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How cooperation can evolve between players is an unsolved problem of biology. Here we use Hamiltonian
dynamics of models of the Ising type to describe populations of cooperating and defecting players to show
that the equilibrium fraction of cooperators is given by the expectation value of a thermal observable akin to a
magnetization. We apply the formalism to the public goods game with three players and show that a phase transition
between cooperation and defection occurs that is equivalent to a transition in one-dimensional Ising crystals with
long-range interactions. We then investigate the effect of punishment on cooperation and find that punishment
plays the role of a magnetic field that leads to an “alignment” between players, thus encouraging cooperation. We
suggest that a thermal Hamiltonian picture of the evolution of cooperation can generate other insights about the
dynamics of evolving groups by mining the rich literature of critical dynamics in low-dimensional spin systems.
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I. INTRODUCTION

Cooperation is a particularly interesting phenomenon in the
context of evolution. Evolution acts on short-term benefits,
which makes cooperators vulnerable to exploitation in the form
of cheating or “defection” even if cooperation is a strategy with
higher payoffs in the long term, creating what is known as the
“dilemma of cooperation.” It is often stated that because of
the dilemma, the expected outcome of evolution should be
defection, rendering the plethora of examples for cooperators
in nature mysterious. However, there are a number of different
mechanisms that nevertheless enable cooperation [1-4] sug-
gesting that, contrary to the naive expectation, cooperation is
after all the natural outcome of evolution when mechanisms
enabling assortment (such as discrimination via communica-
tion) are available [5]. These results have been obtained using
mathematics as well as computational-simulation tools. The
mathematical results in particular provide insight into the evo-
lutionary dynamics that give rise to cooperation from inspect-
ing closed-form solutions, but such solutions are hard to come
by when populations are finite, are not well mixed, or are sub-
ject to significant mutation [5]. Recently, progress was made
in understanding the evolutionary dynamics of games played
on arbitrary grids [6], but closed-form solutions predicting the
“critical point” for the transition between cooperation and de-
fection still do not exist. Here, we use methods borrowed from
statistical physics that show the path to such general formulas.

Prior investigations of several standard evolutionary
games [7-12] revealed that the evolutionary process often
critically depends on a single parameter that causes an abrupt
change in the winning strategy. In some cases it is possible
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to move the parameter beyond the critical point without trig-
gering the transition—the hallmark of hysteresis [11]. These
results suggest that there is an underlying analogy between
evolutionary game dynamics and the statistical description of
phase transitions. Indeed, Szabé and Hauert [13,14] applied
mathematical methods that are used to describe critical phase
transitions like those found in the celebrated Ising model [15]
to evolutionary games on a lattice and showed (via numeri-
cal simulation, as well as the pair-approximation on square
lattices) that the prisoner’s dilemma (PD) game dynamics on
random regular lattices fall into the directed percolation class
of phase transitions.

Here we take a different approach, by explicitly constructing
Hamiltonians for game dynamics inspired by Ising-type mod-
els and studying games on finite regular lattices analytically
(albeit only in one dimension). It might at first appear odd
to consider thermal game theory, because temperature plays
no role in evolutionary dynamics. In physics, thermal effects
are due to fluctuations in energy, but payoffs in evolutionary
games can fluctuate as well, for a number of different reasons.
For example, a finite evolving population is subject to drift and
thus to a random element in the payoffs. Mutations that change
strategies can play a similar role. In evolutionary games, we can
summarize the effect of fluctuations by introducing a parameter
that controls the strength of selection in the game, using
the “strategy adoption” mode of selection (see Ref. [14] and
below). While the dynamics under this rule is not precisely the
same as the “strategy inheritance” mode of Darwinian selec-
tion, the differences (also discussed in Ref. [14]) are irrelevant
for our purposes. The relationship between game dynamics
and Ising-type models has been reviewed recently [12].

To introduce our method and notation, we first study the
prisoner’s dilemma Hamiltonian at finite temperature and
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recover well-known results. We then apply the method to the
public goods game without punishment, which turns out to be
equivalent to an Ising model with long-range interactions, but
without a magnetic field. We then add punishment to the public
goods game, leading to an Ising model with magnetic field (and
corresponding hysteresis effects) that we solve exactly.

II. PRISONER’S DILEMMA

The prisoner’s dilemma is a game played between two
individuals in which both players have to make a decision about
whether to cooperate or to defect. After both players have made
their choice—to cooperate (C) or to defect (D)—their actions
are revealed and players receive a payoff according to a payoftf
matrix (note that the values in the matrix correspond to the
payoff given to the “row” player)

cC D
C (R S
E="p <T P> M

The payoffs in that matrix define the type of game to be
played. To obtain a prisoner’s dilemma, we must have [2]
T > R > P > S.If the game is played repeatedly it becomes
the iterated prisoner’s dilemma (IPD), a variant not considered
here. Evolutionary game theory focuses on determining what
strategies are evolutionarily stable in a population of strategies.
In the simplest case, competition is between two unconditional
deterministic strategies: one that always cooperates and one
that always defects. A population starts out as a mix of
both strategies, and players interact with a defined number
of neighbors. Each player’s performance is evaluated by
accumulating all payoffs received in that round. To model
evolution, randomly picked players (called focal players) can
now either maintain their strategy or adopt the strategy of a
competitor. Over time this process will lead to the spread of
successful strategies and thus to evolution. This process of
probabilistic strategy adoption is similar to the dynamics of
strongly interacting spins described by Glauber [16]. In such
a model of ferromagnetism, adjacent particles interact so that
their spins will predominantly align (a spin adopting the state
of its neighbor), giving rise to an overall magnetization that
depends on the temperature of the system. In the following,
we explore this analogy more deeply.

We first derive the thermodynamics of the prisoner’s
dilemma with a payoff matrix where we set the reward R =
b — c (the benefit of cooperation minus the cost), while the
temptation payoff T = b (obtaining the benefit without bearing
the cost). At the same time, the so-called “sucker payoff”
S = —c due to paying the cost without any benefit, while
P =0 is the “punishment” for both players mistrusting each
other. In all of the following, we assume ¢ > 0 as well as
b — ¢ > 0, so that the net benefitr = b — ¢ > 0, ensuring that
a dilemma exists. Indeed, even though the benefit outweighs
the cost (r > 0), the Nash equilibrium and evolutionarily stable
strategy is known to be defection, not cooperation. The payoff
matrix in terms of these values then becomes

b—c —c
(50 )

To define a Hamiltonian (an operator that describes the
total energy for this system) we can transform the payoffs into
an energy by subtracting the payoff from its largest possible
value. However, because this only adds a global constant it
will cancel in observables, so to understand the population
dynamics in terms of thermodynamics we can keep the payoff
as is. A Hamiltonian is an operator that acts on a vector space
(Hilbert space). A basis for the Hilbert space is spanned by
the cooperative strategy C and the defecting strategy D by the
vectors

and

In analogy to Ising spin systems, the Hamiltonian for the
PD game can then be written in terms of the energy matrix E

and the projectors
1 0
m=mm=@ 0

m=mm=@ 9

and

as

1
H=Y" > EmPY® P, 2)
i=1 m,n=0
where the sum over i goes over all the sites in this one-
dimensional (1D) “spin chain.”

We proceed by calculating the thermal partition function of
the system by writing (8 = 1/T is the inverse of the temper-
ature, which the reader will not confuse with the temptation
payoff)

Z=Tre P =" (xle?"|x), (3)

where |x) = |mm, - --my) is a circular chain so that the Nth
site is adjacent to the first site. It is then easy to see that

7 — E : e BEmimy+Enymy+++Emym)

my--my

= Z Umlszmzmg"'

mp--my

=TrU"V, 4

Umle

where U;; = e PEii.

To determine the equilibrium population composition, we
define an order parameter given by the fraction of cooperators
minus the fraction of defectors. For spin chains this is equal to
the magnetization of the chain, defined using a spin operator
J, for which (0]J;]0) =1 and (1]J,|1) = —1. This can be
achieved, e.g., with (o, is a Pauli matrix)

J.=0,=Py— Py. &)
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FIG. 1. Order parameter (J;)p as a function of the net reward
r = b — c, for three different temperatures. As opposed to the game
in two dimensions [14], the phase transition occurs at r = 0.

We will understand this operator to act on the “row” player
(that is, the first spin of the pair). For a chain of length N,

N
J=Y " (ry = P"), (6)
so that
> x| Le P x) = NTe(U'UN (7)

X
due to the cyclic property of the trace. Here we introduced

the matrix U/, = (=D'U; . An explicit calculation shows that
(recall that r = b — ¢)

Z=TrUN = +e )N, 8)
while since U'U = (1 + e P)U and Tr U’ = —1 + ¢ #",
TrU'UN =0 +e PV (=14 eF), )

so that finally the thermal expectation value of the magnetiza-

tion is
1 .
Z 2 wlee )
X

—N tanh(Br/2). (10)

We show the magnetization per player [Eq. (10) divided by N]
as a function of the critical parameter » in Fig. 1 and see that, at
low temperatures (high 8), the population will consist mostly
of defectors (negative magnetization) because this is the Nash
equilibrium. We note that the parameter » plays the same role
as the interaction strength J in the standard Ising model. The
phase transition (vanishing magnetization) occurs atr = 0 (the
“boundary” of the parameter values), which is expected from
the general arguments of van Hove [17] and of Landau [ 18] that
forbid phase transitions in one-dimensional systems. Thus, we
do not observe cooperation in the one-dimensional Prisoner’s
dilemma, as is of course well known.

(Jz)p

III. PUBLIC GOODS GAME IN ONE DIMENSION

The PD game we just described turns out to be the two-
player version of the more general public goods (PG) game.
The PG game is a staple of evolutionary game theory as
well as experimental economics [19-21] and has been used

FIG. 2. One-dimensional string of players in a public goods game
that interact with two nearest neighbors. Because players interact with
more than one nearest neighbor, effectively next to nearest neighbors
interact.

to understand the Tragedy of the Commons [22], a social
dilemma that can lead to the overuse of public resources (for
example, overfishing) because of selfish behavior. In the PG
game, payoffs are defined for cooperators and defectors via

.
Me=gop®e+ D=1, (11)
M, = e (12)

P k1)

where I1¢ is the payoff for a cooperator (ITp for a defector).
N¢ is the number of cooperators in the neighborhood (not
counting the focal player, so it is the number of cooperators in
the player’s periphery), and r is the reward multiplier (synergy
factor). These are the rules for a game with k + 1 players in a
group. In the following, we treat the game in one dimension
(sok =2).
The rules (11) and (12) imply a payoff matrix

C D

cfr—1 %r—l
I[lc = 13
c D(gr_l [ (13)

for cooperators, where the matrix elements indicate the states
of spins in the periphery of the focal player. For example, r — 1
is the payoff for a cooperator surrounded by two coopera-
tors. The payoff matrix for defectors is simply I1p = Il¢c —
(3r—1).

We now construct a Hamiltonian to solve this evolutionary
model exactly in two cases: one where the dynamics maximize
the mean payoff of the population, and one in which the
payoff of an individual is maximized. Naturally, we expect
a correspondence with the evolutionary scenario only in the
latter case. In this one-dimensional game, the population is
arranged linearly so that each player forms a group with its left
and right neighbor (k = 2); see Fig. 2.

As mentioned earlier, we can create matrices for energies
that should be minimized (rather than payoffs that need to
be maximized) by subtracting the payoffs from the maximal
payoff (here, r — 1), leading to a ground state that has zero
energy. Strictly speaking, the Hamiltonian for this system
should be written as an interaction of three spins, but we
will often write it in terms of a two-spin interaction matrix
conditional on the state of the focal spin. For example, we can

write
0 r
<) _
o
gr

1
r), E<D>=§r—1+E<C>. (14)

WM W|—
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We write a Hamiltonian for cooperators using these energies
and the projectors previously defined:

N 1
HY =3 3" EQ P ® P, (15)

i=0 m,n=0

and similarly for Hg). The total Hamiltonian is (recall that
Py projects onto a cooperator, so that Py|0) = |0) while
Poll) =0)

N
H=Y H'PY +HYP". (16)
i=1
Using the spin operator (6) and the methods outlined earlier,
we obtain after a somewhat tedious calculation

(J)p = %Tr(]ze_ﬁH) = N tanh g(r -1, (17)

suggesting a phase transition at r = 1, in contradiction with
the standard result [11] that suggests a transition at r = 3 (see
below). The reason for this discrepancy is not difficult to find:
Hamiltonian dynamics minimize the energy of the entire spin
chain, which is equivalent to maximizing population fitness
as a whole. Darwinian evolution, however, does not optimize
population fitness, but rather maximizes the fitness of a single
individual within a population.

We can implement the latter dynamic by dropping the sum
over sites in Eq. (15) and consider only the contribution to the
energy from a single spin with its two neighbors. In that case
(we take the middle site to be the focal site whose energy is
minimized)

Z= )" (mimymsle”?"|mimoms)
mymoms
=" Uy + Vinimy), (18)
mpms

where U is the “cooperative” matrix U = e #H while the
defector matrix V = e A1 = ¢P/3-D[J because defector en-
ergies differ by /3 — 1 from cooperator energies; see Eq. (14).
Then,

Z= Z Um1m3(1 + e_ﬂ(r/?a—l))

= (14 e P52(1 4 PGD), (19)

Using the spin operator defined in Eq. (5) we obtain (again for
a single focal player in the middle position)

—BH,
D mimams|Jee P imymoms)

mymams

=(Po—P) Y (PoUnym; + Pt Vi)

myms
= (1 — e PP DY (1 4 e7F5), (20)
which allows us to calculate the order parameter as
1 1
(J)p = ETr (e Py = tanh§<§r - 1). (21)

This function is plotted in Fig. 3 and suggests that a phase
transition with an interior critical point is possible in this game

FIG. 3. Exact solution for the order parameter (J;)z as a func-
tion of synergy parameter r for three different temperatures, from
Hamiltonian dynamics.

even though the game is one dimensional, seemingly violating
van Hove’s theorem [17]. However, the theorem forbidding
internal critical points in one dimension only holds for short-
range interactions, while the interaction between three players
studied here is not of that kind.

To test the accuracy of our theoretical result, we now
simulate the public goods game using agent-based meth-
ods [5,11,23]. In the agent-based simulations we use a popu-
lation of 1024 players that either cooperate or defect, arranged
in a one-dimensional chain just as in Fig. 2. Which of the
two moves an agent chooses is determined by a genome (here
a single locus) that evolves. At every update, players have a
chance to change their strategy by probabilistically adopting
the strategy of a competitor (Glauber dynamics; see, e.g.,
Refs. [7,14]) using the rule (here x is the focal player while y
is an alternative strategy)

plx < y)= (22)

1+ e*ﬂ(wh‘*w)‘) ’
where B is related to the strength of selection and w is the fitness
of each player defined by the payoff the player receives. In the
case of rejection (i.e., nonadoption) the focal player retains its
strategy.

We define an order-parameter-like function that indicates
to what extent the population is in a cooperative or a defective
regime. This parameter depends on the fraction of players in the
population cooperating (P¢) and the fraction defecting (Pp)
and is defined as

_ Pc—Pp
~ Pc+Pp

The agent-based simulations confirm that the fate of an
evolving population depends critically on the synergy factor
r (see Fig. 4), and changes from negative (defection) to
positive (cooperation) at ¥ = 3, in accordance with the critical
r. = k 4 1 for strategies to evolve cooperative behavior in the
public goods game [11]. In particular, the simulations confirm
the theoretical results with high accuracy.

(23)

IV. PUBLIC GOODS GAME WITH PUNISHMENT

Cooperation evolves in the PG game if the synergy r is
at least as large as the group’s size k + 1. However, it is
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FIG. 4. Fraction of cooperators for a chain of length 2'°, as a
function of the synergy parameter r for three different selection
strengths defined by 8 = 1/T. Each data point (each r, increments of
Ar = 0.1) is the average over 100 replicate agent-based simulations
using strategy adoption for2 x 10° updates. Barely visible gray bands
represent standard error.

unlikely that in nature cooperation would ever create such a
high synergy factor, implying that cooperation cannot evolve
in this type of game. It has previously been suggested that
punishment is one way to promote cooperation [23-29]. By
introducing punishment, players can now not only choose be-
tween cooperation and defection, but can do this in conjunction
with deciding whether to punish cheaters. This introduces two
more strategies: a “moralist” M who cooperates and punishes,
and an “immoralist I’ who defects but also punishes [23]. For
every player punished for defecting, each punishing player
must pay a cost y, and every player that is punished in such a
way suffers a fine €, thus extending the rules (11) and (12) to
(here, we show the special 1D case k = 2, for the general case
see, for example, Ref. [11])

Me = g(Nc +Ny+1D—1, (24)
0, = r(NC;i‘NM)_E<NM;‘NI>’ 25)
My =T¢ — V(M) (26)
M =Ty - V(M) @7)

where N; is the number of players in the immediate neigh-
borhood of the focal player with strategy i, € parametrizes the
effect of punishment, while y stands for the cost of punishment
(see Refs. [11,23]).

We now study this model thermodynamically, but in order to
compare with the evolutionary dynamics we study the regime
where the energy of a single site is minimized. To account
for the additional strategies (beyond cooperator and defector),
we extend the Hilbert space by allowing for a site-dependent
magnetization [i) — [i)|j), so that each strategy is defined by
a product of spin vectors. If we define punishment as |0) and

nonpunishment as | 1), we can write the states of the punishing
and nonpunishing cooperator as

M = [0)[0) = (é) ® (g) _
c=om=(s)e(7)-

The payoffs (24)—(27) can be written in terms of a Hamiltonian
for each of the four strategies as

H = PyHy + PyyHc + PioHp + P11 Hy, (30)

; (28)

(29)

SO~ O oo~

with projectors P;; on the respective states (with le =0 Pij =
1). Each Hamiltonian H; (k = C, D, M, I) is written in terms
of an energy matrix F® just as in Eq. (15),

C D M 1
cpO £ 0 ¢
©_Pl5 i 5 5 E€ E©
Fo=umlo ¢ o ¢ [T g0 po) GV
3 3
r 2 r 2
I\s 5 5 35
Similarly,
©) ©) 4 ¢
o _ T E EY 4+ =
E© E©C 4 v
F(M) =< 2 , 33
EO4+% EO4y (33)

© © 4 vie
o T E E© 4
d _§_l+(E<C)+V2i EOyyie) O9

We can now calculate the partition function
Z=Ti(e")=Zc+Zp+Zu+Z (35)
on account of the decomposition (30), where
Ze =Tr(e Py = 4(1 + e #5), (36)

or four times the contribution from each E©, Similarly,
Zp = 67’5(%”1)(1 +e7ﬂ%)2(1 +eiﬂ%)2, (37)
Zy = 4(1+ e PGHD), (38)

Zi = e PG (1 4 e PGV (1 4 e7F5) (39)
Finally, we obtain the order parameter that measures the degree
of cooperation (the fraction of C and M players minus the
fraction of D and I players), which turns into the surprisingly
simple expression (see Fig. 5)

_ 1 — cosh? (,Bi)e’ﬂ(%+§’l)
1+ cosh? (B€)e#(5+35-1)

2 (40)
Note that the order parameter only depends on the effect of
punishment € but not the cost y and reduces to expression (21)
in the limit ¢ — O.
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FIG. 5. Exact results for the order parameter (J)z for the public
goods game with punishment, as a function of synergy parameter r for
three different punishment fines €, at a constant temperature (8 = 5).

To check the theory, we can extend the agent-based model
described above by including the two new strategies I and M.
As before, we use 1024 players in a population that is arranged
linearly (see Methods), and games are played in groups of
three. Again, when we evolve this population using strategy
adoption, we see the dependence of the critical point on the
synergy factor r and the selection strength 8 = 1/T. Since the
game now includes two more strategies, we have to modify
the function M that describes the fraction of cooperators in the
game to contain all four strategies as the fraction of contributing
(cooperating) strategies:

_ (Pc+ Pw)—(Pp+ P)
Pc+Po+Put+P

Evolving these populations using different fines € and costs
y, we find that the critical point now only depends on €
(see Fig. 6), and moves the critical point in such a manner
that the punishment fine reduces the critical synergy for
cooperation [11]. It turns out that the closed-form solution
Eq. (40) reproduces the agent-based simulations shown in
Fig. 6 to a remarkable extent, confirming the unintuitive
finding that the critical point only depends on the effect, but
not on the cost, of punishment. The Hamiltonian model also

(41)

FIG. 6. Fraction of cooperators M for a chain of length 2'° as
a function of the synergy parameter r for three different fines € (at
fixed 8 = 5). Each data point (increments of §r = 0.1) is the average
over 100 replicates running the agent-based simulation with Glauber
dynamics for 2 x 10° updates.

clarifies that punishment indeed acts like a magnetic field
that encourages alignment of spins, thus explaining why, in
agent-based simulations, punishment induces hysteresis as a
population is subjected to an adiabatically varying r [11].
Further work using the Hamiltonian model of cooperation
with punishment may elucidate other aspects of the critical
dynamics, in particular for games in higher dimensions, with
more players per group, or even on irregular lattices.

V. DISCUSSION

Evolutionary game theory is a mathematical framework
that has been eminently successful at unraveling the numerous
elements that impact decisions, and to work out the conse-
quences of decisions. While both mathematics and computa-
tional simulations have influenced this field (see, for example,
the review [5], along with commentaries), the relationship
between game theory and physics has been explored less. We
know that in realistic scenarios, decisions must be made under
uncertainty; either due to unpredictable environments, or due
to inherent noise. For evolutionary dynamics in particular,
noise is unavoidable. After all, high reproductive potential
does not guarantee survival, but only biases future outcomes.
A standard result of population genetics, for example, predicts
that a gene that confers a ten percent advantage in reproductive
rate only has a twenty percent chance of being represented
in future generations. The branch of science best equipped
to tackle the impact of chance on dynamics is physics, with
a well-developed corpus of results in statistical mechanics
and thermodynamics. A growing literature has found success
in mining these well-established methods, from harnessing
the Fokker—Planck equation to describe the effect of chance
due to drift in small populations [30] to using tools from
statistical mechanics to study the universality class of phase
transitions in the spatial prisoner’s dilemma [14]. Here, we
tapped a different set of well-established tools from statistical
physics; namely, the thermodynamics of spin systems. The
analogy between the critical dynamics of spin systems and
game theory is not difficult to see. After all, the correspondence
between Eigen and Schuster’s model for the evolution of
macromolecules [31] and two-dimensional (2D) Ising models
was pointed out over thirty years ago [32] (see also section
11.4 in Ref. [33]) but we have not, as yet, seen a concerted
effort to marshal the considerable machinery developed to
tackle low-dimensional condensed-matter structures to aid in
understanding evolutionary game theory.

It may seem odd, at first sight, that a thermodynamic
approach to game theory is possible at all, given that ther-
modynamics relies on the assumption that the system tends
towards equilibrium, whereas in many game-theoretic situa-
tions (in particular, those that are of the rock-paper-scissors
type) the system appears to be maintained out of equilibrium.
Fortunately, it is possible to show that even in systems out
of equilibrium, detailed balance can be assured as long as
microscopic reversibility is guaranteed [34,35]. While this
result depends on the nature of the boundary condition (it
holds under “normal” boundary conditions; that is, boundary
conditions in which the probability distribution vanishes at the
boundary), there are strong reasons to believe that at least in the
limit of large systems and low mutation rates, detailed balance
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can always be achieved for these games. Investigating this issue
more deeply is left for forthcoming work.

The Hamiltonian approach we described here leads to
important new insights about the dynamics of evolving pop-
ulations at fixed strength of selection (and thus, to some
extent, fixed temperature). First, we have shown that the
standard statistical approach in which the energy of the entire
ensemble is minimized does not correspond to the evolutionary
scenario, giving rise instead to a transition at r = 1. That
result would imply that a dilemma is absent, and indeed this
is precisely what we would expect if groups of organisms,
rather than individuals, are selected. Second, the treatment
of the public goods game with punishment revealed that
punishment plays the role that a local magnetic field plays
when interacting with a system that can display spontaneous
magnetization. An extensive literature in the area of spin-
glasses of the Sherrington—Kirkpatrick type [36] suggests that
local magnetic fields can give rise to spontaneous symmetry
breaking, and that their mean-field solutions are similar to
those of local spins interacting with a global magnetics field.
These insights immediately suggest looking for effects such
as hysteresis (as seen, for example, in Ref. [11]), but also
interactions between hysteresis and impurities, for example.
Indeed, it is not unreasonable to imagine that including a third
player strategy such as “abstaining” [37-39] can be viewed
as impurities that can dramatically alter the critical dynamics
we observe, for example by “pinning” the interfaces between
domains [40]. While the dynamics that includes abstaining
may give rise to intransitive dominance dynamics [41] (such
as the rock-paper-scissors game), the arguments given above
that out-of-equilibrium dynamics still gives rise to stationary
equilibrium distributions as long as microscopic reversibility
holds, suggest that such games can also be solved using
Hamiltonian dynamics.

We should caution, however, that extending the present
results to games in higher dimensions will be difficult. For
example, while the Ising model can be solved in two dimen-
sions, there is no solution for the model in two dimensions with
a magnetic field, as it is related to the three-dimensional model
for which a closed-form solution does not exist. Nevertheless,
we expect that the tools developed here will be useful because if

the analogy between evolutionary game dynamics and phase
transitions in spin systems is established, other results from
the rich literature of critical phenomena in spin systems may
inform us about the dynamics of cooperation in groups. In
particular, an extension of the calculation shown here to two
dimensions may produce an exact solution along the lines
of Onsager’s, which would allow us to move beyond pair-
approximations for games on a 2D regular lattice. We hope that
the simple results derived here (validated via computational
simulation) can serve as a seed for the future development of
this field.

METHODS

The computational evolutionary model instantiates a pop-
ulation of 1024 random agents in a circular configuration.
At each update a single agent is randomly selected and its
payoff computed by playing the strategy against its left and
right neighbors. At the same time, the payoff of a strategy
to potentially replace the agent is computed. In the case of a
two-player game (C and D) the only other alternative strategy is
used, in the case of four players (C, D, M, and I) one alternative
strategy is chosen at random. Instead of the evolutionary
updating of the population described in Refs. [5,11], here the
likelihood to replace the strategy of the selected agent with
the alternative is given by Eq. (22). In each replicate run, we
updated strategies 2 million times (roughly 2000 updates per
site), then calculated the order parameter.

The code as well as the analysis scripts to create all figures
can be found in Ref. [43].
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