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Hysteresis in the Ising model with Glauber dynamics
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We use Glauber dynamics to study time and temperature dependence of hysteresis in the pure (without quenched
disorder) Ising model on cubic, square, honeycomb lattices as well as random graphs. Results are discussed in
the context of more extensive studies of hysteresis in the random field Ising model.
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I. INTRODUCTION

The purpose of this paper is to report work on temperature-
driven hysteresis [1] in pure (i.e., without quenched disorder)
Ising model [2,3] and compare it with the more extensively
studied case of the disorder-driven hysteresis in the zero-
temperature (T = 0) random field Ising model (ZTRFIM)
[4–16]. Hysteresis in ZTRFIM has been studied largely, if not
entirely, in the limit of driving frequency ω → 0. Normally,
hysteresis should vanish as ω → 0, but it survives because
the limit T → 0 is taken before the limit ω → 0. This is
implemented by using T = 0 Glauber dynamics [17] to update
spins and holding the applied field h constant during updates.
Thus, one starts with all spins down in a sufficiently large
and negative h, increases h slowly till one spin flips up and
causes a connected cluster of spins surrounding it to flip up
in an avalanche. When the avalanche stops, h is increased
again until another avalanche occurs. The entire hysteresis
loop is determined in this way by changing h minimally
between avalanches but keeping it fixed during avalanches.
The dynamics of ferromagnetic ZTRFIM is Abelian. The
order in which unstable spins are flipped does not matter.
The stable configuration at h is the same whether we reach
it through a series of avalanches as described above or in
one big avalanche starting from an initial state with all spins
down.

A common choice for the random field distribution is a
Gaussian with average zero and standard deviation σ . On
simple cubic and several other lattices, there exists a critical
value of σ = σc that marks a phase transition in the response of
the system to the applied field. For σ > σc the magnetization
m(h) is smooth function of h, but for σ < σc it acquires
discontinuities at h = ±hc. The discontinuities reduce in
size with increasing σ and vanish continuously as σ → σc.
Extensive numerical and analytic work has established scale
invariance and universality of phenomena in the vicinity of
the nonequilibrium critical points {±hc,σc} in close parallel to
the equilibrium critical behavior seen in the pure Ising model
near the critical temperature Tc [18]. Indeed, the parameter σ

in the ZTRFIM plays a role analogous to temperature T in
the pure Ising model. Although this similarity is well known,
to the best of our knowledge, it has not been tested directly
by simulating the ω-dependent hysteresis loops in pure Ising
model on a regular lattice.

We consider the kinetic Ising model on a cubic lattice
characterized by the Hamiltonian,

H = −J
∑

i,j

sisj − h
∑

i

si .

Here J is ferromagnetic interaction between nearest neigh-
bor Ising spins {si = ±1} situated on sites {i = 1,2, . . . ,N},
and h is a uniform applied field measured in units of J .
We assume the system is in contact with a heat reservoir
at temperature T . The Glauber prescription for updating a
configuration {si} is: (i) choose a site at random, say site i,
(ii) calculate the local energy at site i, ei = −J

∑
j �=i sj − h,

(iii) flip si to −si with probability 1/(1 + exp(−2Kei)), where
K = J/kBT and kB is the Boltzmann constant, (iv) repeat
the above procedure N times to complete one Monte Carlo
cycle (unit of time), and (v) continue for t Monte Carlo
cycles. The above dynamics has two important properties;
detailed balance and ergodicity. These properties combine
to thermalize the system with increasing t . The dynamics
of a fully thermalized system in the limit t → ∞ generates
configurations which are distributed according to their respec-
tive Boltzmann weights and are therefore uncorrelated with
the initial configuration {si} at t = 0. The time average of a
thermodynamic quantity over a sufficiently large number of
such configurations should approximate to the corresponding
equilibrium value obtained from the partition function of the
system. An exact calculation of partition function is generally
not feasible, so Glauber’s or some other similar dynamics is the
only practical way to explore equilibrium behavior of a system.
However, predicting equilibrium behavior from dynamics has
its own difficulties. Numerical studies are necessarily restricted
to finite t while equilibrium properties correspond to t → ∞. It
is not easy to decide what value of t is adequate to extrapolate
the results to equilibrium behavior. The answer depends on
the temperature of the system and whether it is above or
below the critical temperature. Our interest in the present
paper is primarily in hysteresis which is a nonequilibrium
phenomenon seen at finite t only. We will examine how
hysteresis decreases with increasing t and if this behavior
is consistent with the equilibrium behavior of the system
reported in the literature. The equilibrium magnetization per
site m(h) = ∑

i si/N depends on K . There is a critical value
Kc = 0.22165435(45) on a simple cubic lattice which marks
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the onset of spontaneous symmetry breaking in the system
[19–23]. In the limit t → ∞, at h = 0, m(h = 0) → 0 if
K < Kc, but m(h = 0) → ±m∗(K) with equal probability if
K � Kc, where |m∗(K)| increases continuously from zero to
unity as K increases from K = Kc to K = ∞.

Hysteresis is generally characterized by a system’s response
to a cyclic field, but we may also consider it as a measure of
system’s memory of its initial state for t < ∞. It has been
studied in several ways depending upon how the cyclic field
is ramped up and down [24–27]. We choose a method close
in spirit to the one used in the ZTRFIM. We fix K and h,
and evolve two initial states {si = −1} and {si = 1} separately
for time t . Initially, the two states have magnetization per
site equal to −1 and +1, respectively. Let the corresponding
values at time t be m−(K,h,t) and m+(K,h,t). Our simula-
tions show that m+(K,h,t) > m−(K,h,t) and the difference
m+(K,h,t) − m−(K,h,t) decreases with increasing t . This is
to be expected from the properties of dynamics mentioned
earlier. As the system approaches thermalization, the output
configurations of the dynamics become uncorrelated with the
initial configurations. Hysteresis becomes negligible at very
large negative or positive values of h (|h| � J ) even for
relatively small t because the probability that a spin remains
aligned opposite to a very large field is exponentially small.
Thus, if |h| � J , m−(K,h,t) ≈ m+(K,h,t) ≈ sgn h.

II. NUMERICAL RESULTS

In our simulations, we choose a large range of h around
h = 0, [−H0,H0], such that induced magnetizations at ±H0

are nearly ±1. We divide the interval [−H0,H0] into n

equal parts of width δh = 2H0/n, and calculate m−(K,h,t)
and m+(K,h,t) at each increment hi = −H0 + i × δh; i =
0, . . . ,n. We choose n to be reasonably large so that the locus
of data points on the graph indicates the shape of a continuous
curve in the limit n → ∞. We may call this curve the hysteresis
loop at characteristic time period t because each point on the
curve has evolved for a time t under the relaxation dynamics.
The results are shown in Fig. 1 for three values of K in the vicin-
ity of Kc and two values of t for each K . An interesting feature
of Fig. 1 is that the curves for m−(K,h,t) and m+(K,h,t)
move toward each other as t increases and look qualitatively
similar to the hysteresis loops produced by a driving field
of the form h(t) = −H0 cos ωt or a field that is ramped up
and down in the form h(t) = −H0 + ωt and h(t) = H0 − ωt ,
respectively. Here ω = �h/�t , and relaxation dynamics is
applied to a configuration {si} for a time �t at h and the
output is used as input at h + ω�t . The fact that different
methods produce similar hysteresis loops suggests that the
generic s-shape of hysteresis loops comes from the probability
distribution used in the relaxation dynamics rather than the
form of the driving field. Notwithstanding the similarity of
hysteresis loops, detailed behavior does depend on how the
applied field is varied. A detail that interests us particularly is
the variation of coercive field Hc with t for a given K . Figure 1
indicates the trend that Hc moves toward h = 0 with increasing
t . More detailed study requires monitoring the system at each
value of t and much smaller increments δh in the applied field
h in the vicinity of Hc. This increases the computation time
enormously and a compromise has to be made with respect to
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FIG. 1. Six hysteresis loops (K = 0.20,0.22,0.24; t = 10, 100
for each K) for pure Ising model on a 503 cubic lattice near Kc ≈
0.221654. The figure suggests that hysteresis vanishes as t → ∞ but it
vanishes differently for K < Kc than for K > Kc. For K = 0.20,t =
100, hysteresis has already vanished on the scale of the figure and
m(h) is continuous at h = 0. For K = 0.24, hysteresis at t = 100 has
reduced from its value at t = 10 and m(h) curves have come closer to
vertical near the coercive field Hc. In this case, hysteresis is expected
to vanish as t → ∞ accompanied by a discontinuity in m(h) at h = 0.

the size of δh. We have used δh = 0.001 for cubic lattice and
δh = 0.01 for other lattices. This means that coercive fields
in the range 0 < Hc � δh will be clubbed at Hc = δh in the
respective cases. We will return to this point when discussing
Figs. 2, 3, and 4.

Figure 1 shows hysteresis loops for N = 503, K =
0.20,0.22, 0.24, t = 10, and 100. It reveals two features of
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FIG. 2. Coercive field Hc on lower half of hysteresis loop after
t Monte Carlo cycles of Glauber dynamics on a 503 cubic lattice
starting with all spins down. A line Hc = 1/t is drawn for reference.
If K < Kc, then Hc vanishes rapidly as t → ∞. If K > Kc, then Hc

decreases more and more slowly as K increases. The reason is that
m(h) curve near Hc tends to become vertical and it takes much longer
time to reverse magnetization at Hc. It is a signature that m(h) may
acquire a discontinuity at h = 0 in the limit t → ∞ if K > Kc.
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FIG. 3. Coercive field Hc on a 500 × 500 square lattice for
different values of K and time periods t . The qualitative behavior on
the square lattice is the same as on the cubic lattice. It indicates that
m(h) curve may acquire a discontinuity at h = 0 in the limit t → ∞
if K > Kc. A plateau is seen at Hc = 0.01 because the system was
monitored at increments of applied field equal to 0.01.

general validity. Firstly, hysteresis decreases with increasing t .
For each K , the loop shrinks as we go from t = 10 to t = 100.
The shrinking is faster if K < Kc and the rate of shrinking in-
creases with increasing Kc − K . At t = 100 the loop is hardly
visible for K = 0.22 and not at all for K = 0.20 on the scale of
the figure. Secondly, the shape of loop changes with increasing
t . It changes differently for K < Kc than for K > Kc. If K <

Kc, the loop tends to become narrower and elongated along the
x axis with increasing t . Eventually the loop collapses into a
single continuous curve that passes through the origin h = 0.
If K > Kc, the loop becomes narrower and elongated along
the y axis with increasing t . In this case the middle portion
of the s-shaped magnetization curve m(h) becomes nearly
vertical at the coercive field Hc, which moves very slowly
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FIG. 4. Coercive field Hc vs. t on a 500 × 500 honeycomb lattice
at different time periods t forK = 0.5, 0.6, 0.658479, 0.7. The figure
indicates that effective transition point seen by the dynamics is smaller
than Kc = 0.658479.

towards h = 0 with increasing t . In simulations, fluctuations
make it rather difficult to distinguish between a continuous
but steep change in m(h) from a discontinuity in m(h). We
have checked this point carefully and conclude there is no
discontinuity in m(h) for finite t up to the largest t that we
could test. In case there appeared to be a discontinuity in m(h)
at Hc, we re-examined the neighborhood of Hc more closely
by increasing the system size and decreasing the spacing δh

between neighboring h values in the vicinity of Hc. This
generated new data points inside the apparent discontinuity
and indicated a sharply rising but continuous m(h). We may
also add that there is no theoretical reason to expect a true
discontinuity in m(h) at any finite t for T > 0. This suggests
an approximate picture of the hysteresis loop as a flagpole with
one dimensional flags at both ends but in opposite directions.
The length of the flagpole increases with increasing K − Kc

and its width decreases with increasing t . As t → ∞, we may
expect the two halves of the loop to collapse on top of each
other and the flagpole replaced by a discontinuity in m(h) at
h = 0.

The above discussion suggests that the manner in which
hysteresis decreases with increasing t can reveal if the
system is above or below its critical point. One can ei-
ther monitor the rate at which the area of the hystere-
sis loop decreases, or alternatively, how the coercive field
decreases with increasing t . Figure 2 shows Hc versus
t on the lower half of the hysteresis loop for N = 503,
K = 0.10, 0.20, 0.22, 0.221654, 0.24, 1.00, 1 � t � 2048,
and 0.001 � Hc � 4. We have used logarithmic binning to
reduce fluctuations in the data at large t and drawn a line
Hc = 1/t for comparison. It takes a good deal of computer
time (several days) to generate the data shown in Fig. 2 and it is
the best we can do within our resources. So we look closely for
possible trends in the data even if these trends are not as clear
as we would desire. We see that four graphs corresponding
to K � Kc are closer to each other and different from two
graphs for K > Kc. If K � Kc, thermal fluctuations are very
large and consequently the equilibrium correlation length is
very short. Therefore the system relaxes to a thermalized state
in a short time. As K → Kc, the correlation length increases
and so does the time to thermalization. Eventually at K = Kc

the correlation length and the time to thermalization diverge
algebraically. At a given t , we may consider the magnitude of
coercive field Hc as a measure of the distance from equilibrium.
Therefore, we may expect Hc to vary with t as a power
law at K = Kc. Our data indicates Hc ∼ t−1.15 approximately
over two decades of t . Graphs for K < Kc appear to behave
similarly after an initial transient period and before fluctuations
blur the trend. In the limit K → 0 and t → ∞, the spins
would tend to flip independently of each other. System of
N = 503 will have random fluctuation in m(h) of the order
of N−1/2 ≈ 0.003 around the value m(Hc) = 0. The coercive
field required to reverse the magnetization will have similar
fluctuations. This is the reason why Hc for K = 0.10 shows a
plateau at Hc ≈ 0.003 and t > 512. Similarly, in the case of
K = 0.22 and K = 0.22165, plateaus are seen at Hc ≈ 0.002
at t > 1024. A plateau in Hc at large t could be expected for
K = 0.20 as well but its absence is within expected fluctu-
ations. Next we turn our attention to graphs for K > Kc. In
this regime thermal fluctuations diminish and long range order
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develops through nucleation, growth, coarsening of domains,
and magnetization reversal. These processes are exceedingly
slow due to smallness of thermal excitations. A large fraction of
Glauber moves fail to flip the spins thus retarding the evolution
of the system. Consequently, Hc decreases more slowly with
increasing t if K > Kc than it does if K < Kc. The equilibrium
value of order parameter increases with increasing K . Thus,
a magnetization reversal curve from a metastable state to a
stable state at Hc takes a nearly vertical shape in the vicinity of
Hc if K � Kc. It takes a long time for relaxation dynamics to
reverse the magnetization. A droplet of up spins has to nucleate
in a sea of down spins and slowly grow to the system size. This
is a very slow process and becomes progressively slower as K

increases. In the range of t = 1 to 2024, Hc drops from 3.03
to 0.05 if K = 0.24 and 3.47 to 1.83 if K = 1.00. There is no
good evidence that Hc decreases with t as a power law, nor do
we know of any theoretical reason to expect so. However, we
note for later discussion that this very slow decrease of Hc with
t for K > Kc is a signature of a discontinuity in m(h) at h = 0
in the limit t → ∞. The point is that for K > Kc equilibrium
m(h) versus h curve must have a discontinuity at h = 0 on
grounds of symmetry breaking but it is difficult to observe the
sharpness of this discontinuity via hysteresis dynamics in the
limit t → ∞. To the best of our knowledge, the limit t → ∞
for this purpose has not been accessed even with the best of
computers and most efficient Monte Carlo codes particularly
for K � Kc. The relaxation of the system is just too slow to
reach equilibrium on practical time scales for K � Kc. Quite
often the sharpness of a first order transition is replaced by
hysteresis in simulations as well as laboratory experiments.
Thus we have to be content with the signature indicated above
for the interpretation of our results in this regime.

We have also studied hysteresis and the variation of Hc with
t on square and honeycomb lattices on the above lines. Ising
models on these lattices are known to undergo equilibrium
phase transitions at Kc ≈ 0.440686 and Kc = 0.658479, re-
spectively. The exact values are given by sinh 2Kc = 1 [3] and
cosh 2Kc = 2 [28]. Hc versus t graphs for the two cases are
presented in Figs. 3 and 4 for lattices of size 5002, 1 � t � 512,
and 0.01 � Hc � 3. Figure 3 shows the behavior on a square
lattice forK = 0.30, 0.40, 0.44, 0.440686, 0.50, 1.00. A line
Hc = 1/t has been drawn for comparison. Graphs for K =
0.44 and K = 0.440686 are indistinguishable on the scale of
figure and both vary approximately as Hc ∼ t−0.85. Graphs
for K = 0.40 and K = 0.30 decay more rapidly but there is
no discernible power law associated with the decrease. Two
values of K > Kc, K = 0.50,1.00, indicate that m(h) may hit
a discontinuity at h = 0 as t → ∞ consistent with the known
equilibrium phase transition in the system. We may add that
an argument similar to the one used to explain the plateau in
Fig. 2 at Hc ≈ 0.003 would lead us to expect plateaus in Figs. 3
and 4 around Hc ≈ N−1/2 = 0.002 for large t and K � Kc.
But these are pre-empted by a larger step size δh = 0.01 used
in generating the data on square and honeycomb lattices. On
these lattices, coercive fields in the range 0 < Hc � 0.01 are
binned together resulting in a plateau at Hc = 0.01. Because
the plateau is an order of magnitude higher in comparison with
Fig. 2, time periods required to hit the plateau are smaller by an
order of magnitude. This reduces the computer time without
seriously compromising the general trends implicit in the data.

In short, the behavior on the square lattice appears qualitatively
similar to the behavior on the cubic lattice. Earlier we alluded to
differences in hysteresis depending upon different forms of the
driving field. Differences between sinusoidal and linear driving
fields have been noted in the literature [24–27]. Figures 2 and 3
provide another example. They indicate Hc ∼ t−1.15 on cubic,
and Hc ∼ t−0.85 on square lattice at K = Kc. A subtle point
to note is that the power-law fit on the square lattice is not
quite as good as it is on the cubic lattice. A close look at Fig. 3
shows that the critical curve turns up slightly at larger values
of t . A possible explanation may be that Kc on square lattice
is obtained from the exact solution of the partition function
while Kc on cubic lattice is obtained from Glauber dynamics.
It maybe that critical values of Kc obtained from the two
methods are somewhat different. This notwithstanding we can
compare our power-laws with those for a field which is swept
up from −H0 to H0 and back to H0 in t steps and at each
step the previous output is used as the new input to dynamics.
In this case, results for the area Ac of the hysteresis loop at
Kc are available [27]. There is no exact relationship between
Hc and Ac but they should be approximately proportional
to each other in the limit t → ∞. The reported results are
Ac ∼ t−0.495 on cubic and Ac ∼ t−0.408 on square lattice, which
are significantly different from the power laws observed in our
version of the dynamics. We find hysteresis on honeycomb
lattice to be qualitatively similar to that on cubic and square
lattices. Figure 4 shows Hc versus t at Kc = 0.658479, two
values of K < Kc and one value of K > Kc. The graphs for
K = Kc and K > Kc show similar trend; both seem to be
headed for an ordered state. This means that effective Kc seen
by dynamics is smaller than Kc = 0.658479. The difference
between Kc and effective Kc is larger on honeycomb lattice as
compared with the same on square lattice.

To reconfirm and verify the trends indicated above, we have
examined remanent magnetization mR on the lower half of
hysteresis loop as a function of t ; mR is the magnetization
per site at h = 0 starting from the initial state with all spins
down. Time dependence of mR is relatively easy to monitor
and it is a good indicator whether the system is evolving
towards a disordered or an ordered state. If K � Kc, we expect
mR to decrease to zero with increasing t . This is born out
by the results shown in Figs. 5, 6, 7, and 8. These figures
show mR versus t on cubic, square, and honeycomb lattices,
as well as on a random graph of coordination number z = 3.
Some noteworthy features are as follows. Irrespective of the
lattice type, if K � Kc, correlation lengths are very short and
mR approaches zero with increasing t as expected. Consider
Fig. 5 for cubic lattice. At K = Kc, mR increases more slowly
towards zero and somewhat surprisingly overshoots it at t ≈
5000. Such magnetization reversals are allowed within large
critical fluctuations at K = Kc but these should average out
to zero eventually because the equilibrium value of the order
parameter is zero. For K > Kc, we may expect mR to approach
a finite value with increasing t as indeed is seen in Fig. 5
for the cubic lattice. Figure 6 for square lattice shows similar
behavior except for the case K = Kc, where there is some
indication that mR may perhaps level off at a finite value for
larger times. As mentioned earlier in reference to Fig. 3, this
may indicate that the effective Kc for single-spin-flip Glauber
dynamics may be somewhat smaller than Kc = 0.440686.
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FIG. 5. Remanent magnetization mR vs. t on a 1003 cubic lattice
on the lower half of the hysteresis loop for three representative values
of K . As t increases mR increases towards its equilibrium value; zero
if K � Kc, and a finite value if K > Kc. Magnetization reversal at
t ≈ 5000 for K = Kc is a result of large critical fluctuations.

Figure 7 indicates similar behavior on honeycomb lattice.
The effective Kc recognized by dynamics on honeycomb
lattice is apparently much smaller than Kc = 0.658479. These
results are consistent with the results shown in Figs. 3 and
4 and our interpretations of those figures. For reason to be
discussed below we also examined mR on a random graph with
coordination number z = 3, which is a good representation
of a Bethe lattice of the same connectivity. The exact Kc on
the Bethe lattice is given by the equation tanh Kc = (z − 1)−1

[29]. The case z = 2 corresponds to one dimensional Ising
model which does not have a phase transition to an ordered
state at any finite Kc. Thus, under the Glauber dynamics,
remanent magnetization mR for z = 2 should approach zero
irrespective of K . We have verified that this is indeed the case.
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FIG. 6. Remanence mR vs. t on a 500 × 500 square lattice for
three representative values of K . As t increases mR is seen to approach
its equilibrium value; zero if K < Kc and a finite value if K > Kc. The
limiting behavior for K = Kc is not very clear. If mR eventually levels
off at a finite value, it would indicate that the Onsager Kc = 0.440686
is somewhat higher than appropriate Kc for single-spin-flip Glauber
dynamics.
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FIG. 7. Remanence mR vs. t on a 500 × 500 honeycomb lattice
obtained from Glauber dynamics for four representative values of K .
The critical value Kc = 0.658479 is obtained from partition function;
mR is expected to approach zero if K � Kc, and a finite value if
K > Kc. The plateau at Kc suggests that the dynamical transition to
an ordered state occurs at a higher temperature than predicted by the
partition function.

Of course, starting with all spins down, the time t taken to
thermalize increases with increasing K . For z = 3, we have
Kc = 0.54930615 approximately. Remanence magnetization
on corresponding random graph is shown in Fig. 8. It indicates
the occurrence of a phase transition in the system unlike the
corresponding case in ZTRFIM. There is clear evidence that
Glauber dynamics takes the system to an ordered state on a
random graph of connectivity z = 3 if K > Kc.

III. DISCUSSION

As mentioned in the Introduction, primary motivation
for our study came from the curious similarity between
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FIG. 8. Remanence mR vs. t on a random graph (z = 3,N = 106)
obtained from single-spin-flip Glauber dynamics. The critical value
Kc = 0.54930615 is obtained from partition function; mR is expected
to approach zero if K � Kc, and a finite value if K > Kc. The figure
indicates a phase transition on a z = 3 random graph unlike the case
in ZTRFIM.
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nonequilibrium critical phenomena in ZTRFIM in the vicinity
of σc and equilibrium critical phenomena in pure Ising model in
the vicinity of Kc. Does the similarity between σ and K hold
only at the respective critical points or is it more extended?
What would an extended similarity mean? We cannot extract
equilibrium behavior from hysteresis in ZTRFIM but we can
explore equilibrium as well as nonequilibrium behavior of
pure Ising model by supplementing it with finite temperature
Glauber dynamics. The obvious thing is to compare phases on
both sides of σc with phases on both sides of Kc and extend
equilibrium studies in pure Ising model to nonequilibrium. The
equilibrium m(h) is a single valued anti-symmetric function of
h, m(h) = −m(−h), with a discontinuity at h = 0 if K > Kc.
There is no hysteresis in equilibrium i.e. the upper and lower
halves of the hysteresis loop collapse on top of each other. How-
ever, m(h) on each half of the hysteresis loop is discontinuous
at the coercive field Hc if σ < σc and continuous for σ > σc.
Could there be a relationship between the discontinuity in m(h)
for σ < σc and the discontinuity in equilibrium m(h)? We may
not expect such relationship at first because a system with
quenched disorder is distinct from a system without quenched
disorder. But critical behavior of both systems is similar. So
it is possible that disorder whether quenched or thermal may
produce qualitatively similar hysteresis away from the critical
point as well.

Numerical results in the previous section suggest that
disorder driven hysteresis is indeed qualitatively similar to
temperature driven hysteresis at finite t with a small difference.
The discontinuity in hysteresis loops at the coercive field Hc

for σ < σc is replaced by a continuous but steeply rising curve
in the case of K > Kc. This is understandable. The discontinu-
ities in m(h) in ZTRFIM arise from quenched disorder as well
as zero-temperature dynamics. The first provides local minima
in the energy landscape and the second no escape from them
except by changing the external field h. The field h is assumed
to vary infinitely slowly compared with the relaxation time of
the system. Thus dynamics at each h is allowed as much time
as it takes to reach a locally stable state. In this framework it
is possible for two arbitrarily close values of h to have local
minima with significantly different m(h), i.e., a discontinuity
in m(h). A macroscopic discontinuity in m(h) appears as an
infinite avalanche in ZTRFIM. An infinite avalanche is also
facilitated by zero-temperature dynamics because it does not
allow a spin to flip back on the same half of the hysteresis
loop. There are metastable states in pure Ising model as well
but finite temperature Glauber dynamics enables the system to
eventually evolve towards an equilibrium state. The state of the
system at time t in this case is determined by K . Therefore,
we may not expect two arbitrarily close values of h to have
very different magnetizations, i.e., no discontinuity in m(h)
at any h for finite t and no infinite avalanches. Apart from
the absence of a discontinuity in the hysteresis loop in the
ordered phase, two phases separated by Kc and σc are similar.
In the disordered phase (σ > σc,K < Kc) correlation lengths
are short and relaxation is fast while the opposite is true in the
ordered phase. We may remark in passing that the dynamics of
ZTRFIM is relatively fast even in the ordered phase because a
spin once flipped does not flip back unless h is reversed. For
systems of same size, dynamics of magnetization reversal at
Hc for σ < σc via an infinite avalanche in ZTRFIM is orders

of magnitude faster than it is under Glauber dynamics of pure
Ising model. Magnetization reversal at Hc in the pure Ising
model is so anomalously slow that we are often not able to
complete it in simulations on practical time scales, especially
for K � Kc but excluding K = ∞. The case K = ∞ is of
course equivalent to ZTRFIM with σ = 0.

ZTRFIM does not support a phase transition if the coor-
dination number of the lattice is less than or equal to three,
i.e., σc = 0 if z � 3. This result is based on an exact solution
on Bethe lattice and simulations on periodic lattices with
z = 3 irrespective of the dimensionality of space in which
they are embedded. This is puzzling at first sight. Usually
Bethe lattices with z > 2 behave similarly. The issue has
been resolved for zero-temperature deterministic dynamics on
Cayley trees which do not have closed loops. It has been argued
that a minimal sprinkling of z � 4 sites on a spanning tree is
required to sustain an infinite avalanche [16]. As the disorder is
gradually increased to a critical value σc, the infinite avalanche
vanishes at a nonequilibrium critical point. It is natural to ask
if the absence of criticality on z = 3 lattices persists under
finite temperature Glauber dynamics of pure Ising model. With
this in mind we studied hysteresis on honeycomb lattice and
a random graph with connectivity z = 3. In both cases the
model undergoes an equilibrium phase transition. Simulations
necessarily deal with finite t and do not show a sharp transition
on either lattice. But we find the qualitative behavior under
finite temperature Glauber dynamics on z = 3 lattices to be the
same as on z > 3 lattices. The system flows toward a disordered
state for small K and an ordered state for large K . It appears
that the absence of criticality on z = 3 lattices in ZTRFIM
is perhaps an artifact of zero temperature dynamics and not
intrinsic to lattice structure.

Our work indicates that critical value Kc that separates two
phases in the finite temperature dynamics is somewhat smaller
than corresponding Kc obtained from equilibrium statistical
mechanics. It is not obvious why this should be so. The reason
may lie in the limitations of one-spin flip dynamics. It is
reasonable to assume that if two or more spins are allowed
to flip jointly in one move the dynamics may take the system
to a lower state of energy than is possible with one-spin flips.
The broad features of phenomena including a phase transition
seen with one-spin and two-spin flips may remain the same
but overall energy scale may be pushed down somewhat in
case of two-spin flips. Why this effect is larger on honeycomb
lattice than it is on a square lattice or a random graph with
z = 3 requires further thought. This is a subtle reminder on the
limitations of Monte Carlo methods. They average physical
quantities on a smaller copy of system with has the same
distribution of states as the full system. It is a bit like opinion
polls which predict general elections. We may not expect an
exact match between the two.

In summary, the work presented here complements extant
studies of disorder driven hysteresis in ZTRFIM. Systems with
extensive quenched disorder have thermodynamically large
number of metastable states. The fact that disorder remains
quenched implies that energy barriers between metastable
states are much larger than thermal energy. On energy scale
characterizing quenched disorder, it is reasonable to model
hysteresis by ZTRFIM. Hysteresis loops in this model are
obtained at K = ∞ and t = ∞. We have to bear in mind that
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none of these conditions are realized in a real experiment.
Simulations reveal a discontinuity in m(h) if σ < σc and
critical behavior at σ = σc. In simulations a discontinuity
in m(h) is often hard to distinguish from a very steep but
continuous change in m(h) but an exact solution of the model
on a Bethe lattice [7] also supports the above scenario. We
have shown that temperature driven hysteresis in a pure
system is qualitatively similar to disorder driven hysteresis
in ZTRFIM with minor differences. With increasing t , the
remanent magnetization mR approaches zero if K < Kc and a
nonzero value if K > Kc. There is no discontinuity in m(h) at

the coercive field Hc for K > Kc although m(h) curve does
tend to become rather steep in the region around Hc with
increasing t . It would be satisfying to recover the expected
equilibrium results by the dynamical route in the limit t = ∞
but this seems impossible on practical time scales due to
ultra slow relaxation of the system. However, this difficulty
should not seriously compromise the applicability of this study
to hysteresis experiments which are necessarily performed
at a finite K and finite t . Thus we hope results presented
here will help in understanding a larger set of hysteresis
experiments.
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