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In the Widom-Rowlinson lattice gas, two particle species (A, B) diffuse freely via particle-hole exchange,
subject to both on-site exclusion and prohibition of A-B nearest-neighbor pairs. As an athermal system, the
overall densities are the only control parameters. As the densities increase, an entropically driven phase transition
occurs, leading to ordered states with A- and B-rich domains separated by hole-rich interfaces. Using Monte
Carlo simulations, we analyze the effect of imposing a drive on this system, biasing particle moves along one
direction. Our study parallels that for a driven Ising lattice gas, the Katz-Lebowitz-Spohn (KLS) model, which
displays atypical collective behavior, e.g., structure factors with discontinuity singularities and ordered states with
domains only parallel to the drive. Here, other interesting features emerge, including structure factors with kink
singularities (best fitted to |q|), maxima at nonvanishing wave-vector values, oscillating correlation functions,
and ordering into multiple striped domains perpendicular to the drive, with a preferred wavelength depending
on density and drive intensity. Moreover, the (hole-rich) interfaces between the domains are statistically rough
(whether driven or not), in sharp contrast with those in the KLS model, in which the drive suppresses interfacial
roughness. Defining an order parameter that accounts for the emergence of multistripe states, we map out the
phase diagram in the density-drive plane and present preliminary evidence for a critical phase in this driven lattice
gas.
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I. INTRODUCTION

Driven lattice gases have played a central role in far-
from-equilibrium thermodynamics and statistical mechanics,
in particular in the study of phase transitions [1,2] and steady-
state thermodynamics (SST) [3]. In this context, most studies
have focused on the lattice gas with attractive nearest-neighbor
(NN) interactions pioneered by Katz, Lebowitz, and Spohn [4]
(KLS). In equilibrium, this model is the lattice gas version of
the Ising model [5]. Under a drive favoring particle motion
along one axis (and suppressing motion in the opposite sense),
the KLS model exhibits a variety of remarkable collective
behaviors [1,2], such as generic long-range correlations [6–9],
“negative response” [10], non-Ising critical properties [11],
anisotropic phase separation [4], and anomalous interfacial
fluctuations [12,13]. More recently, it has been extensively
studied in connection with the difficulties in formulating a
zeroth law of thermodynamics for systems driven into steady
states far from equilibrium [14–16]. Another model of interest
is the driven lattice gas with NN exclusion (NNE lattice gas)
[17], which exhibits a complex pattern of phase ordering and
jamming, and has also proved useful in efforts to define a
nonequilibrium chemical potential [18]. The NNE lattice gas
is an athermal model exhibiting a phase transition to sublattice
ordering. While athermal models are convenient in that they
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involve only a single effective parameter (the dimensionless
chemical potential μ∗ = μ/kBT ), the NNE lattice gas does
not exhibit macroscopically distinguishable phases. An ather-
mal model that does exhibit phase separation is the lattice
Widom-Rowlinson (WR) model or Widom-Rowlinson lattice
gas (WRLG) [19]. It is likely the simplest model with purely
repulsive interactions to undergo phase separation. This study
is devoted to a driven WRLG.

The equilibrium WRLG was introduced in [19], as a
discrete-space version of the original (continuous-space)
Widom-Rowlinson model [20,21]. Each site may be vacant,
or occupied by a particle belonging to species A or species B.
Nearest-neighbor A-B pairs are prohibited, as is multiple occu-
pancy of a site. (The latter restriction departs from the original,
continuous-space WR model, in which particles belonging to
the same species do not interact at all.) In [19] it is shown that
the WRLG (with equal densities of A and B particles, ρA =
ρB ≡ ρ/2) exhibits a continuous phase transition between a
disordered, low-density phase and coexisting A- and B-rich
phases at a critical density ρc. Best estimates for the critical
density are 0.618(1) and 0.3542(1) on the square and simple
cubic lattices, respectively. (Figures in parentheses denote
statistical uncertainties.) Results on scaling behavior [19]
support an Ising-like critical point, as expected on grounds of
symmetry. Subsequent studies of the WRLG have focused on
multispecies versions [22]. Here we study the driven WRLG:
as in the KLS model, and the driven NNE lattice gas, particle
motion is favored along one direction, and suppressed in the
opposite sense, as if an electric or other external field were
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acting on the particles. To model a nonequilibrium steady state,
it is essential that the system have periodic boundaries along
the drive direction. (For impenetrable boundaries the system
corresponds to an equilibrium fluid subject to a simple linear
gravitational potential.)

In the NNE lattice gas above the critical density, the
sublattice-ordered phases are equivalent under a unit transla-
tion in the x or y direction, whereas the symmetry connecting
the A- and B-rich phases in the WRLG is global exchange of
A and B particles. In the driven NNE lattice gas with first- and
second-neighbor hopping (the model studied by Szolnoki and
Szabo [23]), particles are free to hop between sublattices, so
there is global sublattice ordering rather than spatial separation
into two phases; in this case no stripe pattern is observed.

In the single-component lattice gas with finite repulsive NN
interactions (equivalent in equilibrium to the antiferromagnetic
Ising model), the drive destroys sublattice ordering [24,25].
For infinite NN repulsion, i.e., the nearest-neighbor exclusion
(NNE) model, phase separation under a drive is possible,
as well as formation of dynamically arrested regions, if the
dynamics allows NN hopping only [17]. Including hopping
to second neighbors changes the phase behavior: instead
of separation into high- and low-density regions, there is a
continuous, Ising-like transition to a phase with sublattice
ordering, as in equilibrium [23]. In the present work, the
dynamics includes both NN and second-neighbor hopping.

There are two principal motivations for studying the driven
WRLG. First, aside from the examples already cited, not
many driven systems exhibiting phase separation have been
examined in detail; the lack of attractive interactions leads
to a very different sort of phase ordering under a drive, as
compared with the KLS model. In this context, we should
mention that the WRLG is a spin-1 or three-state system,
a class that includes well known systems such as the Potts
[26] and Blume-Emery-Griffiths [27] models. Some driven
three-state models have been investigated previously [28], but
none display the properties of the system we present here.
Second, it is valuable to have further examples of model
systems for testing SST.

There are two main foci in the present work: anomalous
correlations (even in the disordered phase) and remarkably
rich varieties of phase segregated order. Our principal source
of information is Monte Carlo simulation of the model on the
square lattice, which we complement with simple mean-field
theory approaches. The first issue is best displayed in terms
of the structure factor S(q||,q⊥), with the subscripts denoting
wave-vector components along, and perpendicular to, the
drive. In addition to displaying a discontinuity singularity at the
origin [S(q|| → 0,0) �= S(0,q⊥ → 0)] as observed in similar
driven diffusive systems [29–34], S(q|| → 0,0) exhibits a kink
singularity, best fitted to |q|||! This feature is accompanied
by a maximum of S(q||,0) located at some nonvanishing q||
value, associated with periodic correlations of composition
fluctuations along the drive direction. Let us emphasize that
these properties are present even at low densities (for which
the composition is spatially uniform), in stark contrast to the fa-
miliar, analytic, Ornstein-Zernike form S(q||,0) ∝ 1/(τ + q2

||).
Under the drive, composition variations are characterized by a
preferred wavelength λ(ρ,p), where p denotes the intensity of
the drive. The second focus is a phase diagram in the density-

drive plane, as we report the emergence of multiple stripes
of A- and B-rich phases [of wavelength λ(ρ,p)], oriented
perpendicular to the drive! By contrast, in the KLS model, the
particle-rich (or hole-rich) regions form a single stripe parallel
to the drive [especially in systems with O(1) aspect ratios]. As
in the KLS model, long-lived metastable states are observed
as control parameters are changed across phase boundaries, a
phenomenon reminiscent of hysteresis.

The remainder of this paper is organized as follows. In
the next section we define the model. In Sec. III we examine
the low-density, disordered phase, and discuss mean-field and
field-theoretic approaches. Section IV reports our results for
local and global ordering, correlations in the ordered phase, and
interface roughness, followed by a summary and discussion of
our findings in Sec. V.

II. MODEL

The WRLG is defined on a lattice of Ld sites, each of
which may be empty or occupied by a particle of type A or
of type B; multiple occupancy is forbidden. It is convenient
to introduce occupation variables σi = 0, 1, or −1 for site i

vacant, occupied by an A particle, or occupied by a B particle,
respectively. To model the NN repulsion, if σi = ±1, none of
its nearest neighbors may have σ = ∓1. In equilibrium, the
model may be studied in the canonical ensemble, i.e., with
fixed numbers of A and B particles, NA and NB , respectively,
or in the grand canonical ensemble, in which the associated
chemical potentials, μ∗

A and μ∗
B are fixed. Here we limit our

attention to the case of square lattice (d = 2). Thus, a site
is labeled by integers (nx,ny) ∈ ([1,Lx],[1,Ly]), while σi

is denoted by σ (
x). Unless explicitly noted otherwise, our
study focuses on systems with Lx = Ly = L. For simplicity,
we focus on systems with fixed NA = NB = N , and choose
the main control parameter to be the overall density: ρ =
2N/(LxLy).

It is well to recall that the equilibrium thermodynamics of
athermal systems is determined exclusively by maximization
of entropy, subject to whatever constraints apply. Thus phase
separation in the WR model occurs at densities high enough
that the configurational entropy of the phase-separated, inho-
mogeneous system is higher than that of a homogenous one.
As in the freezing of the hard-sphere fluid, a higher entropy
is associated with a nominally more ordered phase because
the disordered phase possesses relatively few configurations,
due to excluded-volume constraints. To what extent such
considerations apply to driven athermal systems is an open
question: under a drive, the probability distribution is no longer
uniform on configuration space, and the very definition of a
thermodynamic entropy is in general unclear.

The driven WRLG is a stochastic process with a Markovian
dynamics defined via a set of transition ratesw(C ′,C), from con-
figuration C (i.e., the set {σi}) to configuration C ′. Transitions
occur via single-particle hopping, so that for w(C ′,C) to be
nonzero, configurations C and C ′ must differ by the exchange
of a particle-hole pair. Specifically, each particle attempts to
hop to a first or second neighbor, that is, a displacement of
(�nx,�ny) with �nx , �ny ∈ {−1,0,1} (excluding the no-hop
case �nx = �ny = 0). Any hopping move that results in a
configuration satisfying the prohibition against NN A-B pairs
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is accepted. The attempt rates are parametrized in terms of
p ∈ [−1,1] (propensity to move along +x) and a ∈ [0,1]
(tendency to leave x unchanged):

w(�nx,�ny) =
⎧⎨
⎩

(1−a)(1±p)
6 , �nx = ±1, any �ny

a
2 , �nx = 0,�ny = ±1
0, �nx = 0 = �ny

. (1)

For p = 0 and a < 1, detailed balance is satisfied, and the
stationary distribution of the Markov process corresponds to
the equilibrium distribution, i.e., all allowed configurations
equally likely. The hopping rates are isotropic for p = 0 and
a = 1/4. (The special case of a = 1, in which particles are
restricted a given column, is not considered here.) As p is
varied from zero to unity, the process interpolates from a
case with symmetric hopping in x (equilibrium) to one with
maximal asymmetry, with no hopping in the −x direction.
We consider a dynamics with next-nearest neighbor as well
as nearest-neighbor hopping to avoid the possibility of non-
generic patterns or dynamic arrest associated with a restriction
to NN hopping [23], and because an extended set of hopping
moves favors ergodicity. Our choice of equal hopping rates for
jumps with the same value of �nx is motivated by simplicity.
In the simulation studies reported here, we set a = 0 and only
comment on some runs with a = 1/4.

Simulations

We perform Monte Carlo (MC) simulations the driven
WRLG on the square lattice, using rectangular systems of
Lx × Ly sites with periodic boundaries in both directions.
Unless otherwise noted, we use Lx = Ly = L, with L ranging
from 30 to 400. We count one MC step as N attempted particle
moves. Studies of stationary properties use 2–14 × 107 MC
steps, preceded by an initial period of 107 MC steps, which we
found to be sufficient for relaxation. Averages and uncertainties
(standard deviation of the mean) are calculated over 10–30
independent realizations.

III. ANOMALIES IN THE HOMOGENEOUS PHASE:
SINGULAR STRUCTURE FACTORS AND CORRELATIONS

If the density ρ is sufficiently low, the WRLG remains
homogeneous whether driven or not. Simulations of the equi-
librium case show this disordered phase to prevail for ρ <

ρc � 0.618(1). As the drive parameter p is increased from zero
to unity, the change in ρc is rather modest, attaining a value of
about 0.76(1) for p = 1. By contrast, the critical temperature of
the driven KLS model is found to increase by as much as 40%
(in d = 2) from equilibrium [4]. In this section, we focus our
attention on the low-density disordered state, in which we find
anomalies in the correlation functions and structure factors,
beyond those observed in the KLS system.

A. Simulation studies of the structure factor
and correlation functions

One standard way to characterize collective behavior is
through correlation functions (G) and their Fourier transforms,
the structure factors (S). For simplicity, we consider only
equal-time, two-point correlations; since there are two species
of particles, these are 2 × 2 matrices. Instead of the densities

of the two particle species, ρA,B(
x), symmetry guides us to
consider their sum and difference, which will be referred to as
“mass” and “charge” densities,

ρ(
x) ≡ ρA(
x) + ρB(
x), ψ(
x) ≡ ρA(
x) − ρB(
x),

respectively [35]. While this notation is unnecessary for report-
ing simulation data [as they are just, respectively, |σ (
x)| and
σ (
x) at each 
x], it sets the stage for a field-theoretic approach,
the simplest of which will be discussed below. The restrictions
of our simulations correspond to the constraints 〈|σ (
x)|〉 = ρ

and 〈σ (
x)〉 = 0.
In terms of these densities, the 2 × 2 matrix of correlations

consists of Gρρ and Gψψ . The cross correlation, Gρψ = Gψρ ,
is the difference GAA − GBB which vanishes (statistically) in
the symmetric systems we study. For simply, we write Gρρ,ψψ

as Gρ and Gψ . In the steady state, translational invariance
dictates that these are functions of 
r , the distance between the
two points in question. Thus,

Gρ(
r) ≡ 〈|σ (
x)||σ (
x + 
r)|〉 − ρ2,

Gψ (
r) ≡ 〈σ (
x)σ (
x + 
r)〉
are independent of 
x; to improve statistics, we average over 
x.
When we form the covariance or connected correlation func-
tion by subtracting the associated expectations, 〈σ 〉〈σ 〉, these
G’s assume different values at the origin: Gρ(
0) = ρ(1 − ρ) vs
Gψ (
0) = ρ, since σ 2(
x) = |σ (
x)|2 = |σ (
x)|. Meanwhile, the
sum

∑

r G(
r) vanishes for both functions. The structure factors

are the Fourier transforms

S(
q) =
∑


r
G(
r)ei 
q·
r . (2)

By averaging over 
x to obtain G, we also
have, e.g., Sψ = L−2 ∑


x,
r〈σ (
x)σ (
x + 
r)〉ei 
q·
r =∑

x,
x ′ 〈σ (
x)e−i 
q·
xσ (
x ′)ei 
q·
x ′ 〉, which is L−2 times

〈| ∑
x σ (
x)ei 
q·
x |2〉, the average over a run of the power
spectrum [36], of each configuration σ (
x). Finally, the
constraints on G translate into

∑

q Sρ(
q) = ρ(1 − ρ)L2,∑


q Sψ (
q) = ρL2, and Sρ,ψ (
0) = 0. These serve as useful
checks on simulation data. In addition, the last constraint
implies that, unlike the ordinary Ising model, S(
0) cannot serve
as a susceptibilitylike quantity for detecting a second-order
critical point. Instead, our S assumes its maximum value at
some nonvanishing 
q. The maximum value behaves like the
susceptibility of ferromagnetic systems, i.e., remaining finite
(as L → ∞) in the disordered phase. For large enough ρ,
as we report in Sec. IV, this value diverges as L2 and so is
an ideal candidate for an order parameter. If the transition
turns out to be critical (i.e., behaves much like second-order
transitions in equilibrium statistical systems), then the large-L
behavior of S(qmax) can provide us with a critical exponent.

In general, the two-point equal-time correlation, G(
r),
must be symmetric under parity (
r ⇔ −
r ) and statistically
symmetric under the reflections (x ⇔ −x and y ⇔ −y).
In equilibrium, there is an additional symmetry, the x ⇔ y

exchange (especially for samples with Lx = Ly). By contrast,
the drive should break the last symmetry. Thus, in addition
to studying G and S in the whole plane, we will pay special
attention to the specific directions along and perpendicular to
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FIG. 1. Structure factor for ρ = 0.4, p = 1, a = 0, system size L = 100. Left: three-dimensional surface plot; right: contour plot.

the drive. In particular, we will consider, e.g.,

Gψ ||(r) ≡ 〈σ (
x)σ (
x + rx̂)〉; Gψ⊥(r) ≡ 〈σ (
x)σ (
x + rŷ)〉
(3)

and

Sψ ||(k) ≡ Sψ (q|| = k,0); Sψ⊥(k) ≡ Sψ (0,q⊥ = k ). (4)

Let us call attention to the different roles played by the
quantities 
q and k. The former is a wave vector, being the
conjugate to the vector 
x, with components (q||,q⊥). The latter
is a wave number, measuring the magnitude of 
q along one
of two axes, in the same spirit that r is the magnitude of 
x
along one of the axes. Thus, Sψ ||(k) and Gψ ||(r) are not simply
related to each other by Fourier transforms. Instead, Sψ ||(k)
is the transform associated with the average charge density
over a column ψ̄||(x) ≡ L−1 ∑

y σ (x,y) and its correlation
function Cψ ||(r) = 〈ψ̄||(x)ψ̄||(x + r)〉. Similarly, we can de-
fine the transverse counterparts: ψ̄⊥(y) ≡ L−1 ∑

x σ (x,y) and
Cψ⊥(r)=〈ψ̄||(y)ψ̄||(y + r)〉. (Of course, translational invari-
ance of the steady state provides the x or y independence of
the C’s.) We will not discuss these functions explicitly below,
but focus on the S’s, as the latter contain the same information
about the system, displayed in a better form.

With this setup, let us turn to the remarkable behavior
revealed by simulations. For simplicity, we focus mainly on
ψ and occasionally mention results for ρ. Thus, we drop
the subscripts on Gψ and Sψ as well. Considering first the
S’s, we report results found mainly in a a = 0,p = 1,ρ =
0.4,L = 100 system. The reason for this choice is that the
most interesting features are best displayed here.

In Fig. 1, we show S(
q) and immediately notice a feature
quite distinct from the structure factor of the KLS model,
namely, the presence of “twin peaks.” Despite being in the
disordered, homogeneous phase, such prominent structures
represent a major deviation from the simple Lorentzian 1/(τ +

q2) form of the equilibrium WRLG, as well as the discon-

tinuity singularity at 
q = 0 found in the KLS model [1,4],
(νxq

2
x + νyq

2
y )/[τxq

2
x + τyq

2
y + O(q4)]. While the data show

S⊥(k) decreasing monotonically as k increases from zero, S||(k)
rises to a maximum at wave number 9 before dropping. Such
a peak is indicative of a preferred wavelength induced by the
drive: λ ≡ 2π/kmax.

To be more confident of this unusual behavior in S||(k),
we considered finite-size effects, illustrated in Fig. 2. As the
figure shows, the data points for L = 50 and 200 fall well
within statistical errors of the L = 100 sample, so that, for this
density and drive, the thermodynamic limit is well represented
by the L = 100 system. Thus, we see that the small-k region
of const/S|| is well fit by τ + (|k| − kmax)2. Alternatively,
we can write S||(k) ∝ 1/[1 + (|k| − kmax)2ξ 2

|| + O(k4)], which
displays the presence of another length, ξ||, a candidate for

FIG. 2. Reciprocal of structure factor for system sizes L = 50
(circles), 100 (+ signs), and 200 (dots); other parameters as in Fig. 1.
Inset: data for L = 100 (points) compared with quadratic fit (curve)
to 17 points nearest the minimum.
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FIG. 3. Structure factors S(kx,0) (diamonds) and S(0,ky) (circles)
for parameters as in Fig. 1.

a “correlation length.” Note that S||(k) must be even in k,
as the equal-time two-point correlations in the steady state

must be even in x. Thus, the presence of peaks symmetric
about k = 0 is inevitable. Although, in principle, (k2 − k2

max)2

satisfies these symmetry conditions, Fig. 3 (diamonds) shows
that there is, without doubt, a kink singularity (∝ |k|) at k = 0,
so that the quadratic expression proposed above is a much
better fit to 1/S||. In this regard, though a kink singularity
is not necessary to generate period structures, the observed
oscillations are best modeled by one. The inset of Fig. 2 shows
that the data for 1/S|| are well fit by a quadratic expression,
0.475 + 1.11(|k| − kmax)2, with

kmax
∼= 0.56; λ ∼= 11.

This form implies that ξ|| � √
1.11/0.475 � 1.5. Mean-

while, Fig. 3 (circles) shows that S⊥ is consistent with the ordi-
nary Lorentzian form. Of course, the drive induces anisotropy,
so that ξ⊥ �= ξ|| in general. As in the KLS model, only one
of the correlation lengths, ξ||, diverges as the critical point is
approached, as discussed below. Our best phenomenological
estimate for the structure factor (for small 
k, for this sample)
is

S(
q) = ν||q2
|| + ν⊥q2

⊥
τ||q2

|| + τ⊥q2
⊥ + q2

||(|q||| − kmax)2 + 2γ×q2
||q

2
⊥ + γ⊥q4

⊥ + · · · . (5)

While such a form may seem unusual, it is based on a stochastic
field theory which has proven successful in describing the KLS
model [11] (the numerator and denominator being associated
with the noise and deterministic part of a Langevin equation
for the density field). The main distinguishing feature here is
the presence of kmax. (We also note that at the critical point, it
is τ⊥ that vanishes in KLS, whereas τ|| vanishes in the present
case.) To retrieve the undriven case, we need only set kmax = 0,
ν|| = ν⊥ = γ× = γ⊥ = 1, and τ|| = τ⊥. Though this form most
likely has limited validity (e.g., the presence of the singular
expression |q||| for all q⊥), there is no good theoretical basis
for us to propose additional terms at present. Thus, we will
discuss the salient features associated with this expression.

Recall that, in our notation, S||(k) is given by Eq. (5) with
q|| = k and q⊥ = 0, while S⊥(k) is obtained when we set
q|| = 0 and q⊥ = k. As in the KLS model, the discontinuity
singularity is induced by violation of detailed balance [11]
and displayed through

� ≡ ν||
τ|| + k2

max

− ν⊥
τ⊥

�= 0.

Considering the points nearest the origin (for this system size),
we have S(π/50,0) � 1.32 and S(0,π/50) � 0.78 (Fig. 3), so
that � � 0.54. This singularity is manifested in configuration
space by G(
r) decaying as (�/2π )(y2 − x2)/(x2 + y2)2 at
large distances [6]. Although such a power will dominate
the ordinary exponential decay for sufficiently large r , the
crossover will depend on the ratio of the amplitudes of the
two contributions. In this case, there appears to be only a small
regime (10 � r � 20) where power laws [37], are found in
both G|| and G⊥. While the data are consistent with G|| being
−�/(2πx2), the case for G⊥ appears to support the power −3

instead. If more extensive simulations bear out this scenario,
then it will be a challenge to understand such anomalous, yet
“generic” (in the sense of being present far from critical points)
singularities.

Let us return to the more prominent feature, namely, the
presence of a maximum at nonvanishing q||, accompanied
by the singular |q||| at the origin. Not surprisingly, the main
consequence is oscillations in G||, within an exponential
envelope. In the ρ = 0.4 case, ξ|| � λ, so that the oscillations
implied by λ are not easily seen. These features are however
prominent at larger densities, where ξ|| is more comparable to
λ. Meanwhile, as might be expected, no oscillations are found
in G⊥. In Fig. 4 we show both G|| and G⊥ for systems with
ρ = 0.5 and 0.6 (again, with a = 0, p = 1, and L = 100). The
rapid increase in ξ|| over that for ρ = 0.4, along with hardly
any changes in � implies that the power-law decays in G are
mostly masked. To be more confident of the nature of such
powers (expected or “anomalous”), we will need to perform
longer simulations (for statistics) of larger systems (to open a
larger window between ξ|| and L/2).

As shown in Fig. 2, deep in the disordered phase (ρ =
0.4), finite-size effects appear to be minimal already for L =
O(100). It is clear that, for this density, there is no need to
simulate larger systems to capture the essence of the prominent
properties of the driven WRLG. By contrast, in the next section,
we show that the maximum in S(
k) increases with ρ, so that,
for sufficiently large densities, the value does not converge
as L → ∞. Instead, S||(kmax) will diverge as the system size,
so that S||(kmax)/L2 can serve as an order parameter, in the
same spirit as S(
0)/L2 is a measure of the (square of the)
spontaneous magnetization in the nonconserved Ising model
in two or more dimensions. Along these lines, we mention for
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FIG. 4. Main graph: G|| for densities 0.5 (open symbols) and 0.6
(filled symbols), for p = 1, a = 0, and L = 100. The dashed curves
are an exponential envelope fit to the data for density 0.6. Inset: G⊥
for the same parameters (note semilog scale).

comparison, the divergence of S(0,2π/L) or S(2π/L,0) for
the 2D Ising lattice gas and of S(0,2π/L) alone for the KLS
model. Different from these examples, here S diverges at an
L-independent wave vector (kmax,0) over a sizable region of
the ρ-p plane.

B. Discrete mean-field theory and its continuum limit

In this subsection, we present the simplest theoretical de-
scription, as the first, small step towards a more comprehensive
theory. The idea here is to consider two continuous variables
at each discrete site, each corresponding to the average occu-
pation by the two species: ρA,B(
x,t). Next, we postulate the
simplest gain and loss terms for the change in ρA,B in a single
time step. Instead of writing every term here, let us illustrate
with just one example: the loss to ρA(
x,t) due to A particles
hopping along x (the t argument is dropped for simplicity):

(1 − a)(1 + p)

6
ρA(x,y)h(x + 1,y)[1 − ρB(x + 1,y + 1)]

× [1 − ρB(x + 1,y − 1)][1 − ρB(x + 2,y)] (6)

+ (1 − a)(1 − p)

6
ρA(x,y)h(x − 1,y)[1 − ρB(x − 1,y + 1)]

× [1 − ρB(x − 1,y − 1)][1 − ρB(x − 2,y)]. (7)

Here, h ≡ 1−ρA−ρB is the density of holes. The rest of the
analysis is straightforward, though quite tedious. It is clear
that such terms would be exact if we had written the averages
of the products of the appropriate σ s. In a mean-field (MF)
approximation, these are replaced by the appropriate products
of the averages, e.g., 〈σ (1 − |σ |)〉 → (ρA − ρB)h. Beyond the
site approximation pursued here, a (generally) more reliable
(and complicated) approach is the pair approximation, which
treats nearest-neighbor two-site joint probabilities as the ba-
sic elements [2]. Although we plan to implement the pair
approximation in future work, it seems possible that only
more sophisticated theories will be able to capture the periodic
structure observed under a drive.

FIG. 5. Current density j vs particle density ρ for drive parame-
ters p = 1 and a = 0, system size L = 200. Points: simulation results;
solid curve: mean-field prediction, Eq. (8); dashed curve: simple
mean-field prediction, j = ρ(1 − ρ) ≡ JKLS.

Since ρA(
x,t) is a conserved density, the gain and loss
terms are necessarily representable in terms of divergences
of currents. Identifying the terms associated with the net hops
from, say,x tox + 1, we find the leading contribution by setting
both densities to be the overall value: ρA,B = ρ/2. This is the
same approach used to find the current-density relationship
JKLS(ρ) = ρ(1 − ρ) in the KLS model. The result here is

JMF(ρ) = (1 − a)p
ρ

2
(1 − ρ)

(
1 − ρ

2

)3
, (8)

where the various factors can be readily associated with those
in, say, Eq. (6).

In Fig. 5, we show this JMF(ρ) (solid line) and the simulation
data (points) for a system of size L = 200 with a = 0, p =
1, as well as JKLS(ρ) (dashed line) for comparison. It is
remarkable how the properties of a complicated stochastic
system are mostly captured (i.e., ρ � 0.9) by such a simple
minded approach. Near the ρ = 1 limit, we note that the
data jump to follow another “branch” of the J -ρ relationship,
which is much closer to JKLS(ρ). This seemingly paradoxical
result can also be understood as follows. The jumps in the
data are associated with “merging” transitions, where many
strips merge into fewer. Eventually, the system settles into
a single strip (for each species) configuration. In this limit,
it is natural to regard the holes as “particles” and particles
as “holes.” The idea is that only some of these particles are
bound to interfaces which separate the A- and B-rich domains.
Roughly speaking, ρL2 − 2L of them remain mobile and are
driven through the large domains of holes, interacting in a
minimal way with the ones bound to the interfaces. Thus, we
can apply JKLS to this system, with the density of particles
being ρ − 2/L and (mobile) holes being 1 − (ρ − 2/L) . In the
large L limit, such an expression reduces precisely to ρ(1 − ρ).
Without showing it explicitly, the agreement between data
and (ρ − 2/L)(1 − ρ + 2/L), with L = 200, is excellent. The
reason the current associated with single-stripe configurations
lies much closer to the simple KLS prediction is that in this
case the density of mobile vacancies is much nearer 1 − ρ.
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In Fig. 5, there is a range of densities (approximately 0.86 �
ρ � 0.87) in which both multistripe and single-stripe configu-
rations exist. Although the former appear to be metastable,
precise determination of the associated lifetimes is left for
future study. On a lattice of L × L sites, the maximum possible
density is 1 − L/2. Configurations with this density are frozen,
since there are then no mobile vacancies. Outside this limit,
however, we do not observe jamming in the sense found in the
driven NNE model with NN hopping dynamics [17].

The next natural step in the attempt to formulate a theoretical
approach is to write a continuum approximation for the discrete
MF, while keeping the lowest few orders in the expansion
of the displaced densities, e.g., ρ(x + 1) → ρ(x) + ε∂xρ +
(ε∂x)2ρ/2 + · · · . The final step is to limit our present study
to the homogenous phase and consider the lowest orders in the
expansion of the densities

ρA,B(
x,t) = ρ

2
+ φA,B(
x,t) + · · · .

In this manner, we obtain expressions for ∂tφA,B(
x,t). If we
keep only the order linear in φ, we will find

∂t

(
φA

φB

)
=

(
D D̃

D̃ D

)(
φA

φB

)
, (9)

where D and D̃ are differential operators. Note that we have
taken account of the symmetry under A ⇔ B to write this
form. Clearly, the sum and difference of the φ fields diagonalize
this matrix. There should be no confusion if we again use the
notation ψ(
x,t) for φA − φB . In keeping with the discussions
above, we will focus on the ψ equation only, though the sum,
m(
x,t) ≡ φA + φB , will play a role at the nonlinear level. The
result of a tedious computation is, apart from the details of the
coefficients, to be expected from the fact that ψ is a conserved
density. Thus, we find ∂tψ to be the divergence of a current
density, obeying the appropriate space-time symmetries:

∂tψ = [(
E1∂x + E3∂

3
x . . .

) + (
D||∂2

x + D⊥∂2
y + · · · )]ψ.

For clarity, we have kept the parts odd in ∂x (which must be
absent when p = 0) separate from those even in ∂x,y (which
represent the diffusive parts of this equation). Thus in Fourier
space (
q,ω), the former set appears with i and can be seen as the
real part of a dispersion relation, ω(
q), which plays the role of
driven transport. The imaginary part plays the role of damping,
providing the sign is appropriate. From these, we have also
allowed for anisotropic diffusion (D|| �= D⊥), as p,a are not
necessarily 0,1/4. Of course, the various coefficients are real
functions of ρ, p, and a, the only control parameters here. At
this level, all are expected to be analytic, so that we expect the
E’s and D’s to be odd and even functions, respectively, of the
drive p. Naturally, the next step is to explore (linear) instability,
by checking if any aspect of the damping vanishes. The only
such occurrence is D|| vanishing at ρ = 1/6, independent of p,
corresponding to the the unmixing transition in the equilibrium
WRLG. Needless to say, this instability is of little relevance to
our driven lattice gas. But, as a mean-field-like result, it may
serve as a starting point for serious analysis.

To gain some insight into the structure factors and corre-
lations, we must add noise terms to form a set of Langevin
equations for the density fields, though these terms cannot be
derived from the discrete mean-field equations above. Thus we

write

∂tψ =[(
E1∂x+E3∂

3
x . . .

)+(
D||∂2

x+D⊥∂2
y+ · · · )]ψ+η(
x,t).

(10)

To account for the conservation law and possible anisotropy,
we will assume that η is delta-correlated, conserved, Gaussian
noise, with zero mean and

〈η(
x,t)η(
x ′,t ′)〉 = −[
N||∂2

x + N⊥∂2
y

]
δ(
x − 
x ′)δ(t − t ′).

Here again we have allowed for anisotropy, by writing two
different coefficients. As a reminder, in the undriven limit, our
dynamics satisfy detailed balance, which implies N||/D|| =
N⊥/D⊥. Following standard routes pioneered by Martin-
Siggia-Rose [38], Janssen [39], and de Dominicis [40], we
write the dynamic functional J [ψ,m; ψ̃,m̃] for both the
original density fields and the associated response fields ψ̃,m̃.
At the quadratic level, corresponding to the linear Langevin
example above, the ψ and m sectors decouple. The propagators
and correlators (e.g., in the ψ sector, the ψψ̃ and ψ̃ψ̃ terms)
in Fourier space are, respectively, i[ω − ω(
q)] + D||q2

x +
D⊥q2

y + O(q4) and N||q2
x + N⊥q2

y . The most general O(q4)
terms consistent with symmetry, anisotropy, and analyticity
are just �||q4

x , �×q2
xq

2
y , and �±q4

y . Thus, at this tree level,
the equal-time correlation Gtree(
r,0) can be found easily; its
transform reads

Stree(
q) = N||q2
x + N⊥q2

y

D||q2
x + D⊥q2

y + O(q4)
.

While this approach may appear to be reasonable for describing
the fluctuations of the homogeneous state, clearly, it fails to
predict the most prominent feature: the presence of a |qx |
term and the associated maximum at kmax. We are exploring
nonlinear terms in the Langevin equation (beyond quadratic in
J ) and whether a simple perturbative approach can generate
such a kink singularity. We conjecture that at one-loop level, a
term ∝ |q|||3 will emerge in the denominator, thereby justifying
the form in Eq. (5). Work is in progress to examine a systematic
approach, applying the Doi-Peliti formalism [41–44] to the
defining microscopic dynamics to derive (instead of postu-
lating) the appropriate functional. It is our hope that results
from such an analysis will provide a better description of
the phenomenological form above. The success of stochastic
field theory in the past is, of course, the systematic study
of universal properties in critical phenomena. Assuming that
the transition from the homogeneous to the inhomogeneous
state(s) is continuous, we believe this line of pursuit will lead
to different fixed point(s) and universality class(es).

IV. INHOMOGENEOUS STATES: PHASE SEGREGATION,
MULTIPLE STRIPES, CORRELATIONS,

AND INTERFACIAL PROPERTIES

In this section we report simulation results on the ordered
phase of the driven WRLG. In equilibrium, for ρA = ρB =
ρ/2, the system exhibits separation into A- and B-rich phases
above a certain critical density. We therefore begin by looking
for signs of phase separation under a drive.
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FIG. 6. Typical configurations of driven Widom-Rowlinson lattice gas, system size L = 200, parameters a = 0 and p = 1/3, with the drive
oriented toward the right. Points of differing color denote particles of species A and B, respectively; white points denote vacant sites. Particle
densities ρ = 0.7 (a), 0.75 (b), 0.80 (c), 0.85 (d).

A. Emergence of striped phases under a drive

As shown in the preceding section, under a drive, the
disordered system exhibits a preferred wavelength λ for charge
density oscillations. We find that, for densities ρ near the
onset of phase separation, a striped pattern of wavelength
λ appears, as is evident in configuration snapshots as well
as quantitative measures such as the structure factor. With
increasing density, λ first decreases, attaining a minimum
λmin for ρ � 0.65–0.70, and then grows, approaching the
system size Lx , as ρ → ρmax = 1 − 2/Lx . (Recall that at
least 2Ly vacancies are required to satisfy the prohibition of
NN A-B pairs.) We expect that in the limit Lx,Ly → ∞,
with fixed Ly/Lx and ρ < 1, the wavelength λ converges
to a size-independent function of the density and the drive
parameters.

In equilibrium, of course, maximum entropy implies the
minimum possible number of interfaces, so that λ is formally
infinite for zero drive. (There is, of course, no striped pattern
in equilibrium.) Consistent with this, λ grows systematically

as the drive p → 0. For p = 1, 1/2, 1/3, 1/4, and 1/8, we find
λmin = 10, 15, 18, 22, and 36 respectively; these data follow
λ � C1 + C2/p where C1 and C2 are constants.

In contrast to the KLS model, stripes of distinct phases
orient perpendicular to the drive, and have rough interfaces.
For a wide range of densities, single-stripe configurations (i.e.,
λ = Lx) are unstable, and the steady state exhibits multiple
stripes; for the system sizes investigated, single-stripe config-
urations do appear to be stable for higher densities (specifically,
for ρ � 0.83 when a = 0 and p = 1/3, and for ρ � 0.93, for
a = 0 and p = 1). These observations are illustrated for a = 0
and p = 1/3, in Figs. 6(a) and 7. For the densities shown, A-
and B-rich regions are evident, organized into stripes oriented
perpendicular to the drive. At the highest density shown,
ρ = 0.85, each phase occupies a single stripe, a situation that
persists for systems of size L � 400. The configurations shown
in Figs. 6–8 were obtained using single-stripe initial conditions
(perpendicular to the drive), thus demonstrating instability
toward formation of multiple stripes for ρ � 0.82.
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FIG. 7. Configuration for L = 400, ρ = 0.85, a = 0 and p = 1/3.

We note that, for ρ > ρc and a nonzero drive, initial
configurations with A- and B-regions separated by a boundary
parallel to the drive rapidly reorganize so that resulting the
stripe or stripes are perpendicular to it. After a short time
(∼ 103 MC steps) the initially flat interface develops waves
which grow steadily in amplitude. When they reach a height
∼ L/2, they reconnect via the periodic boundaries, forming
stripes perpendicular to the drive. The latter are initially quite
irregular, but (for sufficiently high densities) rapidly become
ordered, so that the system is separated into clear bulk and
interfacial regions.

While experience with the KLS model might lead one to
expect interfaces parallel to the drive, it appears that without
attractive interactions there is no mechanism for stabilizing and
smoothing such an interface in the driven WRLG. On the other
hand, sequences of the form A0B (where 0 represents a vacant
site) along the drive represent barriers, behind which particles
may form a queue (and analogously for B0A sequences).
Formation of queues (together with the prohibition of A-B
NN pairs) may stabilize stripes perpendicular to the drive.

FIG. 8. Configuration for L = 400, ρ = 0.7, a = 0, and p = 1/3.

FIG. 9. Power spectra of composition variation ψ||,i along the
drive direction for L = 200, p = 1/3, a = 0, and ρ = 0.85 (open
circles), 0.80 (open squares), 0.75 (filled circles), and 0.70 (filled
squares).

Why many stripes of the same phase form, instead of just one,
is unclear. Figure 6(c) provides a hint of the mechanism: a
fluctuation in the boundary has allowed B particles to invade
an A stripe, leading to formation of a new stripe. Multistripe
configurations may contain defects, as is evident in Figs. 6(a)
and 8.

Preferred wavelength

As noted above, for a nonzero drive, the structure factor
S||,k shows a distinct maximum for a certain wave number,
k = 2πm/L, corresponding to the preferred wavelength λ =
L/m. Power spectra of the columnwise charge density ψ||,i
are particularly useful in determining λ (see Fig. 9). The latter
is a decreasing function of drive at fixed density, as shown in
Fig. 10. Since the density of vacancies 1 − ρ is complementary
to the particle density, and since each stripe requires at least
2L vacancies for the interfaces, the number of stripes should
decrease (and λ increase) as the density approaches unity, as
verified in Fig. 11. This figure also shows that the dependence
of λ on ρ for different drive strengths is qualitatively similar,
and that the dependence of λ on system size is weak.

Our results for λ derive from initial configurations (ICs)
using both single and multiple stripes. For densities in the range
0.5 � ρ < 0.8, the different ICs yield consistent results for the
stationary value of λ. For ρ � 0.8, however, the steady-state
wavelength λs tends to remain the same as the initial value,
λ0, for the duration of the simulations, over a wide range of
λ0, hampering a precise determination of λs . For p = 1/3 and
ρ = 0.8, for example, we find λs = λ0 for initial wavelengths
in the range 22–26. For p = 1/4 and ρ = 0.8 the range of
stable values broadens to 30–50. (While it remains possible
that the uncertainty in λ would be smaller, using longer studies,
it appears that the evolution of the number of stripes is very
slow at densities � 0.8.)

B. Local ordering

At intermediate densities, the driven system exhibits local
ordering into A- and B-rich stripes, without global ordering
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FIG. 10. Preferred wavelength λ vs drive parameter p for L =
200, density ρ = 0.75, and hopping parameter a = 0. Since the
system size is 200, the preferred wavelength at the lowest density
shown may well exceed 200; studies of larger systems would be
necessary to verify its value.

of the pattern; an example is shown in Fig. 8. To quantify
local ordering, we consider a function that essentially projects
regions of size λ onto a patch of an ideal pattern. Consider
a rectangle of λ × � sites, i.e., R ≡ {1 � x � λ} × {1 � y �
�}. Let Q1 be the excess number of A particles over B particles
in the left half (1 � x � λ/2) and Q2 the excess number in the
right half; define

ψR = Q1 − Q2

λ�
. (11)

This quantity takes nonzero values when the region is
centered on a stripe of width λ, but will be close to zero
in random configurations, or in regions occupied by a single

FIG. 11. Preferred wavelength λ vs density ρ for drive parameters
(upper to lower) p = 1/4, 1/3, 1/2, and p = 1; hopping parameter
a = 0 in all cases. System sizes: L = 240 (p = 1/4), 200 (p = 1/3
and 1/2), 240 (p = 1: filled squares), and 120 (p = 1: ×). Lines are
guides to the eye.

FIG. 12. Probability densities p(ψR) of the local order (using
λ = 10 and � = 20), for densities (upper to lower at center) 0.5, 0.6,
0.64, 0.65, 0.66, and 0.7. Drive parameters p = 1 and a = 0, system
size L = 100. Right inset: p(ψR) for ρ = 0.6 as in main graph (broad
curve), compared with pr (ψR), for randomly generated configura-
tions at the same density (central curve). Left inset: 〈|ψR|〉 (upper
dashed curve), 〈|ψR|〉r (lower dashed curve), and their difference, �

(central curve), vs density.

species. Thus a convenient measure of local ordering is � =
〈|ψR|〉 − 〈|ψR|〉r , where the first average is over configurations
in the stationary state at a given density, and the second is over
configurations (of the same density) generated by inserting
A and B particles, with equal probabilities, at random into
R, subject to the prohibition against A-B nearest-neighbor
pairs. The probability density p(ψ) changes from unimodal to
bimodal at a certain density, marking the growth of local order.
In Fig. 12, for p = 1, the transition from unimodal to bimodal
occurs near ρ = 0.65. This does not imply, of course, that there
is no local ordering below this density. The behavior of � is
quite smooth over the range of densities of interest (see right
inset of Fig. 12), suggesting that there is no phase transition
associated with local ordering. For weaker drives, the transition
from a unimodal to a bimodal distribution occurs at a similar
density: ρ = 0.66 for p = 1/2, and ρ = 0.63 for p = 1/4.
Thus, under a drive, short-range order appears at a density
slightly above the equilibrium critical density, ρc = 0.618(1).

C. Order parameter and phase boundary

Given the evidence of phase separation discussed above,
in the form of A- and B-rich stripes oriented perpendicular
to the drive, we turn to a more quantitative discussion, which
requires definition of an order parameter. The ordered phase is
characterized by charge-density oscillations along the drive,
i.e., a correlation function C||(r) � A exp[iq∗r] and an as-
sociated structure factor S||,q with a maximum (at q = q∗)
proportional to (LA)2. We therefore define the order parameter
φ = S||,q∗/L2. The order parameter is plotted versus density
in Fig. 13 for p = 1 and a = 0; the plot strongly suggests that
there is a continuous phase transition at a density near 0.72.

To obtain a more precise estimate of the density ρc marking
the onset of global order, we perform a finite-size analysis of the
order parameter φ. For fixed p and ρ (and a = 0), we determine
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FIG. 13. Order parameter vs density for p = 1, a = 0, and L =
240 (filled symbols) and 120 (open symbols). Lines are guides to the
eye; error bars smaller than symbols.

φ for a series of system sizes L. In the disordered phase, we
expect φ to decrease rapidly with L, whereas in the ordered
phase it must approach a nonzero limiting value as L → ∞. A
phase transition is marked by slow decay of the order parameter
with L, typically a power law, φ ∼ L−β/ν|| . Thus in a plot
of ln φ versus ln L for fixed density ρ, we interpret upward
(downward) curvature as a signal of the ordered (disordered)
phase.

Estimating ρc is complicated by the fact that as one varies
the density, the preferred wavelength changes, as shown in
Fig. 11. We obtain more orderly patterns (higher values of φ)
using system sizes L that are integer multiples of the preferred
wavelength. (Note that the latter need not be an integer. For
p = 1 and ρ = 0.74, for example, the preferred wavelength is
10.63.) A well ordered pattern consists of an integer number of
wavelengths, which is only possible for specific system sizes.
This leads to an irregular variation of φ with L, as shown in
Fig. 14. Small changes in L (for example, from 140 to 144) can
yield large (and reproducible) changes in φ. The various points
on the graph of φ versus L can nevertheless be bounded from

FIG. 14. Order parameter vs system size for p = 1, a = 0, and
ρ = 0.74. Values for system sizes 140 and 144 are highlighted for
comparison. The bold line represents the envelope.

FIG. 15. Envelope of order parameter for p = 1, a = 0, and
(lower to upper) ρ = 0.71, 0.72,..., 0.78.

above by a smooth “envelope.” The points falling on or near
the envelope represent the most ordered cases; we therefore
apply the curvature criterion described above to the envelope.
For the data shown in Fig. 14, the λ values associated with
points along the envelope fall in the range 10.50–10.77, with
a mean of 10.63(5), providing an estimate of the preferred
wavelength. We also note that in this case, the envelope is
fairly well described by a power law, with an exponent β/ν|| =
0.173(5).

We adopt the following procedure to determine φ as a
function of L:

(1) Perform a survey of L values, to estimate the preferred
wavelength λ.

(2) Determine φ for a series of system sizes L such that
there is an integer n with L/n falling near λ.

(3) If necessary, refine the estimate for the preferred wave-
length and return to 2.

Varying the density from 0.71 to 0.78 (for fixed p = 1 and
a = 0), we find the set of envelopes shown in Fig. 15. For ρ �
0.73 the envelopes curve downward, while for 0.74 � ρ �
0.76 there is no clear curvature; for ρ � 0.77 the data appear to
curve upward. Thus the onset of global order occurs at a density
close to 0.77. For densities in the range 0.74–0.76, the order
parameter appears to decay as a power law of the system size,
with an exponent β/ν|| varying between about 0.173 and 0.143.
For a small drive (p = 1/8, a = 0), a similar analysis shows
that the transition occurs at ρ � 0.73. Determining the precise
value of ρc as a function of the drive parameters, and verifying
the existence of a “critical phase” in which the order parameter
scales as an inverse power of L, will require extensive studies
of larger systems, a task we defer to future work.

D. Correlation functions

Along with the local and global order parameters discussed
above, two-point correlation functions afford insight into the
organization of the driven system. The charge-charge and
density-density correlation functions are plotted in Figs. 16
and 17, respectively, for maximum drive. Gψ || exhibits the
oscillations expected given the stripe pattern. Interestingly,
the decay of Gψ⊥, which reflects the persistence of stripes
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FIG. 16. Charge-charge correlation functions Gψ ||(x), along drive
(oscillating), and Gψ⊥(x), perpendicular to drive (decaying mono-
tonically), for p = 1, a = 0, and (upper to lower) density ρ = 0.7,
0.75, and 0.8. The curves for ρ = 0.7 (0.8) have been shifted upward
(downward) by 1.5 for legibility.

in the direction perpendicular to the drive, decays in a manner
qualitatively similar to the envelope of the oscillations in Gψ ||.
The density-density correlation function along the drive, Gρ||,
exhibits weak oscillations at twice the spatial frequency as the
charge-charge correlation, reflecting a reduction in density at
the interfaces between stripes.

At the lowest density (ρ = 0.7) shown in the figures, all
four correlation functions decay in a manner best described by
a stretched exponential, G ∼ exp[−(x/ξ )β], with exponents β

ranging from 0.36 (for Gρ||) to 0.55 (for Gψ || and Gψ⊥ . (For
correlations along the drive, the envelope of the oscillations
decays as a stretched exponential.) For density 0.75, stretched-
exponential decay is again observed, with β � 0.2, except in
the case of Gψ⊥, which is better fit by a power law, G ∼ 1/rα ,
with α = 0.133. At density 0.8, Gψ || approaches a nonzero
limit of about 0.41 as x → ∞, marking long-range coherence
of the stripe pattern. The other correlation functions decay

FIG. 17. Density-density correlation functions Gρ||(x), along
drive (oscillating), and Gρ⊥(x), perpendicular to drive (decaying
monotonically for x � 2), for parameters as in Fig. 16. The correlation
functions are multiplied by 10, and curves for ρ = 0.7 (0.8) have been
shifted upward (downward) by 1, for legibility.

as power laws, with exponents α = 0.080 (for Gψ⊥), 0.62
(for Gρ||) and 0.33 (Gρ⊥). Thus, correlations decay more
slowly at higher density. A nonzero limiting value of Gψ ||
provides an alternative for detecting long-range order; we defer
a systematic analysis using this criterion to future work.

E. Interface width

As shown above, the boundary between A- and B-rich
phases defines an interface oriented, on average, perpendicular
to the drive, but with significant fluctuations. Thus the scaling
properties of the interface width with time and system size are
of interest. We examine these properties in the single-stripe
regime, in which identification of the interface is relatively
simple. Given a configuration, we define for each j = 1, . . . ,L

in the direction perpendicular to the drive, and for � = 1, . . . ,L

along the drive, the function

s(�,j ) ≡
�∑

i=1

σi,j . (12)

Since s(�,j ) represents the excess of A particles over B

particles in the first � sites in row j , the values of � for
which s(�,j ) takes its maximum and minimum correspond to
the interface positions in this row. (If the sites at which the
maximum or minimum values occur are not unique, we use
the smallest � at which the extremum occurs.) Given the set of
sites �+(j ) marking the maximum, we construct a random walk
representation of the interface, h+(j ), by setting h+(1) = 0
and, for j � 2, taking h+(j ) = h+(j − 1) + [�+(j ) − �+(j −
1)], where the difference in the square brackets is calculated
under periodic boundaries. A second interface is constructed
using the positions at which s(�,j ) takes its minimum. The
width of each interface is given by

w =
⎧⎨
⎩

1

L

L∑
j=1

[h+(j ) − h]2

⎫⎬
⎭

1/2

, (13)

where h = (1/L)
∑L

j=1 h+(j ).
We examine the scaling properties of the interface width as

a function of time and system size, plotting, in Fig. 18 (main
graph), the width versus time for system sizes L = 50, 100,
200, and 400, and (inset) the saturation (long-time) width wsat

versus system size. These data are for p = 1/3, a = 0, and
density ρ = 0.85 (single-stripe regime). The data for w(t) do
not follow simple power laws, and cannot be collapsed onto
a single curve by rescaling time and width. It is nevertheless
possible to estimate the growth exponent βw (associated with
the behavior w ∼ tβw ) using the most linear portions of the
graphs (specifically, the second through fifth points in the
present case), yielding βw = 0.182(3), 0.205(4), 0.223(5),
and 0.228(6), for system sizes 50 through 400, respectively.
The expected scaling of the saturation width, wsat ∼ Lα is
satisfied to reasonable approximation; for L � 100 we find
α = 0.516(6). We note that the exponent values are not very
different from those of the Edwards-Wilkinson (EW) class,
α = 1/2 and βw = 1/4; it is conceivable that the observed
deviations reflect finite-size effects. We defer a more precise
determination of the interface width, including analyses of
multistripe systems, to future work.
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FIG. 18. Interface width w vs time for p = 1/3, a = 0, and
system sizes L = 50, 100, 200, and 400 (lower to upper). Inset:
wsat vs L.

V. SUMMARY AND OUTLOOK

We study nonequilibrium stationary properties of a Widom-
Rowlinson lattice gas subject to a drive favoring particle hop-
ping along one axis and suppressing hopping to the opposite
direction. The stationary properties are surprisingly different
from those of the driven lattice gas with attractive interactions.
As in the equilibrium WRLG [19], there is a phase transition
with segregation between particle species as the density is
increased; the critical density for phase separation increases
with drive. We find that even in the disordered phase, there
is a preferred wavelength λ evident in the charge-charge
correlation function along the drive direction, and that the
associated structure factor S(k,0) does not take the usual
Ornstein-Zernike form. With increasing density, local ordering
into A- and B-rich regions occurs, with the appearance of
stripes oriented perpendicular to the drive, but without global
coherence. Increasing the density further, we observe a transi-
tion to a stripe pattern with long-range order. We characterize
the system in terms of local and global order parameters,

correlation functions, and associated structure factors, and
provide preliminary results on interface roughness and the
particle current provoked by the drive.

Our study leaves many intriguing questions for future study.
Among them, we highlight the following:

(1) Why does phase separation result in stripes of a
characteristic width λ instead of two regions, as happens in
equilibrium? Simulations suggest that very broad stripes are
unstable, but the underlying mechanism is unclear.

(2) Why do the stripes form perpendicular to the drive?
Again, we observe an instability in an interface oriented
parallel to the drive—undulations on such an interface tend
to grow—but a quantitative explanation is lacking.

(3) Can one develop a hydrodynamic description or time-
dependent Ginzburg-Landau theory capable of reproducing the
phenomenology observed in simulations? Can one derive a
quantitative prediction for the current? We find (in Sec. III)
that although simple mean-field analyses do not predict the
phase diagram, they do yield quite good predictions for the
current.

(4) What is the nature of the phase transition to long-range
order of the stripe pattern? Can it be connected to (equilibrium)
transitions in smectic liquid crystals?

(5) Do the scaling properties of the interfaces fall in the
Edwards-Wilkinson class, or some other known class of growth
processes?

(6) To what extent does entropy maximization, which is the
sole factor determining static properties at equilibrium, hold
in the driven system, particularly for a weak drive? Related to
this, is the zero-drive limit smooth or singular?

Although these and other questions remain open, our study
demonstrates that the driven Widom-Rowlinson lattice gas
exhibits surprising behaviors.
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