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The ferromagnetic (J > 0) version of the Blume-Emery-Griffiths model in the region of repulsive biquadratic
couplings (K < 0) is considered on a Cayley tree of coordination z, reducing the statistical problem to the analysis
of a two-dimensional nonlinear discrete map. In order to investigate the effect of the coordination z on the system
multicritical behavior, we study the particular case K/J = −3.5 with the inclusion of crystal fields (D �= 0),
but vanishing external magnetic fields (H = 0), for two distinct lattice coordinations (z = 4 and z = 6). The
thermodynamic solutions on the Bethe lattice (the central region of a large Cayley tree) are associated with the
attractors of the two-dimensional map. The phase diagrams display several thermodynamic phases (paramagnetic,
ferromagnetic, ferrimagnetic, and staggered quadrupolar). In some cases, there are regions of numerical costability
of two different attractors of the map, associated with discontinuous phase transitions between the corresponding
phases. To verify the thermodynamic stability of the phases and to locate the first-order boundaries, the analytical
expression of the Gibbs free energy was obtained by the method proposed by Gujrati [Phys. Rev. Lett. 74, 809
(1995)]. For lower coordinations (z = 4) the transition between the ferrimagnetic and the staggered quadrupolar
phases is always continuous, while the transition between the ferromagnetic and the ferrimagnetic phases is
discontinuous at low temperatures, turning into continuous for temperatures above a tricritical point. On the other
hand, for higher coordinations (z = 6), the transition between the ferromagnetic and the ferrimagnetic phases
is always continuous. However, the transition between the ferrimagnetic and the staggered quadrupolar phases
is continuous for higher temperatures and discontinuous for temperatures below a tricritical point, in agreement
with previous results obtained in the mean-field approximation (infinity-coordination limit). In both cases, the
occurrence and the thermodynamic stability of the ferrimagnetic phase is confirmed.
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I. INTRODUCTION

A generalization of the standard spin-1/2 ferromagnetic
Ising model [1] is given by the spin-1 Blume-Emery-Griffiths
(BEG) model [2], defined by the Hamiltonian

H = −J
∑
(μ,ν)

sμsν − K
∑
(μ,ν)

s2
μs2

ν + D
∑

ν

s2
ν ,

sν = −1,0, + 1, (1)

which includes bilinear J and biquadratic K nearest-neighbor
(μ,ν) pair interactions and a single-ion anisotropy term, associ-
ated with the local crystal field D at site ν. This model presents
a rich variety of critical and multicritical phenomena and can
be used to describe spin systems, although originally it was
introduced to describe the phase separation and superfluidity
in 3He-4He mixtures [2].

Extensions of the BEG model have also been proposed to
describe simple [3] and binary [4] fluids, ternary mixtures
[5–7], semiconductor alloys [8], microemulsions [9], Lang-
muir lipid monolayers [10], liquid water [11], etc. Several
complementary techniques have been used to investigate the
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BEG model and its extensions: the mean-field approxima-
tion (MFA) [2–10,12–15], the Bethe-lattice (BL) or Bethe-
Peierls approximation (BPA) [11,16–22], renormalization-
group (RG) theory [12,23–25], Monte-Carlo renormalization-
group (MCRG) theory [26], cluster variation method (CVM)
[27] and Monte Carlo simulations (MCSs) [20,25,28–30]. The
majority of these analyses predict interesting features of the
phase diagrams of the BEG-like models.

In particular, the ferromagnetic (J > 0) version of the
BEG model with repulsive biquadratic couplings (K < 0)
yields under the MFA [12–14] extremely rich phase diagrams,
exhibiting reentrant behavior, terminal critical points, multi-
critical points, and the occurrence of four distinct thermody-
namic phases: paramagnetic (P), ferromagnetic (F), staggered
quadrupolar (SQ), and ferrimagnetic (Fi). On the other hand,
the RG calculations [12,24,25], which go beyond the MFA,
predict that the Fi phase squeezed between the F and SQ
phases is present in three dimensions, but does not survive
to thermal fluctuations in two dimensions. The MCRG [26]
confirms the results for K/J = −1.5 by MFA and RG in three
dimensions. The CVM [27] predicts, for the cubic lattice and
K/J = −3, a transition between two distinct ferrimagnetic
phases. The MCSs predict the absence of the Fi phase even
in three dimensions [20,28], as well as in two dimensions
[25,29]. Nevertheless, some previous results obtained on the
BL for K/J = −3.5, but without a thermodynamic analysis
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based on a consistent free energy [21], suggest that, for lower
coordinations, the transition between the Fi and the SQ phases
is always continuous, while the transition between the Fi and
the F phases is discontinuous for lower temperatures and
continuous for higher temperatures. For higher coordinations,
in agreement with the MFA results [12–14], the transition
between the Fi and the F phases is always continuous, while the
transition between the Fi and the SQ phases is discontinuous
for lower temperatures and continuous for higher temperatures.
Whenever the phase boundary changes character, this is related
to the existence of a tricritical point.

We believe thus that it is still possible to explore the effect
of the lattice coordination z on the multicritical behavior
of the BEG ferromagnetic model with repulsive biquadratic
couplings. We were in part motivated by the need to check
the robustness of the MFA predictions and to locate the
first-order phase boundaries inside the regions of numerical
costability, associated with the overlapping regions of stability
of two distinct attractors on the BL. Since an expression for
the consistent Gibbs free energy on the BL has not been
found in previous works, it was not possible to establish
the thermodynamic phase of the system in these costability
regions. Therefore, in order to complete the previous results
found on the BL [21,22], we obtain the thermodynamically
consistent BL Gibbs free energy by using the method proposed
by Gujrati [31].

The layout of this paper is as follows. In Sec. II we formulate
the spin-1 BEG model on a Cayley tree of coordination z

and obtain the nonlinear recursion relations. Their attractors
correspond to the solutions on the BL, deep in the interior of a
large tree [32,33]. We study the effect of the lattice coordination
z on the multicritical behavior of the ferromagnetic model
(J > 0) and the inclusion of a crystal field D in the region of
repulsive biquadratic couplings, in the particular case K/J =
−3.5. First we analyze the numerical stability of the map
attractors in Sec. III. For the range of parameters investigated,
this BEG model displays uniform and alternate (staggered)
phases, forcing us to split the tree into two interpenetrating
sublattices. In Sec. IV we obtain the Gibbs free-energy density
per site by Gujrati’s method [31], for both the uniform and
the staggered cases. By collecting results from the previous
sections for two typical values of coordination of the Cayley
tree, z = 4 and z = 6, we construct in Sec. V global T × D

phase diagrams, including the first-order phase boundaries.
Finally, some concluding remarks are presented in Sec. VI.

II. BEG MODEL ON A CAYLEY TREE

The Cayley tree is a connected graph without closed loops,
as illustrated in Fig. 1 by five successive generations of a
tree with coordination z = 3. The calculations for the standard
Ising model on the Cayley tree and their physical interpretation
on the BL are well established [32–36]. The statistical problem
can be formulated in terms of a nonlinear discrete map, whose
attractors correspond to the physical solutions in the interior of
a tree far removed from its surface, the so-called BL [32,33].
These solutions are expected to provide approximations for the
BEG model on a regular lattice with the same coordination z,
generally identical to the traditional BPA [37–40].

n=0

n=1

n=2

n=3

n=4

n= N=5

FIG. 1. Cayley tree with coordination number z = 3 and N = 5
generations of sites. The generations are labeled from the surface
(n = 0) to the central site (n = N = 5).

The BEG model [2] on a Cayley tree of N generations is
defined by the Hamiltonian

HN = −J
∑
(μ,ν)

sμsν − K
∑
(μ,ν)

s2
μs2

ν + D
∑

ν

s2
ν − H

∑
ν

sν,

sν = −1,0, + 1, (2)

where the (μ,ν) sums extend over all nearest-neighbor pairs of
sites of a Cayley tree of coordination z and the ν sums are over
all single sites. Notice that, in order to bypass the constraint
of fixed magnetization M ≡ ∑

ν sν in the (semi)canonical
ensemble, the Gibbs magnetic ensemble will be used, so that a
Zeeman contribution associated with an external magnetic field
H was added to the BEG Hamiltonian Eq. (1). Furthermore,
the inclusion of the magnetic field H and the crystal field D

single-site terms allows one to readily obtain the equations of
state for the thermal averages 〈sν〉 and 〈s2

ν 〉 by free-energy dif-
ferentiation. At the end of the calculations, one may set H = 0.

Let us consider the BEG model formulated on a Cayley tree
of N generations, with the central site located at the generation
n = N , as depicted in Fig. 1. The partition function of the
complete tree in the Gibbs magnetic ensemble is given by

YN =
∑
{sν }

e−βHN =
∑
{sν }

exp

⎛
⎝j

∑
(μ,ν)

sμsν + k
∑
(μ,ν)

s2
μs2

ν

− d
∑

ν

s2
ν + h

∑
ν

sν

)
, (3)

where the trace {sν} represents a sum over all possible spin
microstates, β = (kBT )−1, kB is the Boltzmann constant, T is
the absolute temperature, and we introduce the dimensionless
parameters j ≡ βJ , k ≡ βK , d ≡ βD, and h ≡ βH .

It is convenient to define the partial partition functions
of the whole tree Y

(s)
N , obtained with a fixed central spin

s (s = −1,0, + 1),

YN =
∑

s

Y
(s)
N . (4)
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Note that each Y
(s)
N depends on the partial partition functions

of the z tree branches connected to the central spin s. Thus we
can write

Y
(s)
N = e−ds2+hs

[ ∑
σ=0,±1

e jσs+kσ 2s2
Q

(σ )
N−1

]z

, (5)

where Q(σ )
n is the partial partition function of a tree branch

with n layers far from the surface, when the innermost site
(root of the branch) at generation n has spin σ . This explicit
distinction between the partial partition functions of the entire
tree Y

(σ )
N and of the tree branches Q

(σ )
N is necessary in order

to solve the model iteratively. One can take advantage of the
cycle-free structure of the Cayley tree to establish the following
recursion relations [32,33] between tree branches of successive
generations:

Q
(s)
n+1 = e−ds2+hs

[ ∑
σ=0,±1

e jσs+kσ 2s2
Q(σ )

n

]z−1

, (6)

with the fixed spin s located at generation n + 1, and the traced
spins σ at generation n. Each innermost spin s at the root of a
tree branch is connected now to (z − 1) outer tree branches,
leading thus to a distinct exponent from the previous Y

(s)
N

formula. For a Cayley tree with N generations, the boundary
condition at the tree surface implies

Q
(s)
0 ≡ e−ds2+hs, (7)

because the surface spins (at generation n = 0) interact only
with the spins of the generation n = 1.

It is convenient now to introduce the ratios

xn+1 ≡ Q
(+)
n+1

Q
(0)
n+1

= e−d+h

(
1 + e j+kxn + e−j+kyn

1 + xn + yn

)z−1

, (8)

yn+1 ≡ Q
(−)
n+1

Q
(0)
n+1

= e−d−h

(
1 + e−j+kxn + e j+kyn

1 + xn + yn

)z−1

, (9)

which define a two-dimensional nonlinear discrete map
(xn,yn) → (xn+1,yn+1).

The physically acceptable solutions far from the tree sur-
face, i.e., on the BL, correspond to attractors of the map
problem. In this case, for the range of parameters investigated,
the attractors found are either single fixed points, for which
(x,y) = (xn+1,yn+1) = (xn,yn),

x = e−d+h

(
1 + e j+kx + e−j+ky

1 + x + y

)z−1

, (10)

y = e−d−h

(
1 + e−j+kx + e j+ky

1 + x + y

)z−1

, (11)

or two-cycle fixed points (orbits of period two), for which
(xa,ya) → (xb,yb) → (xa,ya) under the map transformation,
where the subscripts a and b label two distinct sublattices.
In other words, by using the same previous discrete map,
Eqs. (8) and (9), we have (xa,ya) = (xa

n+1,y
a
n+1) = (xa

n−1,y
a
n−1)

and (xb,yb) = (xb
n+2,y

b
n+2) = (xb

n,y
b
n), with (xa,ya) �= (xb,yb).

Thus the set (xa,xb,ya,yb) associated with a two-cycle
fixed point satisfies the coupled system of nonlinear

equations,

xa = e−da+ha

(
1 + e j+kxb + e−j+kyb

1 + xb + yb

)z−1

,

xb = e−db+hb

(
1 + e j+kxa + e−j+kya

1 + xa + ya

)z−1

, (12)

ya = e−da−ha

(
1 + e−j+kxb + e j+kyb

1 + xb + yb

)z−1

,

yb = e−db−hb

(
1 + e−j+kxa + e j+kya

1 + xa + ya

)z−1

. (13)

At the end of the calculations, the sublattice-dependent param-
eters da ≡ βDa , db ≡ βDb, ha ≡ βHa , and hb ≡ βHb will be
set to da = db = d and ha = hb = h = 0. They are introduced
here in order to easily carry out thermal averages by free-energy
differentiation.

III. MAP ATTRACTORS, BETHE-LATTICE ORDER
PARAMETERS, AND BIFURCATION DIAGRAMS

The numerical analysis consists primarily to iterate the
discrete map given by Eqs. (8) and (9), looking for stable
single fixed points or two-cycle fixed points (orbits of period
2), which are related to the possible thermodynamic phases on
the BL. However, since the variables (xn,yn) are unbounded,
it is convenient to introduce the auxiliary variables

m̄n ≡ xn − yn

1 + xn + yn

= m̄n(m̄n−1,q̄n−1), (14)

q̄n ≡ xn + yn

1 + xn + yn

= q̄n(m̄n−1,q̄n−1), (15)

which are limited to the ranges −1 � m̄n � 1 and 0 � q̄n � 1,
simplifying thus the numerical search for attractors. Hence-
forth, instead of looking for attractors of the recursion relations
Eqs. (8) and (9), we will use the fully equivalent forms given
by Eqs. (14) and (15).

We have found stable single fixed points, for which (m̄,q̄) =
(m̄n+1,q̄n+1) = (m̄n,q̄n), or stable two-cycle fixed points, for
which (m̄a,q̄a) → (m̄b,q̄b) → (m̄a,q̄a) under the discrete map
(14) and (15). It should be remarked that the stable single fixed
point associated with the above auxiliary variables,

m̄(x,y) = lim
N→∞

∑
s sQ

(s)
N∑

σ Q
(σ )
N

= x − y

1 + x + y
, (16)

q̄(x,y) = lim
N→∞

∑
s s2Q

(s)
N∑

σ Q
(σ )
N

= x + y

1 + x + y
, (17)

where (x,y) is a single fixed point satisfying Eqs. (10) and
(11), is not related to the thermodynamic order parameters,
magnetization m ≡ 〈sν〉, and quadrupole moment q ≡ 〈s2

ν 〉,
respectively, which must be defined on the BL. These BL
order parameters are given by statistical averages in the central
region of an infinite Cayley tree, but can be also obtained by
partial derivatives of the Gibbs free-energy density Eq. (29),
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to be obtained in Sec. IV,

m ≡ 〈sν〉 = lim
N→∞

∑
s sY

(s)
N∑

σ Y
(σ )
N

= [1 + e j+k(x + y)](x − y)

1 + e j+k(x2 + y2) + 2(e−j+kxy + x + y)
= −

(
∂βg

∂h

)
d

�= m̄, (18)

q ≡ 〈
s2
ν

〉 = lim
N→∞

∑
s s2Y

(s)
N∑

σ Y
(σ )
N

= e j+k(x2 + y2) + 2e−j+kxy + x + y

1 + e j+k(x2 + y2) + 2(e−j+kxy + x + y)
=

(
∂βg

∂d

)
h

�= q̄. (19)

In fact these equations of state represent the traditional BPA [37–40] applied for the BEG model.
For the stable two-cycle fixed points, we define analogously

m̄a ≡ xa − ya

1 + xa + ya

, m̄b ≡ xb − yb

1 + xb + yb

, q̄a ≡ xa + ya

1 + xa + ya

, q̄b ≡ xb + yb

1 + xb + yb

, (20)

in terms of (xa,xb,ya,yb) given by Eqs. (12) and (13). Again, the thermodynamic order parameters on the BL can be found
by statistical averages in the central region of an infinite Cayley tree or by partial derivatives of the Gibbs free-energy density
considering two sublattices, Eq. (30),

ma ≡ 〈sa〉 = e j+k(xaxb − yayb) + e−j+k(xayb − xbya) + xa − ya

1 + e j+k(xaxb + yayb) + e−j+k(xayb + xbya) + xa + xb + ya + yb

= −2

(
∂βg

∂ha

)
hb,da,db

�= m̄a, (21)

mb ≡ 〈sb〉 = e j+k(xaxb − yayb) − e−j+k(xayb − xbya) + xb − yb

1 + e j+k(xaxb + yayb) + e−j+k(xayb + xbya) + xa + xb + ya + yb

= −2

(
∂βg

∂hb

)
ha,da,db

�= m̄b, (22)

qa ≡ 〈
s2
a

〉 = e j+k(xaxb + yayb) + e−j+k(xayb + xbya) + xa + ya

1 + e j+k(xaxb + yayb) + e−j+k(xayb + xbya) + xa + xb + ya + yb

= 2

(
∂βg

∂da

)
ha,hb,db

�= q̄a, (23)

qb ≡ 〈
s2
b

〉 = e j+k(xaxb + yayb) + e−j+k(xayb + xbya) + xb + yb

1 + e j+k(xaxb + yayb) + e−j+k(xayb + xbya) + xa + xb + ya + yb

= 2

(
∂βg

∂db

)
ha,hb,da

�= q̄b, (24)

reducing to Eqs. (18) and (19) by setting xa = xb = x and
ya = yb = y, as expected.

The numerical stability of the attractors can be checked by
a simple linear-stability analysis [41]. In the case of a single
fixed point, this can be performed by finding the eigenvalues
�i of the Jacobian matrix associated with the original discrete
map, Eqs. (8) and (9),

J(x,y) ≡ ∂(xn+1,yn+1)

∂(xn,yn)

∣∣∣∣
(xn,yn)=(x,y)

=

⎛
⎜⎝

∂xn+1

∂xn

∂xn+1

∂yn
∂yn+1

∂xn

∂yn+1

∂yn

⎞
⎟⎠

(xn,yn)=(x,y)

, (25)

with the partial derivatives evaluated at the single fixed point
(x,y) of interest. If �1,2 ∈ R, (x,y) is an asymptotically stable
fixed point when |�1,2| < 1; otherwise it is unstable, if one or
both eigenvalues are outside of this range. For �1,2 ∈ C, then
the eigenvalues are necessarily complex conjugate with the
same module. For a two-cycle fixed point, the linear-stability
analysis is similarly performed by finding the eigenvalues of
the matrix product J(xa,ya) J(xb,yb), evaluated along each
fixed point of the orbit.

Our main interest here is to confirm and extend previous
results obtained on the BL for the ferromagnetic BEG model
with repulsive biquadratic interactions and the inclusion of
a crystal field [21], concerning its multicritical behavior.
We analyze two different lattice coordinations, z = 4 (low
coordination) and z = 6 (high coordination), keeping constant
the ratio K/J = −3.5 and by varying the dimensionless tem-

perature t = (βJz)−1 and the ratio D/Jz. In the investigated
range of interaction parameters, one may obtain the following
thermodynamic phases at vanishing magnetic field (H = 0):

(i) paramagnetic phase (P): m = ma = mb = 0, q = qa =
qb �= 0;

(ii) ferromagnetic phase (F): m = ma = mb �= 0, q = qa =
qb �= 0;

(iii) staggered quadrupolar or antiquadrupolar phase (SQ):
ma = mb = 0, qa �= qb;

(iv) ferrimagnetic phase (Fi): ma �= mb, qa �= qb;
which are identified according to the above listed values of the
order parameters on the BL.

In order to gain some insight about the possible scenarios, it
is instructive to plot bifurcation diagrams, showing the profile
of the fixed points (m̄,q̄) of the auxiliary variables, for fixed
dimensionless temperatures t = (βJz)−1 and by varying the
ratio D/Jz. When costability of different attractors is present,
a plot of the absolute value of the largest eigenvalue |�1| of the
Jacobian matrix is also informative. Figures 2–4 correspond to
the case of lower coordination (z = 4), while Figs. 5–7 deal
with the case of higher coordination (z = 6).

A. Lower coordination (z = 4)

Figure 2 displays two continuous transitions near the ab-
scissas −2.524 (transition from the F to the Fi phase) and
−2.517 (transition from the Fi to the SQ phase), associated
with bifurcations in the stable solutions. The SQ phase cor-
responds to a two-cycle fixed point, but this is only evident
in the q̄ diagram, since both (m̄a,m̄b) have null values in
this phase. Figure 3 displays, in addition, an unstable branch,
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−2.534 −2.527 −2.52 −2.513 −2.506
D/Jz

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

m
_

Fi

F

SQ
−2.534 −2.527 −2.52 −2.513 −2.506

D/Jz
0.8

0.85

0.9

0.95

1

q
_

Fi

F

SQ

FIG. 2. Bifurcation diagrams of the fixed points (m̄,q̄) of the auxiliary variables as a function of the parameter D/Jz, with z = 4, K/J =
−3.5, and t = 0.3. The thermodynamic phase labels (F, Fi, SQ) follow the main text. For the alternate Fi and SQ phases, the two branches
shown correspond to the (m̄a,m̄b,q̄a,q̄b) values on the two distinct sublattices (a,b).

represented by the dashed lines, which indicates the occurrence
of a discontinuous phase transition. In the abscissa range
−2.503 � D/Jz � −2.501 it is possible to note in the m̄ dia-
gram the numerical costability of the stable branch belonging
to the F phase, with m̄ about 0.9, and two stable branches
(two-cycle fixed point) belonging to a Fi phase, with (m̄a,m̄b)
less than 0.9. The same features can be observed in the q̄

bifurcation diagram.
Due to the onset of this unstable solution, we investigated

the eigenvalues of the Jacobian matrix. Figure 4 shows the
behavior of the absolute value of the largest eigenvalue |�1|
in this region. The attractors and repulsors of the mapping are
directly connected to the stable and unstable branches of the
bifurcation diagrams shown in Fig. 3. The overlap between two
numerically costable attractors represents a clear indication
of the existence of a discontinuous (first-order) transition
between two thermodynamically coexisting (F and Fi) phases.
The intersection of |�1| values associated with the costable
attractors occurs near the point (−2.503,0.99), but cannot be
used as a rigorous criterion to discuss the thermodynamical
stability of the corresponding phases.

B. Higher coordination (z = 6)

Figure 5 displays two continuous transitions near the ab-
scissas −2.56 (transition from the F to the Fi phase) and
−2.535 (transition from the Fi to the SQ phase), associated with

bifurcations in the stable solutions. The SQ phase corresponds
to a two-cycle fixed point, but this is only evident in the q̄

diagram, since both (m̄a,m̄b) have null values in this phase.
Figure 6 displays, in addition, an unstable branch, represented
by the dashed lines, which indicates the occurrence of a
discontinuous phase transition. In the abscissa range −2.523 �
D/Jz � −2.493 it is possible to note in the m̄ and q̄ diagrams
the numerical costability of distinct stable branches, a two-
cycle fixed point belonging to a Fi phase, with (m̄a,m̄b) above
0.7, and another two-cycle fixed point belonging to the SQ
phase with m̄a = m̄b = 0. In order to improve visualization,
the q̄ diagram was rescaled by taking the modulus of the
decimal logarithm of the difference 1 − q̄, showing how the
stable branches belonging to the Fi and the SQ phases are
connected through unstable branches.

Again, motivated by the onset of this unstable solution,
we investigated the eigenvalues of the Jacobian matrix.
Figure 7 shows the behavior of the absolute value of the
largest eigenvalue |�1| in this region. The attractors and
repulsors of the mapping are directly connected to the stable
and unstable branches of the bifurcation diagrams shown in
Fig. 6. The overlap between two numerically costable attractors
represents a clear indication of the existence of a discontin-
uous (first-order) transition between two thermodynamically
coexisting (Fi and SQ) phases. The intersection of |�1| values
associated with the costable attractors occurs near the point
(−2.5,0.8), but again cannot be used as a rigorous criterion
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FIG. 3. Bifurcation diagrams of the fixed points (m̄,q̄) of the auxiliary variables as a function of the parameter D/Jz, with z = 4, K/J =
−3.5, and t = 0.15. The dashed lines are associated with an unstable branch of the recurrence relations. Note the costability of two different
attractors in the abscissa range −2.503 � D/Jz � −2.501, which coincides with the region of existence of the unstable branch.
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D/Jz
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0.99

1
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|Λ1|

F

Fi

SQ

2nd order

unstable solution

co−stability,
1st  order

FIG. 4. Absolute value of the largest eigenvalue |�1| of the
Jacobian matrix as a function of the parameter D/Jz, with z = 4,
K/J = −3.5, and t = 0.15. The solid lines represent the numerically
stable solutions, while the dashed line represents a numerically
unstable branch that indicates the occurrence of a discontinuous
(first-order) transition between the coexisting F and Fi phases. Note
the costability of both attractors in the abscissa range −2.503 �
D/Jz � −2.501. A horizontal dotted line delimits |�1| � 1 and the
point with |�1| = 1 denotes a continuous (second-order) transition
between the Fi and the SQ phases.

to discuss the thermodynamical stability of the corresponding
phases.

IV. BETHE-LATTICE GIBBS FREE-ENERGY DENSITY

In calculations on the BL, the occurrence of a discontinuous
(first-order) phase transition is associated with the existence
of a range of model parameters (j,k,d,h) in which distinct
attractors are dynamically stable under the map application. In
other words, different attractors can be reached starting from
particular sets of distinct initial conditions for the dynamical
map [21,22]. Although the numerical costability of distinct
attractors represents a clear indication of occurrence of discon-
tinuous transitions, there are no general rules connecting nu-
merical and thermodynamical stabilities. In order to choose the
physical solutions on the BL corresponding to bulk attractors
with the lowest Gibbs free energies, a detailed thermodynamic
analysis is required. Due to the need to avoid the pathologies
originated from the surface sites of a Cayley tree [34–36], the

problem is quite delicate and one cannot directly use the Gibbs
free energy associated with the entire tree,

βGN = − ln YN = −z ln Q
(0)
N−1 − (z − 1)

× ln(1 + xN−1 + yN−1)

− ln
[
1 + e j+k

(
x2

N−1 + y2
N−1

)
+ 2(e−j+kxN−1 yN−1 + xN−1 + yN−1)

]
= −z(z − 1)N−1 ln Q

(0)
0 + ln(1 + xN−1 + yN−1)

− z

N−1∑
n=0

(z − 1)N−1−n ln(1 + xn + yn)

− ln
[
1 + e j+k

(
x2

N−1 + y2
N−1

)
+ 2(e−j+kxN−1 yN−1 + xN−1 + yN−1)

]
. (26)

Given that there is an exponential growth of the total number
of sites of a Cayley tree with N generations,

Nt(N ) = 1 + z

N−1∑
n=0

(z − 1)N−1−n = 1 + z (z−1)N −1
z−2 , (27)

only the extensive contribution of the complete tree survives
for the Gibbs free-energy density per site in the thermodynamic
limit (N → ∞,Nt → ∞),

βgtree ≡ lim
N→∞

βGN

Nt(N )

= −
(

z − 2

z − 1

) ∞∑
n=0

(z − 1)−n ln(1 + xn + yn), (28)

in disagreement with the free-energy density βf given by
Eq. (10) of [22].

Although it would be possible, in principle, to obtain the
BL Gibbs free-density density by integration of the equations
of state of the order parameters [32,33], Eqs. (18) and (19)
and (21)–(24), we resort to a method introduced by Gujrati
[31], who proposed to obtain the BL free energy by cleverly
subtracting the contribution from the surface sites of the tree.
According to Gujrati’s method [31], the analytical Gibbs free-
energy density per site (in unities of kBT ) associated with a
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FIG. 5. Bifurcation diagrams of the fixed points (m̄,q̄) of the auxiliary variables as a function of the parameter D/Jz, with z = 6, K/J =
−3.5, and t = 0.4. The phase labels and the meaning of the distinct branches are the same as in Fig. 2.
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FIG. 6. Bifurcation diagrams of the fixed points (m̄,q̄) of the auxiliary variables as a function of the parameter D/Jz, with z = 6, K/J =
−3.5, and t = 0.1. The dashed lines are associated with an unstable branch of the recurrence relations. A logarithmic scale for q̄ is used for a
better visualization of the branches profile, since they are close to q̄ = 1. Note the costability of two different attractors in the abscissa range
−2.523 � D/Jz � −2.493, which coincides with the region of existence of the unstable branch.

single fixed point (x,y) reads

βg = 1

2
lim

N→∞
[βGN − (z − 1)βGN−1]

= −1

2
lim

N→∞
[ln YN − (z − 1) ln YN−1]

= −(z − 1) ln(1 + x + y) + 1

2
(z − 2)

× ln[1 + e j+k(x2 + y2)

+ 2(e−j+kxy + x + y)], (29)

where the thermodynamic limit N → ∞ is taken by evaluating
the tree partition functions Yn at the single fixed point (x,y)
of the map, which satisfies Eqs. (10) and (11). One should
also remark that Eq. (10) of [22] provides the free-energy
density βf = −2βg/(z − 2), although it was claimed that
βf = − 1

Nt (N) ln YN , in disagreement with Eq. (28).

The Gibbs free-energy density per site given by Eq. (29)
allows one to characterize only the uniform (P and F) phases.
However, it is known from previous calculations on the BL
[21,22] that, under some conditions, alternate (Fi and SQ)
thermodynamic phases arise. In order to be able to characterize
these alternate phases, it is necessary to split the system in two
interpenetrating sublattices (a,b). The free-energy density per
site with the division of the Cayley tree in two sublattices is
also obtained using Gujrati’s method [31], but now we have
to consider Cayley trees with central sites in the two distinct
sublattices, leading to

βg = −1

2
lim

N→∞
[

ln Y a
N − (z − 1) ln Y b

N−1

]
= −1

2
lim

N→∞
[

ln Y b
N+1 − (z − 1) ln Y a

N

]
= −1

2
(z − 1)[ln(1 + xa + ya) + ln(1 + xb + yb)]

+ 1

2
(z − 2) ln[1 + e j+k(xaxb + yayb)

+ e−j+k(xayb + xbya) + xa + xb + ya + yb], (30)

with (xa,xb,ya,yb) satisfying the coupled system of nonlinear
Eqs. (12) and (13), enforcing the thermodynamic limit once
the two-cycle fixed point is reached. The Gibbs free-energy
density (30) reduces to Eq. (29) by setting xa = xb = x and
ya = yb = y, as expected. It is noteworthy that Eq. (30) is
invariant by permutation of the sublattice labels (a,b), so that
the free-energy densities obtained either with the central site
in a, or in b, are exactly the same.

With the free-energy densities of the uniform and the
staggered phases, Eqs. (29) and (30), we are then able to locate
the discontinuous transitions inside the numerical costability
regions. Complementing the previous numerical-stability anal-
ysis of Sec. III of the attractors on the BL by the associated
Gibbs free-energy densities, Eqs. (29) and (30), allows one
to sort out the physically acceptable BL phases and to locate
the first-order phase boundaries between them. Recall from

−2.56 −2.54 −2.52 −2.5 −2.48
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1.2

|Λ1|
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2nd order

1st order

unstable solution

co−stability,

FIG. 7. Absolute value of the largest eigenvalue |�1| of the
Jacobian matrix as a function of the parameter D/Jz, with z = 6,
K/J = −3.5, and t = 0.1. The solid lines represent the numerically
stable solutions, while the dashed line represents a numerically
unstable branch that indicates the occurrence of a discontinuous
(first-order) transition between the coexisting Fi and SQ phases. Note
the costability of both attractors in the abscissa range −2.523 �
D/Jz � −2.493. A horizontal dotted line delimits |�1| � 1 and the
point with |�1| = 1 denotes a continuous (second-order) transition
between the F and the Fi phases.
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(a) Profile for z = 4 and t = 0.3. (b) Profile for z = 6 and t = 0.4.

FIG. 8. Gibbs free-energy profiles (solid lines) associated with the unique numerically stable solutions, obtained for K/J = −3.5 and
temperatures above the tricritical temperature. The dashed line is only a reference straight line. Only continuous phase transitions (indicated by
the arrows) between the different labeled phases are observed, associated with the absence of numerical costability of distinct attractors. These
continuous transitions are given by the criterion |�1| = 1 on the absolute value of the largest eigenvalue of the Jacobian matrix.

Sec. III that, for lower coordinations (z = 4), we have found
numerical costability between attractors associated with the
F and Fi phases, while for higher coordinations (z = 6), the
numerical costability takes place between attractors associated
with the Fi and the SQ phases. We expect, therefore, a character
change of the phase transitions between the given different
phases, depending on the lattice coordination z. By combining
results from Secs. III and IV, we can obtain free-energy profiles
of the BL solutions. Figures 8 and 9 display, respectively,
cases where continuous and discontinuous transitions were
detected.

Figure 8 displays cases that do not present numerical costa-
bility of different attractors. The chosen parameters for Fig. 8
coincide with those used to plot Figs. 2 and 5. Therefore, the
observed phase transitions are always continuous, associated
with bifurcations of the fixed points. Due to the fact that
the Gibbs free-energy derivatives calculated at a continuous
transition are the same for the two involved phases, it is
difficult to observe a change of behavior of the free-energy
branches shown in Fig. 8. A dashed line of reference and
arrows indicating the continuous transitions are added to the

free-energy profile in order to improve the visualization of the
phase transitions.

On the other hand, Fig. 9 displays cases that do present
numerical costability of different attractors, indicating that
the observed phase transitions are discontinuous. The chosen
parameters for Fig. 9 coincide with those used to plot Figs. 3
and 6, and also Figs. 4 and 7 for |�1|. In Fig. 9(a) it is possible to
note that the free energies of the two coexisting phases intersect
near the abscissa −2.5028, while in Fig. 9(b) the intersection
occurs near the abscissa −2.5. These intersections locate the
discontinuous (first-order) phase transitions.

V. GLOBAL T × D PHASE DIAGRAMS

By collecting the location of the phase transitions (con-
tinuous and discontinuous), as well as the costability re-
gions of distinct attractors, it is possible to draw the global
t × D/Jz phase diagrams of the ferromagnetic BEG model
with repulsive biquadratic interactions (K/J = −3.5) and
vanishing external magnetic field (H = 0) obtained on the BL
for the two investigated coordinations, z = 4 and z = 6, shown
respectively in Figs. 10 and 11. The multicritical behavior of

−2.504 −2.503 −2.502 −2.501
D/Jz

−5.26

−5.258

−5.256

−5.254

−5.252

−5.25
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(a) Profile for z = 4 and t = 0.15. (b) Profile for z = 6 and t = 0.1.

FIG. 9. Gibbs free-energy profiles associated with the numerically stable (solid lines) and unstable (dashed lines) solutions, obtained for
K/J = −3.5 and temperatures below the tricritical temperature. The numerical costability of two distinct attractors indicates the occurrence of
a discontinuous (first-order) phase transition between the two coexisting labeled phases. The point where the Gibbs free energies of the stable
branches intersect (indicated by the arrows) locates the discontinuous phase transition.
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FIG. 10. Global phase diagram of the ferromagnetic BEG model
with repulsive biquadratic interations (K/J = −3.5) on a BL with
coordination z = 4. The numerical costability region is shaded in
gray. The dashed line represents the discontinuous (first-order) phase
boundary, while the solid lines correspond to continuous (second-
order) transitions. The labels of the thermodynamic phases (P, F, Fi,
SQ) and the classification of the special points (M, T, S) follow the
main text.

both typical phase diagrams is very rich, displaying several
special points:

(i) a tetracritical point (M), where four second-order lines
separating the P/F, P/SQ, Fi/F, and Fi/SQ phases meet;

(ii) a tricritical point (T), where a low-temperature first-
order line turns into a high-temperature second-order line;

(iii) a highly degenerate zero-temperature point (S), where
a second-order line and a first-order line meet at zero temper-
ature.

Table I summarizes the representative features of the two
distinct typical phase diagrams. In particular, the type of the
transitions with the Fi phase changes with the coordination
z. For low coordinations (z = 4), the Fi/SQ transition is
always continuous, whereas for high coordinations (z = 6),
the transition that is always continuous corresponds to the
Fi/F transition. There is a tricritical point T along the Fi/F
transition for lower coordinations (z = 4), while it occurs on

−2.6 −2.56 −2.52 −2.48
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   Fi
+SQ

   Fi
+SQ

FIG. 11. Global phase diagram of the ferromagnetic BEG model
with repulsive biquadratic interations (K/J = −3.5) on a BL with
coordination z = 6. The numerical costability region is shaded in
gray. The dashed line represents the discontinuous (first-order) phase
boundary, while the solid lines correspond to continuous (second-
order) transitions. The labels are the same as those used in Fig. 10.

TABLE I. Type of the phase transitions for the ferromagnetic
BEG model with repulsive biquadratic interactions (K/J = −3.5)
and vanishing external magnetic field (H = 0) obtained on the BL
with coordination z. Most of the transitions are continuous, but a few
switch order at a tricritical temperature TT.

Low coordination High coordination
Phase transition (z = 4) (z = 6)

P/F continuous continuous
P/SQ continuous continuous

continuous for T � TTFi/SQ continuous
discontinuous for T < TT

continuous for T � TTFi/F continuous
discontinuous for T < TT

the Fi/SQ transition for higher coordinations (z = 6). However,
all transitions with the high-temperature disordered P phase
are continuous, independently of the coordination z. The
picture found for higher coordinations (z = 6) is consistent
with previous results obtained in the MFA [12–14].

VI. CONCLUDING REMARKS

We present an exact solution of the spin-1 BEG model on a
Cayley tree, formulated in terms of a set of nonlinear discrete
recursion relations, whose attractors correspond to physically
acceptable solutions on the BL in the deep interior of the Cayley
tree [32,33]. The presence of overlapping regions, where
distinct attractors are numerically costable, represents a clear
indication of occurrence of discontinuous (first-order) phase
transitions. We then resort to Gujrati’s method [31] to write
analytical closed expressions of a bona fide Gibbs free-energy
density on the BL, both for the cases of the uniform (P and
F), as well as for the staggered (Fi and SQ) thermodynamic
phases. The thermodynamic consistency of the obtained free
energy can be checked by the recovery of the BPA equations of
state for the BL order parameters. By analyzing the numerical
stability of the map attractors and comparing their associated
Gibbs free energies, we are then able to locate the first-order
phase boundaries and draw global phase diagrams in terms of
the temperature T and crystal field D, for two different typical
lattice coordinations, z = 4 and z = 6.

We found that, for the ferromagnetic version (J > 0) with
the inclusion of crystal fields (D �= 0) in the regime of repulsive
biquadratic interactions (K/J = −3.5) and vanishing external
magnetic fields (H = 0), there is a change of the type of the
Fi/F and Fi/SQ transitions, depending on the coordination z of
the BL. The presence of a tricritical point is also coordination
dependent: for lower coordinations (z = 4), it occurs on the
Fi/F boundary, while for higher coordinations (z = 6), it takes
place on the Fi/SQ transition. It should be remarked that, in
two dimensions, even the existence of the narrow Fi phase
squeezed between the F and the SQ phases is not supported by
RG [12,24,25] and MCSs [25,29]. However, the existence of
a tricritical point along the F/SQ boundary is less clear in the
MCS for the square lattice, as can be seen in Fig. 5 of Ref. [25].

Although the high-coordination (z = 6) results are con-
sistent with previous MFA calculations [12–14], which can
be formally obtained for a BL in the infinite-coordination
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limit (z → ∞), it remains an open question whether they
are robust against dimensionality changes. RG calculations
[12,24,25] predict, for example, that the Fi phase is present
in three dimensions, but not in two dimensions. Because BL
calculations rely on a pair approximation, they cannot distin-
guish a three-dimensional cubic lattice from a two-dimensional
triangular lattice, since both share the same coordination z = 6.
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