dividing by 	t ,
and taking the limit 	t → 0, we obtain

d

dt
πt (x,x̂) = [Px(t)Lπt ](x,x̂) − πt (x,x̂)[SPx(t)Lπt ]. (15)

This is the differential equation that the filtering distribution
satisfies in between jumps of the process X. It turns out that
(15) can also be obtained as an orthogonal projection of the
full (joint) ME computed with respect to the Fisher-Rao infor-
mation metric. This point of view is described in Appendix B
and will allow us to better understand the finite-dimensional
approximation of the filtering equation introduced in Sec. V B
below.

When x(t + 	t) 	= x(t), i.e., when X jumps during the
time interval [t,t + 	t], we have Px(t+	t)πt = 0. Taking the
limit 	t → 0 in (14), we obtain an expression for the filtering
distribution immediately after the jump, πt+, in terms of the
filtering distribution immediately before the jump, πt−, given
by

πt+(x,x̂) = [Px(t+)Lπt−](x,x̂)

[SPx(t+)Lπt−]
, (16)

where x(t+) is the value of X after the jump.
We now write down expressions (15) and (16) explicitly

in terms of the transition rates. The explicit expressions are
simpler if we regard the filtering distribution as being defined
only over X̂, i.e., πt = πt (x̂). We define

R(x,x̂) =
∑
y 	=x

∑
ŷ

L(y,ŷ | x,x̂),

the total rate of those transitions out of state (x,x̂) that change
the X component. In between jumps of X, we then have

d

dt
πt (x̂) =

∑
ŷ

{L(x(t),x̂ |x(t),ŷ)πt (ŷ)

−L(x(t),ŷ |x(t),x̂)πt (x̂)}
− {R(x(t),x̂) − 〈R(x(t),x̂)〉t }πt (x̂), (17)

where 〈R(x(t),x̂)〉t = ∑
x̂ R(x(t),x̂)πt (x̂) denotes the expec-

tation computed using the filtering distribution πt . The first
term on the right-hand side of (17) is an ME for the nuisance
component X̂ involving only those transitions which do not
change theX component of the state. Note that the correspond-
ing transition rates can still depend on the current state of X.
The last term in (17) accounts for the observations. Here the

observations contain information by virtue of the fact that X

does not jump as long as (17) is in effect. From this equation
we also see that the effect of feedback from the variable of
interest to the nuisance variable is very simple: Because X is
constant between its jumps, X is simply fixed to its current
value in the transition rates in (17). When X does jump so
that x(t+) 	= x(t−), the corresponding jump in the filtering
distribution is given by

πt+(x̂) =
∑

ŷ L(x(t+),x̂ | x(t−),ŷ)πt (ŷ)∑
x̂ ′,ŷ L(x(t+),x̂ ′ | x(t−),ŷ)πt (ŷ)

. (18)

The combination of (17) and (18) with the marginal tran-
sition rates (12) provides a full description of the marginal
process X. For simple processes, these expressions can be
evaluated and solved in closed form, as will be demonstrated
for a simple reaction network in Sec. IV D. Before discussing
the example, we specialize the discussion to reaction networks.

C. Reaction networks

As we can see from (17), the transitions of the MJP are
naturally partitioned into two groups: those that change the
state of the X component and those that do not. We will denote
by JX ⊆ {1, . . . ,R} the subset of indices of those reactions
which can modify X and by JX = {1, . . . ,R}\JX the indices
of all remaining reactions. This partitioning also results in a
partitioning of the counting processes Y1, . . . ,YR (defined in
Sec. II) into two processes Y = (Yj )j∈JX and Ŷ = (Yj )j∈JX
with the former containing the reactions in JX and the latter
the remaining reactions in JX. Note that the state of the subnet
can then be recovered from Y alone, while the state of the
environment generally requires knowledge of both Y and Ŷ :

X(t) =
∑
j∈JX

Yj (t)νj , X̂(t) =
∑
j∈JX

Yj (t)ν̂j +
∑
j∈JX

Yj (t)ν̂j .

We now specialize the results obtained for the marginal
process for general MJPs to the case of reaction networks. At
this point, there arises an issue regarding the precise definition
of the history of the marginal process on which we condition
in the marginal transition rates (12). Generally, it can happen
that a reaction network contains two different reactions, with
different change vectors (νi,ν̂i) and (νj ,ν̂j ), for which however
the components corresponding to the subnet are identical, νi =
νj . For example, this is the case for the simple gene expression
model with negative feedback

G1
c1−→ G1 + X, X

c2−→ ∅, G1 + X
c3�
c4

G0. (19)

Here G0 and G1 are the two possible states of a gene and X is
the gene product which is produced when the gene is in state
G1. The gene product can also reversibly bind to the gene and
switch it to state G0, in which production of X is no longer
possible. When the gene product X is considered to constitute
the subnet, the reactions G1 → G1 + X and G0 → G1 + X

both lead to an increase of X of size 1. Similarly, X → ∅ and
G1 + X → G0 both lead to a decrease of X of size 1.

For such a reaction network, we obtain two different
marginal processes depending on whether the history of the
process is defined to be just the trajectory x[0,t] (as was done in
Sec. IV A) or the trajectory y[0,t] of the counting processes
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FIG. 3. Example of a sampled trajectory of the process (X,�). The solid red curve shows the abundance of gene product X over time. The
dashed blue curve shows the state of the filtering distribution mean �. Note that, as can be seen from (25), jumps in � occurring when � = 1
always lead to the same value of � = c2/(c2 + c3), indicated by the dotted line. Whether � increases or decreases after the jump depends on
the value of X. The parameters are c1 = 1, c2 = 0.25, c3 = 0.5, and c4 = 2. The initial state was X(0) = 0 and �(0) = 1.

Y of all reactions which change the subnet. In the former
case we will speak of the marginal process X and in the
latter case of the marginal process Y . Both marginal processes
are meaningful and only minor changes in the derivations
presented in Secs. IV A and IV B are necessary. We will present
expressions for both cases because each version of the marginal
process has advantages and disadvantages.

The marginal transition rate for the process Y for reaction
j ∈ JX is given by

E[hj (x(t),X̂(t)) | y[0,t]], (20)

where x(t) = ∑
j∈JX

yj (t)νj . This is different from (12),
which for reaction networks reads∑

j

E[hj (x(t),X̂(t)) | x[0,t]]

for a transition with change vector ν and where the summation
runs over all j ∈ JX such that νj = ν.

The filtering equation, similarly, exists in two variants,
depending on which form of the marginal process we consider.
It turns out however that the continuous part (15) of the filtering
equation is the same for both variants and explicitly reads

d

dt
πt (x̂) =

∑
j∈JX

{hj (x(t),x̂ − ν̂j )πt (x̂ − ν̂j )−hj (x(t),x̂)πt (x̂)}

−
∑
j∈JX

{hj (x(t),x̂) − 〈hj (x(t),x̂)〉t }πt (x̂). (21)

For the marginal process X as defined in Sec. IV A, the jump
in πt when X jumps is given by

πt+(x̂) =
∑

j hj (x(t−),x̂ − ν̂j )πt−(x̂ − ν̂j )∑
j 〈hj (x(t−),x̂)〉t− , (22)

where the sums in numerator and denominator each run over
all reaction indices j ∈ JX such that νj = x(t+) − x(t−). If
instead we consider the marginal process Y , a transition j ∈ JX
leads to a jump in the filtering distribution given by

πt+(x̂) = hj (x(t−),x̂ − ν̂j )πt−(x̂ − ν̂j )

〈hj (x(t−),x̂)〉t− . (23)

The absence of summations in (23) will be useful in Sec. VI A.
Here we proceed to discuss a simple example for which only
the marginal process X is useful.

D. Example: A case with finite-dimensional filtering equations

We consider the simple gene expression model (19), with
the gene product X chosen to constitute the subnet. For
this model, every reaction changes the state of X, so the
marginal process Y would be equal to the full process and
thus of no interest. Consequently, we instead consider the
(one-dimensional) marginal process X. This process has two
reactions ∅ → X and X → ∅, with rates at time t given by

c1θ (t) + c4[1 − θ (t)], [c2 + c3θ (t)]x(t),

respectively, where θ (t) = 〈g1〉t is the filtering distribution
mean of the gene state G1 and we assumed that only a single
copy of the gene is present. The filtering distribution πt (g0,g1),
initially defined on {0,1} × {0,1}, is fully determined by a
single number due to the conservation relation G0 + G1 = 1.
Similarly, for the expectation values with respect to πt (g0,g1)
we have θ (t) = 〈g1〉t = πt (0,1) = 1 − 〈g0〉t . We can now
write down the (one-dimensional) filtering equation using (21)
and (22). In between jumps of X, the result reads

d

dt
θ (t) = c(x(t))[1 − θ (t)]θ (t), (24)

where c(x(t)) = c4 − [c3x(t) + c1]. This is solved, for an
initial value of θ (t0) at time t0, by

θ (t) = θ (t0)ec(x(t0))(t−t0)

1 + θ (t0)(ec(x(t0))(t−t0) − 1)
,

where we used that x(t) is constant and equal to x(t0) in
between jumps. When the reaction ∅ → X fires, the filtering
distribution mean θ jumps to 1. This is clear because both
reactions of (19) that cause a change in X of size +1 lead
to the gene being in state G1. More interesting is the case
when the reaction X → ∅ fires. Then the jump in the filtering
distribution mean is given by

θ (t+) = c2θ (t−)

c2 + c3θ (t−)
. (25)

This completes the description of the marginal process. If we
consider θ (t) as an auxiliary variable and use it to augment
the process state, the resulting process (X,�) is a piecewise-
deterministic Markov process with two reactions and deter-
ministic evolution in between jumps given by (24). We show
a sample from this augmented process in Fig. 3.

While simple systems such as the one discussed in this sec-
tion can be treated without approximation, more complicated
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systems will require an approximate solution of the filtering
equations, as was already mentioned in Sec. III. We address
this issue next.

V. FINITE-DIMENSIONAL APPROXIMATIONS
OF THE FILTERING EQUATION

The filtering equation is in general infinite dimensional
and, just as the ME, far too complicated for either analytical
or numerical solution. Thus, regardless of whether one is
interested in the marginal process for analytical investigation
or for stochastic simulation, an approximate treatment of the
filtering equation is necessary.

A. Moment equations and moment closure

A standard approach to obtain a finite-dimensional ap-
proximation is moment closure [19], which in the context of
stochastic filtering is also known as assumed-density filtering
[20]. While moment closures have often been considered ad
hoc approximations, a simple variational derivation has been
obtained recently [16].

We first derive the filtering moment equations in their
general form, starting from (15) and (16). The moments of
the filtering distribution will evolve according to a differential
equation in between jumps of the marginal process and will
jump whenever the marginal process jumps. Again considering
πt to be defined on X × X̂, we consider the moment equation
for a function ψ : X × X̂ → R, which can be obtained as
demonstrated in (2) and is given by

d

dt
〈ψ〉t =

∑
x,x̂

ψ(x,x̂){[Px(t)Lπt ](x,x̂)−πt (x,x̂)[SPx(t)Lπt ]}

= 〈L†Px(t)[ψ − 〈ψ〉t ]〉t (26)

in between jumps of X, where we used thatP†
x(t) = Px(t). When

X jumps we have

〈ψ〉t+ = 〈L†Px(t+)ψ〉t−
〈L†Px(t+)1〉t− . (27)

We skip explicit expressions in terms of rates for general MJPs
and instead write down the simpler explicit expressions for
reaction networks, which read (now for a function φ : X̂ → R)

d

dt
〈φ〉t =

∑
j∈JX

{〈hj (x(t),x̂)φ(x̂ + ν̂j )〉t − 〈hj (x(t),x̂)φ(x̂)〉t }

−
∑
j∈JX

{〈hj (x(t),x̂)φ(x̂)〉t − 〈hj (x(t),x̂)〉t 〈φ(x̂)〉t }

(28)

in between jumps. Focusing on the marginal process Y , at a
jump of Y via reaction j ∈ JX we have

〈φ〉t+ = 〈hj (x(t−),x̂)φ(x̂ + ν̂j )〉t−
〈hj (x(t−),x̂)〉t− . (29)

The moment equations are, as is generally the case, not
closed: Choosing, for instance, φ(x̂) = x̂n for a reaction net-
work to obtain first-order moments, the resulting equations will
depend on moments of order higher than one. In this way, an

infinite hierarchy of moment equations is obtained. We require
a way to close the system of equations.

In this paper we consider a special case of moment closure,
which has a dual interpretation based on minimization of
relative entropy [15,16] and on projection using the Fisher-
Rao information metric [20]. We next present a derivation
analogous to [16], which allows for a unified treatment of the
continuous and discrete parts of the filtering equation.

B. Entropic matching

A finite-dimensional approximation of a distribution p(x̂)
can be obtained by choosing a distribution from within a finite-
dimensional parametric family pθ (x̂) with parameters θ . There
are strong arguments [21] for choosing this approximation so
that it minimizes the relative entropy

D[p ‖ pθ ] =
∑

x̂

p(x̂) ln
p(x̂)

pθ (x̂)
.

In the context of the filtering equation, we proceed as follows
[16]. Choose a parametric family of probability distributions
pθ (x̂) depending on parameters θ ranging in some open subset
of RK . Assume that, at time t , we have an approximation
pθ(t)(x̂) of the filtering distribution πt (x̂) available. As for the
filtering distribution itself, we identify the approximationpθ (x̂)
on X̂ with pθ (x,x̂) = δx(t),xpθ (x̂) on X × X̂.

We first consider the continuous part of the filtering equa-
tion. Then a short time step 	t later, pθ(t) will have evolved
to

p(x,x̂) = pθ(t)(x,x̂) + 	t[Px(t)Lpθ(t)](x,x̂)

− 	tpθ(t)(x,x̂)[SPx(t)Lpθ(t)].

We will obtain an approximation to p(x,x̂) that lies in the
parametric family pθ by choosing parameters θ (t + 	t) to
minimize the relative entropy D[p ‖ pθ(t+	t)]. We then take
the limit 	t → 0 to obtain an ordinary differential equation
(ODE) for the parameters θ . Write, for brevity, θ = θ (t) and
θ̃ = θ (t + 	t). Then we have, to first order in 	t ,

D[p ‖ pθ̃ ]

=
〈

ln
pθ + 	t{Px(t)Lpθ − pθ [SPx(t)Lpθ ]}

pθ̃

〉
p

=
〈

ln
pθ

pθ̃

〉
θ

+	t

[〈{Px(t)Lpθ

pθ

− [SPx(t)Lpθ ]

}
ln

pθ

pθ̃

〉
θ

+ const

]
,

where const denotes terms independent of θ̃ and 〈·〉θ denotes
an expectation taken with respect to the distribution pθ . The
first term is simply equal to D[pθ ‖ pθ̃ ], which to second order
in θ̃ − θ is given by

D[pθ ‖ pθ̃ ] = 1
2 (θ̃ − θ )†G(θ )(θ̃ − θ ),

where G(θ ) is the Fisher information matrix of the parametric
family pθ at parameter value θ , the components of which are
given by

Gkl(θ ) =
〈
∂ ln pθ

∂θk

∂ ln pθ

∂θl

〉
θ

, k,l = 1, . . . ,K. (30)
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To minimize D[p ‖ pθ̃ ], we take the derivative with respect to
θ̃ and obtain

0 = G(θ )(θ̃ − θ )

− 	t

〈{Px(t)Lpθ

pθ

− [SPx(t)Lpθ ]

}
∇θ̃ ln pθ̃

〉
θ

= G(θ )(θ̃ − θ ) − 	t〈L†P†
x(t)∇θ̃ ln pθ̃ 〉θ

+ 	t[SPx(t)Lpθ ]〈∇θ̃ ln pθ̃ 〉θ .
Dividing by 	t , taking the limit 	t → 0, and using that
〈∇θ ln pθ 〉θ = 0, we get

d

dt
θ = G(θ )−1〈L†Px(t)∇θ ln pθ 〉θ . (31)

This is a closed equation for the parameters θ . Using the
resulting approximate solution pθ of the filtering equation, all
necessary expectations, in particular the marginal transition
rates, can be computed.

When the process X jumps, the filtering distribution jumps
according to (16), so the approximation pθ(t−) immediately
before the jump is updated to

p = Px(t+)Lpθ(t−)

[SPx(t+)Lpθ(t−)]
.

Here too we can obtain an updated approximation within the
parametric family by minimizing the relative entropy, i.e.,
choosing θ (t+) to minimize D[p ‖ pθ(t+)]. In general, this
will be impractical. However, usually one will choose pθ to be
an exponential family

pθ (x̂) = 1

Z(θ )
exp

{
K∑

k=1

θkφk(x̂)

}
q(x̂). (32)

In this case, minimizing the relative entropy amounts to match-
ing moments, i.e., choosing θ (t+) so that 〈φk〉θ(t+) = 〈φk〉p for
k = 1, . . . ,K , which is practical.

The entropic matching equations (applied in the context of
filtering for stochastic differential equations) were proposed
in [20] and derived using a projection argument employing
the Fisher-Rao information metric. This geometrical approach
to (31), which we describe in Appendix B, is completely
analogous to the projection leading to the filtering equation.
In this way, entropic matching is seen to be a very natural way
to produce a finite-dimensional approximation to the filtering
equation, in addition to the justification provided above.

C. Example: Totally asymmetric exclusion process

In this section we apply the marginal process framework to
the TASEP on the line with open boundaries. The TASEP [22]
describes particles hopping on N sites X1, . . . ,XN where each
site can be occupied by at most one particle. We take Xn = 1
when site Xn is occupied and Xn = 0 otherwise. If the first
site X1 is empty, a particle can enter at a rate α. If site Xn+1

is empty and site Xn occupied, a particle can move from Xn

to Xn+1 with rate c. Finally, a particle at the last site XN can
leave the system with rate β.

We consider the situation where only the dynamics of
the last site XN is of interest to us, which might serve
as a proxy for, say, the flux through the entire system.

Thus, the only transitions which will be retained are the two
transitions corresponding to a particle entering or leaving site
XN . For simplicity, in the notation in this section, we do
not distinguish between the variable of interest XN and the
remaining variables. The filtering moment equations for the
mean occupancies read

d

dt
〈x1〉t = α〈1 − x1〉t − c〈x1(1 − x2)〉t ,

d

dt
〈xn〉t = c〈xn−1(1 − xn)〉t − c〈xn(1 − xn+1)〉t ,

n = 2, . . . ,N − 2,

d

dt
〈xN−1〉t = c〈xN−2(1 − xN−1)〉t

− c[1 − xN (t)]〈xN−1〉t 〈1 − xN−1〉t .
As expected and is well known, these contain second-order
moments. Here we are interested in obtaining the simplest
possible approximate marginal process. Thus, we will ob-
tain closed equations in terms of the first-order moments
〈x1〉t , . . . ,〈xN−1〉t only. A very natural approach to obtain such
a closure is to use entropic matching with a product Bernoulli
distribution ansatz

pθ (x) =
N−1∏
n=1

θxn

n (1 − θn)1−xn .

We refer to the resulting approximate marginal process as
the Bernoulli marginal TASEP. After application of product
Bernoulli entropic matching, the closed filtering moment
equations, in between observations, are given by

d

dt
θ1(t) = α[1 − θ1(t)] − cθ1(t)[1 − θ2(t)],

d

dt
θn(t) = cθn−1(t)[1 − θn(t)] − cθn(t)[1 − θn+1(t)],

n = 2, . . . ,N − 2,

d

dt
θN−1(t) = cθN−2(t)[1 − θN−1(t)]

− c[1 − xN (t)]θN−1(t)[1 − θN−1(t)].

Unsurprisingly, the resulting equations are identical to a naive
mean-field approximation. Note that when xN (t) = 1, i.e., the
last site is occupied, the observation term (the last term of the
last line) vanishes because a particle cannot enter the last site.

When a particle leaves site XN , no update to the filtering
distribution moments is required. When a particle enters site
XN at time t , the update is simply given by

θn(t+) = θn(t−), n = 1, . . . ,N − 2,

θN−1(t+) = 0.

This is intuitively clear: Site XN−1 is necessarily empty
immediately after a particle enters site XN . The means of the
remaining sites are left unchanged because of the product-form
closure employed.

We performed Monte Carlo simulations of both the
Bernoulli marginal TASEP and the full TASEP to compare
their behavior. In Fig. 4 we plot the distribution of waiting times
between a particle leaving siteXN and the next particle entering
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FIG. 4. Numerical evaluation of the accuracy of the Bernoulli marginal TASEP approximation on N = 10 sites at stationarity. Waiting-time
distributions are shown for a particle to enter site XN after the previous particle left XN . The parameters are α = β = 1 and (a) c = 0.01,
(b) c = 0.1, (c) c = 1, and (d) c = 2. Distributions are from 100 000 samples.

XN when the process is at stationarity. The waiting-time
distribution varies depending on the parameters of the process.
The Bernoulli marginal process reproduces the exact results
with high accuracy, despite the fact that we have used a very
simple closure for the filtering equation.

VI. PRODUCT POISSON MARGINAL PROCESS

In this section we will apply our results to general reaction
networks. While the marginal process framework described
in Secs. IV and V is very flexible, it does not provide any
indication of how to close the filtering moment equations. Each
choice of closure leads to a different (approximate) marginal
process. In Sec. V C we chose what is presumably the simplest-
possible nontrivial closure (depending on a single parameter
for each variable of the filtering equation) for the TASEP.

In this section, in order to initiate the systematic study of
the marginal process framework for reaction networks, we
similarly investigate what is arguably the simplest nontrivial
closure for reaction networks with mass-action kinetics, one of
the most important classes of reaction networks. Throughout,
we focus on the marginal process Y as introduced in Sec. IV C,
which is more convenient here.

A. Product Poisson closure

We consider a general reaction network (3) with mass-
action rates. In Sec. V C we employed product Bernoulli
entropic matching, which lead to naive mean-field equations.
In the context of general reaction networks, we note that a
naive first-order mean-field closure, in which the variance
is set to zero, leads to the vanishing of the second term
(corresponding to the observations) in (28). Instead, we will
obtain a principled closure by employing entropic matching
using a product Poisson distribution

pθ (x̂) =
N̂∏

n=1

e−θn
θ x̂n
n

x̂n!
.

Applying product Poisson entropic matching to a mass-action
reaction network leads to equations for the Poisson means
that coincide with the macroscopic reaction rate equations.
This result will then also hold for the first term in (28),
which corresponds to the prior evolution of the environment
species. In this sense, product Poisson entropic matching
behaves similar (though not identical) to a naive mean-field

closure. However, unlike for a naive first-order closure, the
term corresponding to the observations in (28) does not vanish.
We obtain
d

dt
θ =

∑
j∈JX

�cjfj (x(t))ĝj (θ )ν̂j −
∑
j∈JX

�cjfj (x(t))ĝj (θ )ŝj

(33)

for the continuous part of the filtering equation and

θ (t+) = θ (t−) + r̂j (34)

when the marginal process jumps via reaction j , where r̂j =
(r̂1j , . . . ,r̂N̂j ) and ŝj = (ŝ1j , . . . ,ŝN̂j ). Here ĝj are the mass-
action rates for the environment species in their macroscopic
form, given by

ĝj (θ ) =
N̂∏

n=1

(
θn

�

)ŝnj

.

The simplicity of (34) is the reason for considering the marginal
process Y . If we instead consider the marginal process X, the
corresponding equation is more complicated and the results
obtained in the following would not hold.

In order to better understand the Poisson marginal process,
we can investigate its moment equations. For this purpose,
we consider the augmented process (X′,�), where X′ is the
approximate marginal process and � is the stochastic process
corresponding to the Poisson means θ . As in Sec. IV D,
(X′,�) is a piecewise deterministic Markov process. For such
a process, from the known form of the backward evolution
operator [23], we obtain the moment equation for a function
ψ(x,θ ) in the form

d

dt
〈ψ〉 =

∑
j∈JX

〈�cjfj (x)ĝj (θ )ν̂†
j∇θψ〉

−
∑
j∈JX

〈�cjfj (x)ĝj (θ )ŝ†j∇θψ〉

+
∑
j∈JX

〈�cjfj (x)ĝj (θ )[ψ(x+νj ,θ+r̂j )−ψ(x,θ )]〉.

(35)

Here and in the following we consider all vectors as column
vectors. In particular [writing for brevity χj = χj (x,θ ) =
�cjfj (x)ĝj (θ )], the first-order moment equations are
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given by

d

dt
〈x〉 =

∑
j∈JX

〈χj 〉νj =
R∑

j=1

〈χj 〉νj ,

d

dt
〈θ〉 =

∑
j∈JX

〈χj 〉ν̂j −
∑
j∈JX

〈χj 〉ŝj +
∑
j∈JX

〈χj 〉r̂j

=
R∑

j=1

〈χj 〉ν̂j ,

where we used that ν̂j = r̂j − ŝj and, by definition of JX,
νj = 0 for each j ∈ JX. For a linear reaction network, these
equations are identical to the first-order moment equations
obtained for the full process (X,X̂). Since these equations are
closed, we see that the Poisson marginal process, for a linear
reaction network, reproduces the mean of the exact marginal
process.

Similarly, we can investigate the relation between the co-
variance matrices of the Poisson marginal and the full process
by considering the second-order moment equations, which for
the augmented Poisson marginal process (X′,�) are given by

d

dt
〈xx†〉 =

∑
j∈JX

〈χj [xν
†
j + νjx

† + νjν
†
j ]〉,

d

dt
〈xθ †〉 =

R∑
j=1

〈χjxν̂
†
j 〉 +

∑
j∈JX

〈χj [νj θ
† + νj r̂

†
j ]〉,

d

dt
〈θθ †〉 =

R∑
j=1

〈χj [θν̂
†
j + ν̂j θ

†]〉 +
∑
j∈JX

〈χj r̂j r̂
†
j 〉.

Denote by

S =
[
〈xx†〉 〈xx̂†〉
〈x̂x†〉 〈x̂x̂†〉

]
, S ′ =

[
〈xx†〉 〈xθ †〉
〈θx†〉 〈θθ †〉

]

the matrices of second-order moments for the full process
(X,X̂) and for the augmented Poisson marginal process
(X′,�), respectively. For a linear reaction network, these then
evolve according to

d

dt
S = AS + SA† + B(t),

d

dt
S ′ = AS ′ + S ′A† + B ′(t), (36)

with matrices A, B(t), and B ′(t). The difference between the
matrices B(t) and B ′(t) is given by

B(t) − B ′(t) =
R∑

j=1

〈χj 〉t
[

0 −νj ŝ
†
j

−ŝj ν
†
j ν̂j ν̂

†
j

]

−
∑
j∈JX

〈χj 〉t
[

0 0

0 r̂j r̂
†
j

]
.

Using variation of constants to solve (36), we find that
the difference between second-order moments of exact and

approximate processes is given by

S(t) − S ′(t) =
∫ t

0
e(t−τ )A[B(τ ) − B ′(τ )]e(t−τ )A†

dτ,

where we assumed S(0) = S ′(0). In particular, if B(t) − B ′(t)
is, say, positive semidefinite for all t � 0, this will also hold
for S(t) − S ′(t).

Even when the reaction network is not linear, the macro-
scopic rates ĝj coincide with the transition rates f̂j to leading
order in the system size � when expressed in terms of
concentrations. One might then expect that in the large system
size limit, the mean of the Poisson marginal process will
coincide with the mean of the exact marginal process. We now
investigate these findings numerically on the Lotka-Volterra
system

∅ c1−→ X̂, ∅ c2−→ X,

X̂
c3−→ 2X̂, X̂ + X

c4−→ 2X, X
c5−→ ∅, (37)

a simple model of predator-prey interaction with oscillatory
dynamics. Here we take the prey species X̂ to be part of
the environment, while the predator species X constitutes the
subnet. Numerical results for various system sizes are shown in
Fig. 5. We see the expected behavior: With increasing system
size, the mean of the Poisson marginal process approaches the
exact mean. We also see that the Poisson marginal process
underestimates the variance of the exact marginal process.

B. Explicit representation of marginal rates

The representation of the marginal process that we have con-
sidered in the previous sections involves auxiliary variables,
either the filtering distribution itself or the filtering distribution
moments. It is interesting to represent the (approximate)
marginal process in a way that explicitly shows its memory.
A subclass of systems for which this is readily done for the
Poisson marginal process are processes with transition rates
linear in the environment variables. Note that this does not
imply that the joint reaction network (3) is linear. For example,
the Lotka-Volterra system (37) satisfies this condition. This
will put the marginal process framework in a form more similar
to other approaches for obtaining reduced models that have
recently been investigated [12–14].

Assume that (33) has the form

d

dt
θ = F (x(t))θ (38)

for the appropriate matrixF , which is explicitly time dependent
through x(t). The extension of the following results to the case
where (38) contains an inhomogeneity is obvious. We write

V (t,τ ) =
←
T exp

{∫ t

τ

F (x(t ′))dt ′
}

for the time-ordered exponential [which reduces to a product of
finitely many ordinary exponentials because x(t) is piecewise
constant]. Noting from (34) that the increments of θ at jumps
of the marginal process are independent of θ , we can represent
the solution of the filtering equation as

θ (t) = V (t,0)θ (0) +
∑
i∈JX

r̂i

∫ t

0
V (t,τ )dyi(τ ).
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FIG. 5. Monte Carlo evaluation of the accuracy of the Poisson marginal process for the Lotka-Volterra system at system size (a), (d), and
(g) � = 0.5, (b), (e), and (h) � = 1, and (c), (f), and (i) � = 5. The mean of the Poisson marginal process approaches the true mean as the
system size increases. In all three cases, the Poisson marginal process has a smaller standard deviation than the exact process. (g)–(i) show the
full distributions at time t = 100. The parameters are c1 = 1, c2 = 5, c3 = 0.5, c4 = 0.003, and c5 = 0.3. Initial conditions were of product
Poisson form with means 〈X〉 = 〈X̂〉 = 75�. The number of simulated trajectories was 100 000 for � = 0.5, 20 000 for � = 1, and 10 000
for � = 5.

Note that Y is a piecewise-constant process with jumps of size
1, so the Stieltjes integral reduces to a sum. Thus, a fully explicit
representation for the marginal reaction rate of reaction channel
j ∈ JX at time t of the marginal process is

〈hj 〉θ = hj

⎛
⎝x(t),V (t,0)θ (0) +

∑
i∈JX

r̂i

∫ t

0
V (t,τ )dyi(τ )

⎞
⎠.

We can apply this result to the Lotka-Volterra system (37).
The equation for the Poisson mean (33) reads (setting � = 1
for simplicity)

d

dt
θ = c1 + c3θ − c4x(t)θ.

The only reaction with a rate depending on θ is X̂ + X
c4−→

2X. Setting v(t,τ ) = ∫ t

τ
[c3 − c4x(t ′)]dt ′ and noting that r̂2 =

r̂4 = r̂5 = 0, we obtain for the marginal reaction rate of this
reaction the explicit representation

〈h4〉θ = c4x(t)

[
ev(t,0)θ (0) +

∫ t

0
ev(t,τ )c1dτ

]
.

C. Limitations of the product Poisson closure

Using a product Poisson ansatz to close the filtering
equation will not always be appropriate. The most obvious
situation where this approach might fail is in the presence of
conservation relations among the environment species. This

will be particularly problematic when there is no intrinsic noise
in the environment. A simple example for this behavior would
be the gene expression network (5) with input rate c1 and decay
rate c2 for the mRNA set to zero. Irrespective of the initial
distribution of mRNA at time zero, the filtering distribution
will converge to a unit mass at the true mRNA abundance as
the time interval over which the subnet process is observed
tends to infinity. Since for a Poisson distribution the variance
is equal to the mean, the vanishing of the variance of the
true filtering distribution over time cannot be captured by the
Poisson closure.

VII. CONCLUSION
In this article we have illustrated how the marginal process

framework, in combination with entropic matching, results
in a principled model reduction method for Markov jump
processes. We derived the filtering equation for two fully
coupled Markov jump processes in a transparent form that
shows its relation to the full master equation, establishing
the filtering equation as the result of the application of a
projection operator. The application of a further projection,
given by entropic matching, results in a finite-dimensional
approximation to the filtering equation and thus in a tractable
approximation for the marginal process. Apart from being
a useful tool for the efficient stochastic simulation of the
marginal process, it also provides a theoretical understanding
of the marginal description. A particularly simple instantiation
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of the marginal process framework for mass-action reaction
networks, the Poisson marginal process, was investigated in
detail. We derived analytical results for the approximation error
for linear reaction networks. A similar approximation, based
on product Bernoulli entropic matching, was employed for the
TASEP.

An interesting question for future investigation is the the-
oretical analysis of approximations of the filtering equation
more accurate than the product Poisson ansatz or the product
Bernoulli ansatz. In particular, approximations based on first-
and second-order moments might allow one to compare the
marginal process framework to other marginalization ap-
proaches published previously [12–14]. For this purpose, a
variant of the marginal process framework for subnet and
environment both modeled by stochastic differential equations
would be of interest.
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APPENDIX A: MARGINAL SIMULATION ALGORITHM

Here we describe one possible way to simulate the (approx-
imate) marginal process for reaction networks. Let

d

dt
θ = v(θ,x) (A1)

be the differential equation governing the parameters θ of the
(approximate or exact) solution of the filtering equation in
between jumps, which in general will depend on the marginal
process state x. For example, for the Poisson marginal process,
v is given by the right-hand side of (33). Similarly, let

θ+ = vj (θ−,x−) (A2)

be the equation specifying the update to the parameters θ when
the subnet jumps via reaction j . For the Poisson marginal
process, vj is given by the right-hand side of (34).

An algorithm [24] based on the modified next reaction
method [25] can be formulated as follows. The expected

Algorithm 1 Marginal stochastic simulation algorithm
(modified next reaction method).

Set t ← 0,x ← x0,θ ← θ0. � Initialization
for j ∈ JX do

Sample u ∼ Uniform(0,1).
Set τj ← − ln u.

end for

while t < T do � Main loop
Solve (A1) and (A3) until the first variable τj∗ reaches 0 for

some index j∗ ∈ JX.
Update θ ← vj∗ (θ,x).
Update x ← x + νj∗ .
Sample u ∼ Uniform(0,1).
Set τj∗ ← − ln u.

end while

reaction rates 〈hj 〉θ ,j ∈ JX of those reactions that modify the
state of Y are functions of θ . We augment the ODE system
(A1) to include auxiliary variables

d

dt
τj = −〈hj 〉θ , j ∈ JX. (A3)

The system can then be simulated using Algorithm 1, which
samples a trajectory of the (approximate) marginal process
over the time interval [0,T ] starting from an initial subnet state
x0 and initial parameters θ0 for the filtering distribution at time
0. The algorithm has to find the time point at which a function
of the ODE system state crosses a specified threshold (one of
the variables τj reaches 0). This is a functionality provided
by many ODE solvers, so the algorithm is straightforward to
implement.

APPENDIX B: FILTERING EQUATION AND ENTROPIC
MATCHING AS PROJECTION OPERATIONS

Here we discuss how the continuous part of the filtering
equation (15) and the entropic matching equation (31) arise as
an application of an orthogonal projection (using the Fisher-
Rao information metric) applied to the vector field defined by
the ME. Since the results in this paper do not actually depend on
any of the results in this appendix, we restrict the discussion to
a form which stresses the geometrical significance and neglects
any technical difficulties. See [26] for a general treatment of
information geometry.

For simplicity, assume that X × X̂ is finite and define the
set of probability distributions on X × X̂,

P = {p : X × X̂ → [0,1] | Sp = 1},
which inherits a manifold structure as a subset of finite-
dimensional Euclidean space. The tangent space at a point
p ∈ P is given by

TpP = {p} × {v : X × X̂ → R | Sv = 0}.
For an MJP (X,X̂) on X × X̂, the master equation
dpt (x,x̂)/dt = [Lpt ](x,x̂) defines a vector field on P, the
vector attached at a point p being Lp. We define a base-point-
dependent metric by

gp(v,w) =
∑
x,x̂

p(x,x̂) 	= 0

v(x,x̂)w(x,x̂)

p(x,x̂)

for v,w ∈ TpP. When restricted to p ∈ P with p > 0 every-
where, this is the information metric. Our extension to other p

is somewhat ad hoc but sufficient for our purposes.
It turns out that the continuous part of the filtering equation

when X is in state x(t) is obtained simply as an orthogonal
projection of the vector field of the full master equation on the
tangent space to the submanifold

Px(t) = {p ∈ P | p(x,x̂) = δx(t),x p̂(x̂) for some p̂(x̂)}.
From now on, let p ∈ Px(t) with p(x,x̂) = δx(t),x p̂(x̂) and
assume p̂ > 0 everywhere. One easily checks that the linear
operator

Fp : TpP → TpP, Fpv = (Px(t) − pSPx(t))v
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satisfiesF2
p = Fp and gp(Fpv,w) = gp(v,Fpw) for all v,w ∈

TpP, so Fp is an orthogonal projection. The projected vector
field p �→ (p,FpLp) corresponds to the filtering equation.

The entropic matching equations can similarly be derived
as an application of a further projection. They were derived
in [20] using such a geometric approach. Considering a K-
dimensional parametric family pθ of probability distributions
on X̂, the map θ �→ δx(t),xpθ (x̂) defines a submanifold of
Px(t) which we denote by P′

x(t). From now on, let p ∈ P′
x(t)

with p(x,x̂) = δx(t),xpθ (x̂). The tangent space TpP′
x(t) to this

submanifold is spanned by the vectors

vk = vk(x,x̂) = δx(t),x
∂pθ (x̂)

∂θk

, k = 1, . . . ,K.

We then find for the Gram matrix

gp(vk,vl) = Gkl(θ ), k,l = 1, . . . ,K,

i.e., the information metric as defined by (30). The orthogonal
projection Qp : TpP → TpP onto the tangent space TpP′

x(t) is

given by

Qpw =
K∑

k,l=1

gp(w,vk)[G(θ )−1]klvl .

Because TpP′
x(t) is a subspace of TpPx(t), we haveQpFp = Qp.

The resulting projected ME, defined by the vector field

p �→ (p,QpFpLp) = (p,QpLp),

evolves on the manifoldP′
x(t) when it is started there. When this

is written in terms of the variables θ , we obtain the equations
of entropic matching (31). Here we also see that entropic
matching can be used to directly obtain a finite-dimensional
approximation to the filtering equation from the ME, without
deriving the filtering equation in an intermediate step. The
derivation presented in Sec. V B could also be adapted in this
way and would then be an application of variational inference
[27].
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