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Hierarchical block model for earthquakes
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The presented model for earthquakes is based on two fundamental principles: the hierarchical structure of
seismic areas and the concept of self-organized criticality. The model reproduces the basic empirical properties
of seismic processes: the frequency-energy scaling relation (the Gutenberg-Richter law), the generalized Omori
law for temporal decay of aftershocks, the aftershock productivity law, the fractal distributions of hypocenters
(epicenters) with power-law dependencies of the number of events on distances between hypocenters (epicenters),
and, finally, the γ distribution for waiting times. In the model, the threshold energies depend on the block sizes
and are distributed according to the Gauss law. After strong earthquakes they are redistributed at the decreasing
average values. The change of threshold energies leads to the triggering of aftershock series.
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Earth’s lithosphere is a substantially inhomogeneous
medium possessing hierarchical structure [1,2]. It consists
of tectonic blocks separated by a network of faults and
forming a multilevel system of volumes (blocks). This hier-
archy covers scales from thousands of kilometers (tectonic
plates) to millimeters (granules in rocks) and is most brightly
manifested at the tectonic plate boundaries [2–4]. The kinetic
energy of moving tectonic plates is supplied continuously
to boundary areas and is redistributed among the hierarchy.
Part of this energy is dissipated and another part is trans-
formed into elastic energy, which is released eventually as
earthquakes. A number of empirical regularities have been
established for seismic processes, which are characterized by
large-scale invariance: the Gutenberg-Richter (GR) law, which
relates the number of earthquakes to their magnitudes [5],
the Omori law, which describes the attenuation of aftershocks
[6–10], the Utsu aftershock productivity law expressing the
total number of aftershocks generated by a mainshock [8,9],
and the fractal distributions of hypocenters and power-law
distributions for epicenters indicating a fractal distribution of
earthquakes in space [11–15]. Earthquakes also demonstrate
a long-range space-time correlation and clustering [16–24].
The crackling noise generated by porous materials, woods,
charcoal samples, volcanic rocks, magnetics, etc. has the same
properties [25–29].

Hierarchical structuring, the exchange of energy with the
external environment, and the lack of scale in seismic processes
lead to the need to consider the seismic zone as an open
complex hierarchical system, and the large-scale invariance
of seismic processes indicates that the system is in the critical
state. Bak et al. [30,31] simulated the behavior of a pile of sand
as a system in critical condition that makes self-adjustments to
remain permanently in that state. They called this state of the
system self-organized criticality (SOC). The SOC concept for
earthquake modeling was carried out by a number of authors
[32–36]. Most of these models are based on the spring-block
model by Burridge and Knopoff [37]. Rundle, Jackson, and
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Brown (RJB) [38,39] modified this model into a cellular
automation model that was then transformed into a lattice
form by Olami, Feder, and Cristensen (OFC) [34]. The rest of
the SOC models were originally built on the basis of cellular
automata [32,40–42].

Traditional SOC models have been modified and refined
to describe better both GR scaling and the spatiotemporal
correlations of earthquakes that are expressed in the existence
of foreshocks and aftershocks, as well as in their fractal distri-
bution. Ito and Matsuzaki [33] modified the cellular automation
model with a simple procedure of redistributing forces after
each earthquake. This led to the fact that any earthquake could
trigger aftershocks. The more complex mechanism for the
distribution of tectonic stresses on a fault leading to long-range
correlations has been offered in the Baiesi model [43]. In
some RJB and OFC models spatiotemporal correlations in
the seismic process are achieved by introducing the corre-
sponding inhomogeneities. The simplest heterogeneities have
been introduced as point or line defects [44–46]. Serino et al.
[47] complicated the model, considering the fault system with
different levels of defects instead of a single fault system,
and Dominguez et al. [48] added damaged cells that do
not hold stress but dissipate energy. Kazemian et al. [49]
introduced stronger sites or asperity cells to the lattice. These
structured asperities reproduce the clustering of foreshocks
and aftershocks well. In the fault system models [47,49],
long-range stress transfer from critical sites, where the critical
force is exceeded, is used. Another kind of heterogeneity,
used in the advanced RJB and OFC models, is the random
distribution of stress thresholds controlling block stability
[50,51]. In order to reproduce the processes of spatiotemporal
earthquake clustering, Jagla [51] included the mechanism of
structural relaxation in the OFC model.

All the cells in standard cellular automation models have
the same size and all the blocks in the spring-block models are
similar as well. Barriere and Turcotte [40,41] and Huang [42]
et al. learned the cellular automation SOC model defined on
a hierarchically constructed grid with a fractal distribution of
cell sizes. However, in these models, the partition of the grid
into cells is regular.
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FIG. 1. The seismic area � as a hierarchical block system.

The model proposed in this paper takes into account the
hierarchical structure of the seismic zone and the fact that
it is in a state of self-organized criticality. The seismic area
� in the form of a cube is formed by a hierarchical system
of cubic blocks arranged in a random order (Fig. 1). It does
not solve a specific boundary problem, but the possibility of
modeling a natural seismic process using the hierarchical block
model is studied. Energy enters the system from outside and
accumulates unevenly in the blocks. When the energy of the
block reaches the threshold value, it is released and transmitted
to its closest neighbors. The released energy dissipates and
radiates into the environment. If the neighboring block receives
enough energy to exceed the threshold value, it also releases
energy and this process takes the form of an avalanche, which,
in fact, is a seismic event. The use of energy as a variable has
an advantage since it is a scalar quantity. This makes it easy to
apply a cellular automation scheme that formalizes the process
of redistributing energy between blocks. In addition, energy is
the main characteristic of most laws that describe a seismic
process.

The hierarchical system is formed by blocks of five sizes
(levels) with side sizes li , where li are integers. The smallest
blocks have size l1 = 1, and the size of the blocks of the
next level is twice as large. The number of blocks of each
level is chosen in such a way that the fractal dimension of
the block medium is D = 2.5. Such a value of D is inherent
in the distribution of fragments of most natural structured
materials, that is, Ni(>li) = Cil

−D
i , where Ni is the number

of blocks of size greater than li [15]. In analogy with the
classical cellular automation models [32,52], each block is
in two states: in a state of rest (stable element) and in a
disturbed state (unstable element). The block is considered
to be stable if the energy accumulated by it is less than the
threshold energy Eth

i . Otherwise, if the energy of the block
reaches or exceeds the threshold value, Ei � Eth

i , then it loses
its stability and reduces its energy. Unlike classic cellular

automation models, the block loses only part of the stored
energy during the unloading process, Ei → Er

i = Eth
i θ , where

the residual energy Er
i is determined by the parameter θ . Since

part of the energy dissipates and radiates in the form of seismic
waves, the energy (Ei − Eth

i θ )(1 − γψ) is transferred to the
neighboring blocks. Here ψ ∈ [0,1] is a random number and
γ is the coefficient determining the amount of dissipated and
radiated energy. This energy is distributed between the adjacent
blocks in proportion to the contact area,

Ek −→ Ek + λikE
th
i

S2
i

(
Ei − Eth

i θ
)
(1 − γψ), (1)

where λik is the area of contact between the ith and kth blocks
and Si = 6l2

i . The threshold energy Eth
i depends on block size,

namely, its surface area Eth
i = Si(1 + δi). Here the symbol δi

stands for the small noise obeying the Gaussian distribution
with zero mean value and variance dδ . Energy is injected into
the block system discretely in portions �E = 1 in one step at
a time, just as in cellular automation models [32,40,41]. The
probability of energy transfer is proportional to the surface area
of the block. During the preparation and implementation of an
earthquake, the fast and slow processes should be distinguished
depending on speed: the former is associated with the energy
transfer from tectonic plates into a seismic zone, and the latter
is connected with an earthquake directly. Therefore, energy is
transferred into the system during the slow process of elastic
energy accumulation only, when earthquakes are absent.

To avoid the influence of boundary effects, all surfaces of
area � are subjected to periodical conditions. In this case, the
energy output is solely due to dissipation and seismic radiation.
The simulation of the seismic process is carried out in the block
system containing n5 = 50 largest blocks and the total number
nt = 62 182 providing the fractal dimension D = 2.5. At the
beginning of the simulation, all blocks have a certain randomly
distributed energy such that it does not exceed the threshold
value in any block. After that the system shortly reaches a
steady but nonequilibrium state with small fluctuations of total
energy Et , as it is shown in the inset of Fig. 2. Here, the
temporal variation of total energy at four different values of
coefficient θ , which regulates the residual energy Er

i , is shown.
It is evident that the system with the highest residual energy
has the highest total energy.

Figure 2(a) shows the cumulative complementary distri-
bution of earthquake radiated energy Ee for four values of
coefficient θ . The straight line corresponds to the value of
slope β = 1.07 ± 0.02 for all values of residual energy; that
is, the model reproduces accurately the GR law in the energy
representation N (>E) ∝ E−β , in which the exponent varies
in the range 0.80–1.05 [34]. The deviation from the power-law
dependence caused by the limiting of block sizes occurs for
large earthquakes. This is confirmed by the fact that the
decreasing number of blocks leads to a greater bending of
distribution functions [Fig. 2(a)]. Figure 2(b) shows the values
of exponent β versus a lower energy cutoff E∗

e . In the graph
it is easy to recognize the plateau, where β is almost constant
and equals 1.17. From this it follows that the model supports
the overvalued exponent β.

Seismic activity for different values of residual energy
before and after major earthquakes indicates that there are no
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FIG. 2. The Gutenberg-Richter law. (a) The cumulative comple-
mentary distribution of events for different residual energies and
different numbers of blocks. The slope of the linear fit to all four
dependencies is 1.07. Inset: Time dependence of total system energy
Et for different θ . (b) The dependence of exponent β on a lower energy
cutoff E∗

e ; the error bars are 95% bootstrap confidence intervals.

series of aftershocks, although there are foreshocks [Fig. 3(a)].
Therefore, to describe the realistic seismic process possessing
the aftershocks, this model should be improved. It is useful
to utilize the conjecture that a large earthquake causes the
significant destruction of rock massif and the redistribution of
stresses in the excited area [9]. The destruction of rock results
in the reduction of critical values of stresses (elastic energy)

FIG. 3. The average earthquake occurrence versus that relative to
mainshock occurrence times. (a) The model without improvement.
(b) The power fit of aftershocks in the advanced model; error bars are
95% bootstrap confidence intervals.

that determine the conditions for the loss of equilibrium leading
to the generation of aftershocks. In this model, the reduction
of critical energy is described by the following procedure. In
the area where an earthquake happened, at each time step each
block randomly reduces the threshold

Eth
i → μEth

i (1 + εi), (2)

where μ < 1 is a constant, and εi denotes small noise with
Gaussian distribution with zero mean value and the variation
dε . The decreasing of Eth

i is applied until the threshold energy
value reaches the residual energy Er

i = θSi(1 + δi). After a
significant interval of time, the regeneration (“rehabilitation”)
of destroyed connections occurs. This process also happens
randomly when the condition χi � ε is fulfilled, where χi is a
random variable generated for the ith block at every time step
after a large earthquake, and ε is a small number providing
the long time of rehabilitation. When the change of energy
thresholds in the area covered by an earthquake takes place,
then several aftershocks may be triggered simultaneously and
all of them are taken into account for the construction of
statistical dependencies.

The improved model demonstrates both foreshocks and af-
tershocks (Fig. 3). As in the previous model, large earthquakes
are the earthquakes with energy exceeding the value E∗ =
1000 and the total number of large earthquakes is N = 843.
These data are obtained at fixed parameters μ = 0.6, dδ = 0.1,
dε = 0.1, and ε = 0.01 and for four values of θ . The temporal
attenuation of aftershock numbers of n in situ is known to obey
the generalized Omori law

n(t) = k/(t + c)p, (3)

where the exponent p varies from 1.0 to 1.8, and c is a
small quantity [8]. According to executed simulations, the
temporal dependence of aftershocks is fitted by the curve
with the coefficients k = 1489, c = 0.03, and p = 1.50 ± 0.04
[Fig. 3(b)].

The parameter μ associated with a threshold reduction after
a large earthquake (2) affects weakly the cumulative comple-
mentary distribution of earthquakes [Fig. 4(a)]. However, from
Fig. 4(b) it follows that the influence of μ on n(t) is significant.
For values μ � 0.75 this dependence breaks to be power. To
study the relation between μ and p, Fig. 5 is plotted. Note that
for μ < 0.75 the constant p increases slightly from 1.17 to
1.56 with increasing μ.

The simulations confirm that the influence of noises δi and
εi on n(t) is not significant (Fig. 6). The exponent p does
not practically change at different values of variances dδ and
dε . Similarly, the noises almost do not affect the exponent β.
Reducing the critical energy to the value E∗ = 100, the excess
of which reduces the thresholds of Eth

i , practically does not
affect either the exponent β or the exponent p.

Concerning aftershocks in a seismic process, there is an-
other scaling law called the productivity law proposed by Utsu
[8,9]. It describes the dependence of the total number Na of
aftershocks generated by an earthquake on its magnitude mms,

Na = N0 exp[α(mms − m0)], (4)
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FIG. 4. (a) The cumulative complementary distribution of events
and (b) the average number of aftershocks versus that relative to
mainshock occurrence times for different μ.

where m0 is the minimum magnitude cutoff and α is a constant.
The transition from magnitude to energy gives

log10 Na = K log10 Ems + C, K,C = const. (5)

As follows from Fig. 7 obtained at μ = 0.6, dδ = 0.1,
and dε = 0.1, this dependence is almost linear in logarithmic
coordinates with K = 0.41 ± 0.03.

Another law regarding aftershocks, Båth’s law, predicts
that the difference in magnitude between a mainshock with
magnitude mms and its largest detected aftershock with

FIG. 5. Omori’s law. The dependence of exponent p on the
parameter μ with the error bars of 95% bootstrap confidence intervals.

FIG. 6. The average aftershock occurrence versus that relative to
mainshock occurrence times at different variances (a) dδ and (b) dε .
The error bars are 95% bootstrap confidence intervals.

magnitude mmax
as ,

�m = mms − mmax
as , (6)

FIG. 7. The productivity law. Total number of aftershocks Na

versus energy Ems of the main earthquake. The error bars are 95%
bootstrap confidence intervals.
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FIG. 8. Båth’s law. The average value of the relative difference
〈�m〉 in magnitude between the mainshock and its largest aftershock
as a function of the mainshock energy Ems. The error bars are 95%
bootstrap confidence intervals.

is close to 1.2, regardless of the mainshock magnitude [53,54].
In the energy representation this relation looks like

�m = 1/A
(

log10 Ems − log10 Emax
as

)
, (7)

where A = 1.5. Figure 8 shows the dependence of the average
value of the relative difference 〈�m〉 on the main shock energy
Ems. The relative difference 〈�m〉 is close to a constant value
and is slightly larger than the experimental one.

The hypocenters and epicenters of earthquakes form the
fractal sets with the dimensions dh

f and de
f in space and on

the surface, respectively. According to numerous studies, the
fractal dimension of earthquake epicenters varies from 1.0 to
1.8 [55,56], and the hypocentral dimension depends on the
depth of earthquakes and falls from 2.2 for surface earthquakes
to 1.5–1.6 for deep earthquakes [57,58]. In this model, the
hypocenters were defined as the mean value for the positions
of the centers of all cubes that were involved in the earthquake
formation. The epicenters were defined in correspondence with
their projections on the upper plane of the cube �. Figure 9
shows the spatial distribution of earthquake hypocenters, from

FIG. 9. The spatial distribution of hypocenters.

1 1010-5

10-4

10-3

10-2

10-1

C
(r
)

r

FIG. 10. Correlation integrals as the functions of the distances
between hypocenters and epicenters in log-log coordinates and
corresponding power-law fits.

which it is evident that the hypocenters are disposed irregularly
and form clusters. The fractal dimensions dh

f and de
f of the

distribution are evaluated using the correlation integral method
[59]. The correlation integral is defined as

C(r) = lim
N→∞

1

N2

∑

i,j

H (r− | ri − rj |), (8)

where r is a distance, ri and rj are locations of hypocenters
(epicenters) of the earthquakes i and j , and H is the Heaviside
function. For fractal sets, the correlation integral C(r) ∝ rυ ,
where the correlation exponent υ (known also as a two-point
correlation dimension) is very close to the fractal dimension
df . As a rule, to avoid the dependence C(r) on N , the number of
events, N , is chosen as large as possible. Here N = 1 176 295
and the resulting correlation integral dependencies on the
distance for hypocenters and epicenters in double logarithmic
coordinates are shown in Fig. 10. The calculated two-point
correlation dimension for epicenters υe = 1.8 falls into the
interval of experimentally observed values. For hypocenters,
υh = 2.8 and slightly exceeds the fractal dimensions obtained
for real earthquakes. This is due to the fact that in the model the
area has the shape of a cube, whereas under natural conditions
seismic zones are elongated along faults.

There is another approach for describing the temporal,
spatial, and power properties of seismic processes developed
by Bak et al. [56] and Corral [20–22], which uses the time
between earthquakes with equal or greater magnitude, called
waiting time or recurrence time. This approach is based on the
existence of unified self-similar distribution for the waiting
time τ : P (τ ) = Rf (Rτ ), where f (x) is a scaling function and
R is the rate of seismic activity. The function f (x) is usually
adjacent to the γ distribution:

f (x) ∝ xγ−1 exp(−x/λ) (9)

with fitting parameters γ and λ. Figure 11 shows the distribu-
tion of waiting times after rescaling with the rate of seismic
activity, R. The fitting function is the γ distribution (9) with
the parameters γ = 0.91 ± 0.02 and λ = 1.12 ± 0.04. These
parameters are less than those reported for earthquakes, γ =
0.67 ± 0.05 and λ = 1.58 ± 0.15 [21]. In this model the slow
processes of accumulation and the rapid processes of energy
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FIG. 11. The waiting time distribution rescaled by the rate of
seismic activity, R. The solid fitting curve is the γ distribution (9)
adjusted to the waiting time distribution via the least squares method.

relaxation proceed on the same temporal scale. In nature, unlike
the model, the accumulation of elastic energy lasts for years or
decades, and the release takes minutes. The simulation showed
that increasing the duration of accumulated energy, that is,
reducing the probability of bringing energy into the system,
leads to an increase in the parameters γ and λ.

In summary, the developed hierarchical model incorpo-
rating the ideas of self-organized criticality and hierarchical
structures reproduces the basic rules of seismic processes: the
GR law with the exponent β = 1.07 ± 0.02, Omori’s law for
aftershocks with the attenuation exponent p = 1.50 ± 0.04,
the availability of foreshocks, and the fractal properties of
the spatial distribution of earthquakes with fractal dimensions

dh
f 	 2.8 and de

f 	 1.8 hypocenters and epicenters, respec-
tively. This model gives a slightly large value of difference in
magnitudes between a mainshock and the largest aftershock
in comparison with real seismic processes. The waiting time
distribution is well consistent with the γ distribution, but
constants are smaller than real ones due to the fact that the
model does not have a difference between temporal scales of
accumulation and emission stages.

The simulation showed that all parameters in the model
can be divided into two groups: parameters that significantly
affect the behavior of the system and the parameters that have
a weak effect on its behavior. The first group includes the
parameters θ , γ , and μ and the second one includes dδ , dε ,
and ε. Consequently, this model contains only three crucial
parameters.

The advantage of this model is that there is no need to
introduce auxiliary inhomogeneity to obtain a spatial fractal
distribution of earthquakes, as has been made in the models
mentioned above. The model takes into account already the
natural hierarchical structure of a seismic area. Moreover, the
description of the behavior of a seismic area after a strong
earthquake is physically based. It should be also noted that
several items remain beyond the discussion. This concerns
the fact that the natural medium is a hierarchical system of
embedded blocks rather than a system of randomly located
blocks. In addition, the anisotropy of the seismic zone due
to existing faults and morphological heterogeneity is not taken
into account. In spite of these simplified conjectures, the model
reproduces the main properties of seismic processes quite
correctly.

This research is supported by the National Academy of
Sciences of Ukraine, Grant No. 0113U000006.
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