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In this paper we study the one-dimensional Kardar-Parisi-Zhang (KPZ) equation with correlated noise by
field-theoretic dynamic renormalization-group techniques. We focus on spatially correlated noise where the
correlations are characterized by a sinc profile in Fourier space with a certain correlation length ξ . The influence
of this correlation length on the dynamics of the KPZ equation is analyzed. It is found that its large-scale behavior
is controlled by the standard KPZ fixed point, i.e., in this limit the KPZ system forced by sinc noise with arbitrarily
large but finite correlation length ξ behaves as if it were excited by pure white noise. A similar result has been
found by Mathey et al. [S. Mathey et al., Phys. Rev. E 95, 032117 (2017)] for a spatial noise correlation of
Gaussian type (∼e−x2/2ξ2

), using a different method. These two findings together suggest that the KPZ dynamics
is universal with respect to the exact noise structure, provided the noise correlation length ξ is finite.
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I. INTRODUCTION

The standard form of the Kardar-Parisi-Zhang (KPZ) equa-
tion introduced for modeling nonlinear growth processes reads
[1]

∂h(x,t)

∂t
= ν∇2h(x,t) + λ

2
[∇h(x,t)]2 + η(x,t), (1)

where h(x,t) is a scalar height field (with x and t as space
and time coordinates, respectively), ν is a surface tension
parameter, and λ is a nonlinear coupling constant. Here η(x,t)
denotes an uncorrelated Gaussian noise with zero mean (white
noise in space and time), meaning that the first and second
moments of the noise are given by

〈η(x,t)〉 = 0,

〈η(x,t)η(x ′,t ′)〉 = 2Dδd (x − x ′)δ(t − t ′),
(2)

where D is a constant amplitude and d is the spatial dimension.
Besides white noise, various types of spatially and temporally
correlated driving forces have been studied over the years [2,3].

With respect to spatial correlations, a widely studied type of
driving forces is power-law correlated noise with Fourier-space
correlations ∼q−2ρ and ρ > 0 as a free parameter [2,4,5]. The
intriguing observation here is the emergence of a different noise
fixed point for ρ > 1/4, in addition to the standard Gaussian
and KPZ fixed points.

Recently the KPZ equation with spatially colored and
temporally white noise decaying as ∼e−x2/2ξ 2

was studied
by a nonperturbative dynamic renormalization-group (DRG)
analysis in [6]. It was found that for small values of ξ the KPZ
equation behaves in the large-scale limit as if it were driven by
white noise, i.e., by a driving force with vanishing correlation
length. Since the nonperturbative renormalization-group (RG)
equations are difficult to solve analytically, the authors of [6]
relied on numerical techniques.

In the present paper we study the case of spatially correlated
noise, where the correlations are characterized by a sinclike
profile in Fourier space. In contrast to [6], we solve the

problem analytically using field-theoretic renormalization-
group techniques. Our aim is to provide a complementary
study of universality in the KPZ dynamics for finite correlation
lengths ξ .

As already pointed out in [6], the assumption of ξ being
finite is reasonable in many experimental settings and, on
the other hand, we would expect that universal properties do
not change if the system is scale invariant on large scales. In
fact, Refs. [7–9] found evidence of universal behavior in the
case of (1+1)-dimensional directed polymers based on scaling
arguments and numerical techniques.

There are mainly two reasons why we focus on a driving
noise with a sinc profile. First, in one spatial dimension this
type of noise has a very intuitive real-space equivalent, namely,
the rectangle function. Second, in Fourier space the noise
correlations are mathematically well behaving and thus we
expect to be able to solve the perturbation integrals analytically.

Of course, a sinc profile is not the only possible choice. In
order to analytically solve the integrals, other types of driving
forces may be possible as well; for instance, noise correlations
following a Lorentzian profile also work.

The paper is organized as follows. For treating sinc-type
noise, we first generalize the field-theoretic DRG formalism
for the KPZ equation in such a way that we can handle homo-
geneous and isotropic noise distributions, whose correlations
in momentum space are given by

〈η(q,ω)η(q ′,ω′)〉 = 2D(|q|2)δd (q + q ′)δ(ω + ω′). (3)

Note that D does not depend on the frequency, i.e., the noise
is spatially colored but temporally white.

For this class of noise correlations, which includes the
power law (∼q−2ρ) and Gaussian (∼e−ξ 2q2/2) and sinc-type
correlations, we set up the field-theoretic DRG formalism in
the next section. With the theoretical framework laid out in
Sec. II, the explicit sinc-noise excitation will be analyzed in
Sec. III. In Sec. IV the results obtained in Sec. III will be
discussed. Technical details are given in the Appendix.
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II. GENERALIZED FIELD-THEORETIC
RENORMALIZATION-GROUP PROCEDURE

A useful tool for building a field theory for stochastic
differential equations of type (1) is the effective action A[h̃,h],
known as the Janssen–De Dominicis response functional
[10,11]. Here the action depends on the original height field
h(x,t) and the Martin-Siggia-Rose response field h̃(x,t).

To derive the effective action, it is useful to transform Eq. (3)
into real space

〈η(x,t)η(x ′,t ′)〉 = 2D(x − x ′)δ(t − t ′), (4)

where D(x) = FT −1{D(|q|2)} [4,5]. Using the abbrevi-
ations y = (x,t) and

∫
y

= ∫
ddx

∫
dt , the corresponding

Gaussian noise probability distribution can be written
as [12]

W[η] ∝ exp

[
−1

2

∫
y

∫
y ′

η(y)M(y; y ′)η(y ′)

]
, (5)

where M(x,t ; x ′,t ′) is the inverse of the covariance operator

M−1(x,t ; x ′,t ′) = 〈η(x,t)η(x ′,t ′)〉
given in (4), i.e.,∫

ddx ′
∫

dt ′M(x,t ; x ′,t ′)M−1(y,τ ; x ′,t ′)

= δd (x − y)δ(t − τ ). (6)

Using (5) and following Refs. [13–15], the expectation value of any observable O[h] can be written as

〈O[h]〉 =
∫

D[h]
∫

D[ih̃]O[h] exp

[∫
ddx

∫
dt h̃(x,t)

(
∂th(x,t) − ν∇2h(x,t) − λ

2
[∇h(x,t)]2

)]

×
∫

D[η] exp

[
−1

2

∫
ddx

∫
dt

(∫
ddx ′

∫
dt ′η(x,t)M(x,t ; x ′,t ′)η(x ′,t ′) − h̃(x,t)η(x,t)

)]
. (7)

Integrating out the noise, Eq. (7) can be rewritten in the form
[4,5,10,11,16]

〈O[h]〉 ∝
∫

D[h]O[h]P[h]

=
∫

D[h]O[h]
∫

D[ih̃]e−A[h̃,h], (8)

with the Janssen–De Dominicis functional [12,15,17,18]

A[h̃(x,t),h(x,t)]

=
∫

y

{
h̃(y)

(
∂h(y)

∂t
− ν∇2h(y) − λ

2
[∇h(y)]2

)

−
∫

ddx ′h̃(x,t)D(x − x ′)h̃(x ′,t)
}
. (9)

With this functional, one can carry out the usual field-theoretic
perturbation expansion in λ (see, e.g., [17,19–21]).

Field-theoretic calculations can be simplified by exploiting
the symmetries of the problem. In the present case the KPZ
equation is known to be invariant under tilts (Galilei transfor-
mation) of the form [4,19]

h(x,t) → h′(x,t) = h(x + αλt,t) + α · x,

h̃(x,t) → h̃′(x,t) = h̃(x + αλt,t),
(10)

where α is the tilting angle. This symmetry gives rise to two
Ward-Takahashi identities. For this reason the KPZ equation
has only two independent RG entities, namely, the amplitude
of the noise correlation D(x − x ′) and the surface tension ν

[4,19]. These are renormalized by

DR = ZDD, νR = Zνν, (11)

where the multiplicative RG factors Zν and ZD compensate
for logarithmic UV divergences occurring in the perturbation

integrals. The RG parameters are related to the vertex functions
�h̃h and �h̃h̃, which are given by functional derivatives

�h̃h = δ

δh̃

δ

δh
�[h̃,h,j̃ ,j ]

∣∣∣∣
j̃=0=j

, (12)

�h̃h̃ = δ2

δh̃δh̃
�[h̃,h,j̃ ,j ]

∣∣∣∣
j̃=0=j

(13)

of the generating functional �[h̃,h,j̃ ,j ], which is the Legendre
transformation of the free energy− lnF (see, e.g., [19,21–24]),

�[h̃,h,j̃ ,j ] = − lnF[j̃ ,j ] +
∫

ddx

∫
dt(h̃j̃ + hj ). (14)

Here h̃ = δ lnF[j̃ ,j ]/δj̃ and h = δ lnF[j̃ ,j ]/δj are the re-
spective new variables after the Legendre transformation and
j̃ and j are artificial source fields (see [17,19,21]). In what
follows the vertex functions �h̃h and �h̃h̃ will be calculated
to one-loop order in Fourier space for an arbitrary noise with
correlations of the form (3).

Denoting the free propagator by G0(k) [k = (q,ω)] and
the self-energy by 
(k), the analytic expressions for the
diagrams shown in Fig. 1 are given by the Dyson equation
�h̃h(k) = G0(−k)−1 − 
(k) [21–23] and the expansion of
the noise vertex �h̃h̃(k) = −2D(q) + · · · , where the ellipsis
denotes higher-order terms. Using the usual Feynman rules
(see, e.g., [17]) and integrating out the inner frequencies, one
obtains

�h̃h(k) = iω + νq2 + λ2

2ν2

∫
p

D(|p − q/2|2)(q2/2 − q · p)

(q/2 − p)2

× q2/4 − p2

iω
2ν

+ q2/4 + p2
+ O(λ3), (15)
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FIG. 1. Feynman diagrams for the KPZ equation in a style following [17]. The left-hand diagram shows the one-loop order expansion of
the propagator vertex function �h̃h, whereas the right-hand side depicts the one-loop order expansion of the noise vertex function �h̃h̃. Here
q denotes the outer momentum and p stands for the inner momentum. Note that a symmetrization has already been done, which leads to the
noise amplitudes depending on p ± q/2. For clarity the frequency components carried by each line corresponding to the different momenta are
omitted.

�h̃h̃(k) = −2D(|q|2) − λ2

2ν3

∫
p

D(|p + q/2|2)D(|p − q/2|2)

×	
[

1
iω
2ν

+ q2/4 + p2

]
+ O(λ3), (16)

where we used the abbreviation
∫
p

= 1
(2π)d

∫
ddp. These inte-

grals generalize those obtained, e.g., in [4,19] to arbitrary noise
correlations of the form (3).

Evaluating (15) and (16), it is essential to avoid mixing
ultraviolet and infrared divergences of the integrands. One way
to keep those divergences separated is to introduce a so-called
normalization point (NP). An indiscriminate yet very useful
choice is given by [19]

ω

2ν
= μ2, q = 0, (17)

where μ is an arbitrary momentum scale. One advantage of the
choice in (17) is that the integrals (15) and (16) can be evaluated
at q = 0 by expanding the general noise amplitude D(|p ±
q/2|2) about p for |q| 
 1. Hence, to O(|q|2) the momentum-
dependent noise amplitude reads

D

(∣∣∣p ± q

2

∣∣∣2
)

= D(|p|2) ± (p · q)D′(|p|2) + O(|q|2).

(18)

Using the identities (d is the spatial dimension) [17,19]∫
p

(p · q)2h(|p|,|q|) = q2

d

∫
p

p2h(|p|,|q|),
∫

p

p2(p · q)2h(|p|,|q|) = q2

d

∫
p

p4h(|p|,|q|)

and inserting (18) into (15) implies, at the NP,

∂�h̃h

∂q2

∣∣∣∣
q=0

= ν − λ2

4ν2

d − 2

d

∫
p

D(|p|2)

iμ2 + p2

− λ2

2ν2

1

d

∫
p

p2D′(|p|2)

iμ2 + p2
. (19)

The evaluation of (16) at the NP (17) leads, with (18), to

�h̃h̃ = −2D(|q|2) − λ2

2ν3

∫
p

[D(|p|2)]2 p2

μ4 + p4
. (20)

From (19) and (20) we obtain the renormalization factors

Zν = 1 − λ2

4ν3

d − 2

d

∫
p

D(|p|2)

iμ2 + p2

− λ2

2ν3

1

d

∫
p

p2D′(|p|2)

iμ2 + p2
, (21)

ZD = 1 + 1

D(|q|2)|q=0

λ2

4ν3

∫
p

[D(|p|2)]2 p2

μ4 + p4
. (22)

These results allow us to compute the Wilson flow functions
[4,17,19]

γD = μ
∂

∂μ
ln ZD, (23)

γν = μ
∂

∂μ
ln Zν, (24)

where the derivative is taken while keeping D and ν fixed.

Likewise, the β function is given by

βg = μ
∂

∂μ
gR, (25)

where

gR = gZgμ
d−2 = gZDZ−3

ν μd−2 ∼ λ2D

4ν3
μd−2 (26)

is a dimensionless effective coupling constant and D =
D(|q|2 = 0) is given in Eq. (3).

The dimension of an effective coupling constant in the above
form is (see, e.g., [19])

[g] =
[
λ2D

4ν3

]
= μ2−d .

This explains why g has to be multiplied by μd−2 to render gR

dimensionless.
With the flow functions (23)–(25) a partial differential

renormalization-group equation can be formulated. This RG
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equation may be solved by using the method of characteristics,
where a flow parameter l and an l-dependent continuous
momentum scale μ̃(l) = μl are introduced. Those solutions
are then used to formulate a KPZ-specific scaling relation for,
say, the two-point correlation function C(q,ω). This relation
reads [19]

C(μ,DR,νR,gR,q,ω) = q−4−2γ ∗
ν +γ ∗

D Ĉ

(
ω

q2+γ ∗
ν

)
, (27)

where the asterisk superscript indicates that the Wilson flow
functions are evaluated at the stable IR fixed point. A detailed
explanation of how the scaling form in (27) is obtained can be
found, e.g., in [17,19]. A comparison of (27) with the general
scaling form for the KPZ two-point correlation function in
Fourier space (see, e.g., [1,19,25,26]), i.e.,

C(q,ω) = q−d−2χ−zĈ

(
ω

qz

)
, (28)

leads to the following expressions for the dynamical exponent
z and the roughness exponent χ [17,19]:

z = 2 + γ ∗
ν , (29)

χ = 1 − d

2
+ γ ∗

ν − γ ∗
D

2
. (30)

These general considerations will be used in the next part to
obtain the critical exponents z and χ for KPZ driven by sinc-
type noise.

III. THE KPZ EQUATION WITH SINC-NOISE
CORRELATION

We now apply these results to the case of the sinc-type noise
with the correlations of the form (3) with

D(|q|2) = D
sin(ξ |q|)

ξ |q| , (31)

where D is a constant noise amplitude, q ∈ Rd , and ξ

defines the scale of the sinc profile. For simplicity, let us
consider the case d = 1. Here the noise distribution trans-
formed back to real space is a rectangle with size 2ξ × D/ξ

centered at x = 0, which tends to δ(x) (white noise) in the
limit ξ → 0 [1].

The first step now is to calculate explicit expressions for the
renormalization factors from (21) and (22). Inserting Eq. (31),
the renormalization factors evaluated in d = 1 to one-loop
order read

Zν = 1 + Dλ2

4ν3

1

π

[
2

∫ ∞

0
dp

sin(ξp)

ξp(iμ2 + p2)

−
∫ ∞

0
dp

cos(ξp)

iμ2 + p2

]
, (32)

ZD = 1 + Dλ2

4ν3

1

π

∫ ∞

0
dp

sin2(ξp)

ξ 2(μ4 + p4)
. (33)

The integrals occurring in (32) and (33) can be computed by

means of the residue theorem, which leads to

Zν = 1 + Dλ2

4ν3

e−(1/
√

2)ξμ

ξμ2

[
sin

(
1√
2
ξμ

)(
1 + ξμ

2
√

2

)

− ξμ

2
√

2
cos

(
1√
2
ξμ

)]
, (34)

ZD = 1 + Dλ2

4ν3

e−√
2ξμ

4
√

2ξ 2μ3

× {e
√

2ξμ − [sin(
√

2ξμ) + cos(
√

2ξμ)]}. (35)

In the Appendix the derivation of these formulas is explained
in more detail.

A. Small-correlation-length expansion

Let us now focus on small correlation lengths ξ 
 1 and
expand (34) and (35) in ξ up to O(ξ 2). Introducing the effective
coupling constants [2]

g = Dλ2

4ν3
, gR = gZg

2
√

2μ
, (36)

gξ = Dξ 2λ2

4ν3
, gξ,R = gξZgμ

2
√

2
, (37)

with Zg = ZDZ−3
ν the one-loop integrals simplify,

Zν = 1 + g

2
√

2μ
− gξμ

12
√

2
, (38)

ZD = 1 + g

2
√

2μ
− Dλ2

12ν3
ξ + gξμ

6
√

2
. (39)

With the renormalized dimensionless effective coupling con-

stants from (36) and (37) and using (25), one obtains the flow
equations

βg = gR

[
2gR + 5

6gξ,R − 1
]
, (40)

βgξ
= gξ,R

[
2gR + 5

6gξ,R + 1
]
. (41)

Solving (40) and (41) for their fixed points (g∗,g∗
ξ ) yields three

different possible solutions, namely,

(g∗
R,g∗

ξ,R) =
⎧⎨
⎩

(0,0) (Gaussian),(
0, − 6

5

)(
1
2 ,0

)
(KPZ).

(42)

The second one is nonphysical, since g∗
ξ,R < 0, and thus there

are two valid fixed points for the KPZ equation driven by sinc-
type noise with ξ 
 1.

To determine the stability of the two fixed points we carry
out a linear stability analysis via the Jacobian of the two flow
functions (40) and (41), i.e.,

J =
(

∂gR
βg ∂gξ,R

βg

∂gR
βgξ

∂gξ,R
βgξ

)

=
(

4gR + 5/6gξ,R − 1 5/6gR

2gξ,R 2gR + 5/3gξ,R + 1

)
. (43)
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FIG. 2. Renormalization-group flow of the two effective coupling
constants (36) and (37) for small values of the noise correlation length
ξ in d = 1 spatial dimension. As can be seen, the only stable infrared
fixed point is the KPZ fixed point at (g̃,g̃ξ ) = (1/2,0).

By evaluating (43) at the respective fixed points it turns out
that for the Gaussian fixed point J is indefinite and for the
KPZ fixed point J is positive definite. Since the condition for
asymptotic stability in this framework is positive definiteness
of (43), only the KPZ fixed point is stable in the infrared limit
and the Gaussian fixed point is unstable.

To provide a simple graphical representation, we analyzed
the RG flow in Wilson’s picture [27]. Transforming the running
parameter l to Wilson’s representation by (see, e.g., [19])

lW = − ln l, (44)

one obtains the flow equations

dg̃(lW )

dlW
= −βg

(40)= −g̃(lW )
[
2g̃(lW ) + 5

6 g̃ξ (lW ) − 1
]
, (45)

dg̃ξ (lW )

dlW
= −βξ

(41)= −g̃ξ (lW )[2g̃(lW ) + 5
6 g̃ξ (lW ) + 1]. (46)

The corresponding RG flow is shown in Fig. 2.
The critical exponents z and χ are obtained via (29) and

(30). Here the fixed-point values of the Wilson flow functions

γν = −gR − gξ,R

6
+ O

(
g2

R,g2
ξ,R,gRgξ,R

)
, (47)

γD = −gR + gξ,R

3
+ O

(
g2

R,g2
ξ,R,gRgξ,R

)
(48)

are given by

γ ∗
ν = γν

(
gR = 1

2 , gξ,R = 0
) = − 1

2 , (49)

γ ∗
D = γD

(
gR = 1

2 , gξ,R = 0
) = − 1

2 . (50)

Hence the dynamical exponent z and the roughness exponent
χ read

z = 3
2 , χ = 1

2 . (51)

They coincide with those in the white-noise case and confirm
the KPZ exponent identity z + χ = 2 (see, e.g., [1,2,4,19,28]).

B. Arbitrary-correlation-length calculation

So far, we have assumed the correlation length ξ to be small.
In the following we show that the same result can be derived for
arbitrary correlation lengths ξ in d = 1 dimensions, although
the calculations are technically more involved.

Inserting (34) and (35) into (24) and (23) and expanding to lowest order in the effective coupling constant g = Dλ2/4ν3, the
Wilson flow functions γi can be written as

γν = μ
∂ ln Zν

∂μ
= −gR

Zν

e−(1/
√

2)ξμ

ξμ

[
(3ξμ + 4

√
2) sin

ξμ√
2

− ξμ(
√

2ξμ + 3) cos
ξμ√

2

]

= −gR

e−(1/
√

2)ξμ

ξμ

[
(3ξμ + 4

√
2) sin

ξμ√
2

− ξμ(
√

2ξμ + 3) cos
ξμ√

2

]
+ O

(
g2

R

)
, (52)

γD = μ
∂ ln ZD

∂μ
= gR

ZD

e−√
2ξμ

2ξ 2μ2
[(2

√
2ξμ + 3) sin

√
2ξμ − 3(e

√
2ξμ − cos

√
2ξμ)]

= gR

e−√
2ξμ

2ξ 2μ2
[(2

√
2ξμ + 3) sin

√
2ξμ − 3(e

√
2ξμ − cos

√
2ξμ)] + O

(
g2

R

)
, (53)

where we introduced the dimensionless form of the renormal-
ized couplings

gR = gZg

2
√

2μ
, Zg = ZDZ−3

ν . (54)

The corresponding β function (25) reads

βg = gR[gR(γ̃D − 3γ̃ν) − 1], (55)

where γ̃i = γi/gR and γν and γD are taken from (52) and (53),
respectively.

Again the flow of the effective coupling constant is modeled
via the flow parameter l used for the solution of the RG
equations by the method of characteristics. This leads to a
continuous momentum scale μ̃(l), effective coupling constant
g̃(l), and thus to an l-dependent flow equation (see, e.g., [4,19])

βg(l) = l
dg̃(l)

dl
. (56)

Hence a fixed point is characterized by βg(l) = 0. Applying
this fixed-point condition to (55) and solving for gR leads to
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two separate infrared fixed-point solutions g∗
R,i :

g∗
R,1 = 0, (57)

g∗
R,2 = lim

l→0

1

γ̃D(l) − 3γ̃ν(l)
. (58)

Here (57) represents the trivial Gaussian fixed point, while the
second solution in the limit l → 0 [17] yields the nontrivial
KPZ fixed point

g∗
R,2 = lim

l→0

1

γ̃D(l) − 3γ̃ν(l)
= 1

2
. (59)

Again the fixed points are stable, if dβg/dgR > 0. Since (52),
(53), and (55) imply that

β ′
g = dβg(l)

dg̃(l)
= 2g̃(l)[γ̃D(l) − 3γ̃ν(l)] − 1

l→0= 4gR − 1,

(60)

we find that

β ′
g =

{
−1 < 0 for g∗

R = 0 (unstable)

1 > 0 for g∗
R = 1

2 (stable).

Hence there is one stable infrared fixed point g∗
R = 1

2 at
which the critical exponents of the KPZ universality class
can be calculated. We obtain the critical exponents in d = 1
dimensions again as

z = 2 + γ ∗
ν = 2 − 1

2 = 3
2 , (61)

χ = 1
2 + − 1

2 + 1
2

2 = 1
2 . (62)

C. Perturbation series

An expectation value of the form in (8), in general, cannot
be evaluated in closed form. Thus one usually has to rely
on perturbative computations. To this end the Janssen–De
Dominicis functional (9) will be split into its Gaussian (A0)
and nonlinear (Aint) parts A = A0 + Aint. This provides the
possibility to express (8) in terms of purely Gaussian ex-
pectation values of Oe−Aint . Performing an expansion with
respect to the interaction functionalAint then leads to Gaussian
expectation values of terms like OAl

int, l ∈ N0. This resembles
an expansion in powers of the nonlinear coupling constant λ. It
turns out, however, that an expansion in powers of the effective
dimensionless coupling constant gR from (26) is the natural
choice for the problem at hand (see, e.g., [4,17]). It is also well
known that the standard technique of an ε expansion, being
viable if the fixed-point value of gR is proportional to ε =
dc − d, fails for the KPZ equation in d < dc = 2 dimensions
[4,17,19,29].

In this paper we have focused on the KPZ equation in d = 1
dimensions due to the physical significance of this case (e.g.,
its equivalence to the one-dimensional Burgers equation), but
we are indeed able to derive (not shown here in detail) a more
general d-dependent result for the nontrivial KPZ fixed point
in, e.g., (42), which reads

(g∗
R,g∗

ξ,R) =
(

d cos
(

dπ
4

)
√

2(3 − 2d)
,0

)
, 0 < d <

3

2
. (63)

Setting d = 1 in (63) yields the results obtained in the two
previous sections. Moreover, letting d → 0 implies g∗

R → 0.
Following the argument made in [30], we arrive at a controlled
perturbation expansion with respect to the small parameter
gR ∼ d. Hence, our expansion in the effective coupling con-
stant gR is in fact an expansion in the spatial dimension d about
d = 0, which leads to the following behavior of the solutions:
The Gaussian fixed point (0,0) is always repellent and for
sufficiently small d > 0 a branch of nontrivial stable fixed-
point solutions (g∗

R(d),0) [see (63)] bifurcates, which lead
to nontrivial scaling behavior. This branch was analytically
continued up to d = 1. As can be inferred from (63), its domain
is bounded from above by d = 3

2 . Via a two-loop calculation
this upper bound is however believed to be extendable to d = 2,
which is the physical critical dimension of the system (see, e.g.,
[19,30] for the white-noise case).

At this point we would like to include a general remark
concerning the applicability of perturbative DRG schemes to
the KPZ problem. While it is generally accepted that the usual
ε expansion fails for the KPZ problem, as mentioned above,
there are also claims that any perturbative DRG technique is
invalid for treating the KPZ problem, regardless of the choice
of the expansion parameter. It is certainly true that there is
no mathematically rigorous proof justifying the application
of perturbative DRG method to the KPZ problem. However,
in numerous works the perturbative DRG method applied to
the Burgers-KPZ problem has led to a wealth of interesting
and sometimes exact results; see [1–4,19], to name just a
few. Thus we believe that once a small parameter has been
identified for organizing a controlled perturbation expansion,
the perturbative DRG method is indeed a viable approach. This
is exactly what we did in this paper and our result is in full
agreement with a similar one in [6], which was found via a
nonperturbative RG scheme according to, e.g., [18] (see also
Sec. IV).

D. Comparison between sinc noise and white noise

Let us now compare our fixed-point result for arbitrary d

(0 < d < 3
2 ) and sinc noise from (63) with the results obtained

by Frey and Täuber in [19] for uncorrelated noise. To this
end, we briefly summarize the relevant equations needed in the
white-noise case. A good starting point is the renormalization
factors in the following form [19] [see also (21) and (22) with
D(|p|2) ≡ D = const]:

Zν = 1 − Dλ2

4ν3

d − 2

d

∫
p

1

iμ2 + p2
, (64)

ZD = 1 + Dλ2

4ν3
	

[∫
p

1

iμ2 + p2

]
. (65)

These expressions can be evaluated by means of dimensional

regularization (for details see, e.g., [4,19]) and the introduction
of an effective coupling constant g = Dλ2/4ν3,

Zν = 1 + gKd

d − 2

d

κd

ε
με, (66)

ZD = 1 − gKd

κd

ε
με, (67)
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where we used the abbreviations

Kd = Sd

(2π )d
=

2πd/2

�(d/2)

(2π )d
= 1

�(d/2)2d−1πd/2
,

κd = �

(
2 − d

2

)
�

(
d

2

)
sin

(
dπ

4

)
,

ε = d − 2.

Using (66) and (67), the Wilson flow functions expanded to
linear order in the effective coupling constant g read

γν = μ∂μ ln Zν = gKd

d − 2

d
κdμ

ε + O(g2), (68)

γD = μ∂μ ln ZD = −gKdκdμ
ε + O(g2). (69)

Choosing the renormalized dimensionless effective coupling
constant

gR = gZgKdμ
ε, (70)

the Wilson flow functions simplify to γν = gR(d − 2)κd/d and
γD = −gRκd , leading to the β-flow function

βg = μ∂μgR = gR[γD − 3γν + d − 2]. (71)

Inserting (68) and (69) in (71) and solving for the fixed points
g∗

R yields the trivial Gaussian fixed point g∗
R = 0 as well as the

nontrivial KPZ fixed point

g∗
R,FT = d(d − 2)

2κd (2d − 3)
. (72)

Using the identities �(x)�(1 − x) = π/ sin(πx) and
sin(dπ/2)/sin(dπ/4) = 2 cos(dπ/4), we arrive at

g∗
R,FT = −2

d

2d − 3
cos

(
dπ

4

)
(63)= 2

√
2g∗

R.

The difference in the prefactor is easily explained by the
slightly different definitions of the dimensionless effective
coupling constants in the sinc-noise and white-noise cases,
respectively. For the sinc noise we chose to include a numerical
prefactor of 1/(2

√
2) for the sake of convenience. We thus

arrive at the conclusion that the KPZ equation driven by
spatially correlated noise with a finite correlation length is
described by the standard KPZ fixed point not only in d = 1
but for any dimension in the range 0 < d < 3

2 .

IV. DISCUSSION

In the present work we have studied the field-theoretic DRG
formalism of the KPZ equation for correlated noise of sinc
type, which is characterized by a finite correlation length ξ .
The fixed points of the KPZ DRG flow have been calculated
in two different manners, namely, first for small correlation
lengths ξ and via two effective coupling constants g and gξ [see
Sec. III A and (36) and (37)] and then using only one effective
coupling constant g (see Sec. III B) for arbitrary values of the
correlation length ξ . Both methods yield the same results, i.e.,
we obtain an unstable Gaussian fixed point and the stable KPZ
fixed point [see (42) and (57)–(59)].

It might be argued that the second method is somewhat
redundant since the small-ξ expansion can also be interpreted

to be valid for arbitrary values of ξ in the infrared limit as in this
regime μ → 0 and hence ξμ =: δ 
 1. The expansion would
then be done for the parameter δ. Nevertheless, the method
used in Sec. III B is a reassuring confirmation of the results
obtained in Sec. III A.

Using these fixed points, we computed the critical exponents
characterizing the KPZ universality class, i.e., the dynamical
exponent z = 3/2 and the roughness exponent χ = 1/2 [see
(51), (61), and (62)]. These values coincide with the standard
KPZ exponents in one spatial dimension, where the system is
driven by white noise (see, e.g., [1,19]). Hence, for every finite
noise correlation length ξ the system behaves to one-loop order
as if it was driven by standard uncorrelated Gaussian noise of
the form (2).

To determine the behavior to two-loop order, a very involved
calculation needs to be done. However, using the findings
of [19] and modifying these results with the momentum-
dependent noise amplitude from (3) and (31), respectively,
a first cursory but by no means complete analysis suggests
that the correlated noise does not produce new UV singular
contributions in the two-loop-order approximation. This would
imply, if true for all perturbation integrals, that the one-loop-
order approximation covers all the interesting physics.

This result corresponds nicely with [6], where a different
spatial noise correlation was analyzed. The authors there found
that for small values of the noise correlation length the KPZ
equation behaves as if it was driven by uncorrelated white
noise. Combining the findings of [6] with the present ones,
based on different noise functions and different methods, we
arrive at the intuitively expected conjecture that the large-scale
KPZ dynamics is independent of the details of the noise
structure, provided that the correlation length ξ is finite.
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APPENDIX: EXPLICIT EVALUATION OF THE
RENORMALIZATION FACTORS

To obtain (34) and (35) from the expressions in (32) and
(33), respectively, we use the residue theorem. To this end, the
integrals are first rewritten in a more easily accessible form.

1. Evaluation of Eq. (32)

The first integral needed for the calculation of Zν reads∫ ∞

0
dp

sin(ξp)

ξp(iμ2 + p2)
. (A1)

This may be rewritten as∫ ∞

0
dp

sin(ξp)

ξp(iμ2 + p2)
= − i

2

∫ ∞

−∞
dp

eiξp

ξp(iμ2 + p2)
. (A2)

The integrand on the right-hand side in (A2) has three simple
poles which are given by z1/2 = ±μei3π/4 and z3 = 0. Those
and the chosen integration contour are shown in Fig. 3. Hence
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Re

Im

z1

z2

z3

C1

C2

FIG. 3. Integration contour C for the evaluation of (A1). Here C1

and C2 are circles about z = 0 with radii ε and R, respectively.

the residue theorem yields∫
C

dz
eiξz

ξz(iμ2 + z2)

=
∫ −ε

−R

dz
eiξz

ξz(iμ2 + z2)
+

∫
C1

dz
eiξz

ξz(iμ2 + z2)

+
∫ R

ε

dz
eiξz

ξz(iμ2 + z2)
+

∫
C2

dz
eiξz

ξz(iμ2 + z2)

= 2πi lim
z→μei3π/4

(z − μei3π/4)eiξz

ξz(z − μei3π/4)(z + μei3π/4)

= −πe−(1/
√

2)ξμ

ξμ2

[
cos

(
1√
2
ξμ

)
− i sin

(
1√
2
ξμ

)]
.

To obtain the integral on the real axis from minus to plus
infinity, the contributions of the integrals over the two circular
paths have to be computed. Therefore, the parametrization

z = εeiϕ ⇔ dz = iεeiϕdϕ

is used, which yields, for the integral over C1 with ε → 0,

lim
ε→0

∫
C1

dz
eiξz

ξz(iμ2 + z2)

= − lim
ε→0

∫ π

0
dϕ

ieiξεeiϕ

ξ (iμ2 + ε2e2iϕ)

= −
∫ π

0
dϕ lim

ε→0

ieiξεeiϕ

ξ (iμ2 + ε2e2iϕ)
= − π

ξμ2
.

For the integration over the contour C2 a similar parametriza-
tion is used

z = Reiϕ ⇔ dz = iReiϕdϕ. (A3)

The contribution from this integral vanishes for R → ∞,

lim
R→∞

∣∣∣∣
∫

C2

dz
eiξz

ξz(iμ2 + z2)

∣∣∣∣
= lim

R→∞

∣∣∣∣∣
∫ π

0
dϕ

iReiξReiϕ

eiϕ

ξReiϕ(iμ2 + R2e2iϕ)

∣∣∣∣∣
� lim

R→∞

∫ π

0
dϕ

|eiξReiϕ |
|ξ (iμ2 + R2e2iϕ)|

Re

Im

z1

z2

C1

FIG. 4. Contour C of integration for (A6). Here C1 denotes a
circle about z = 0 with radius R.

= lim
R→∞

∫ π

0
dϕ

e−ξR sin ϕ

ξR2
∣∣i μ2

R2 + e2iϕ
∣∣ = 0,

since sin ϕ > 0 for 0 < ϕ < π . Thus, in the limits R → ∞
and ε → 0 the residue theorem results in∫ ∞

−∞
dz

eiξz

ξz(iμ2 + z2)

= πe−(1/
√

2)ξμ

ξμ2

{
e(1/

√
2)ξμ

−
[

cos

(
1√
2
ξμ

)
− i sin

(
1√
2
ξμ

)]}
.

The integral from (A1) is therefore given by∫ ∞

0
dp

sin(ξp)

ξp(iμ2 + p2)

= π
e−(1/

√
2)ξμ

2ξμ2

{
sin

(
1√
2
ξμ

)

+ i

[
cos

(
1√
2
ξμ

)
− e(1/

√
2)ξμ

]}
. (A4)

The second integral needed for the evaluation of (32) is
given by ∫ ∞

0
dp

cos(ξp)

iμ2 + p2
. (A5)

As for the calculation of (A1), the integral will be rewritten
according to∫ ∞

0
dp

cos(ξp)

iμ2 + p2
= 1

2

∫ ∞

−∞
dp

eiξp

iμ2 + p2
. (A6)

The integrand on the right-hand side of (A6) has two simple
poles at z1/2 = ±μei3π/4. For the integration contour shown in
Fig. 4, the residue theorem leads to∫

C

dz
eiξz

iμ2 + z2
=

∫ R

−R

dz
eiξz

iμ2 + z2
+

∫
C1

dz
eiξz

iμ2 + z2

= 2πi lim
z→μei3π/4

(z − μei3π/4)eiξz

(z − μei3π/4)(z + μei3π/4)
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= πe−(1/
√

2)ξμ

√
2μ

{
cos

(
1√
2
ξμ

)
− sin

(
1√
2
ξμ

)

− i

[
cos

(
1√
2
ξμ

)
+ sin

(
1√
2
ξμ

)]}
.

Choosing again the parametrization (A3), it is readily shown
that its contribution vanishes for R → ∞:

lim
R→∞

∣∣∣∣
∫

C1

dz
eiξz

iμ2 + z2

∣∣∣∣
= lim

R→∞

∣∣∣∣∣
∫ π

0
dϕ

iReiξReiϕ

eiϕ

iμ2 + R2e2iϕ

∣∣∣∣∣
� lim

R→∞

∫ π

0
dϕ

|iReiξReiϕ

eiϕ |
|iμ2 + R2e2iϕ |

= lim
R→∞

∫ π

0
dϕ

e−ξR sin ϕ

R| iμ2

R2 + e2iϕ |
= 0.

Hence the sought integral reads∫ ∞

0
dp

cos(ξp)

iμ2 + p2

= π
e−(1/

√
2)ξμ

2
√

2μ

{
cos

(
1√
2
ξμ

)
− sin

(
1√
2
ξμ

)

−i

[
cos

(
1√
2
ξμ

)
+ sin

(
1√
2
ξμ

)]}
. (A7)

Taking the real parts [4] of (A4) and (A7) and inserting the
results into (32) leads to the expression in (34).

2. Evaluation of Eq. (33)

The integral (33) reads

1

π

∫ ∞

0
dp

sin2(ξp)

μ4 + p4

= 1

2π

[∫ ∞

0
dz

1

μ4 + z4
−

∫ ∞

0
dz

cos(2ξz)

μ4 + z4

]
. (A8)

The integrands of both integrals in (A8) have simple poles
at zk = μei(π/4+πk/2), with k = 0,1,2,3, and the contour of
integration is shown in Fig. 5. The first of the two integrals
on the right-hand side of (A8) is readily solved with the aid of
the residue theorem [again it can be shown that

∫
C1

dz/(μ4 +
z4) = 0 for R → ∞]:∫ ∞

0
dz

1

μ4 + z4

= 1

2

∫ ∞

−∞
dz

1

μ4 + p4

= 1

2
2πi

[
lim
z→z0

z − z0

(z − z0)(z − z1)(z − z2)(z − z3)

+ lim
z→z1

z − z1

(z − z0)(z − z1)(z − z2)(z − z3)

]
= π

2
√

2μ3
.

(A9)

Re

Im

z0z1

z2 z3

C1

FIG. 5. Representation of the zeros and the contour C of integra-
tion for the two integrals on the right-hand side of (A8). Again, C1 is
a circle with radius R about z = 0.

For the second integral it is again used that

2
∫ ∞

0
dz

cos(2ξz)

μ4 + z4
=

∫ ∞

−∞

e2iξz

μ4 + z4
(z ∈ R).

With the integration contour shown in Fig. 5, we arrive at

∫ R

−R

dz
e2iξz

μ4 + z4
+

∫
C1

dz
e2iξz

μ4 + z4

= 2πi

[
lim
z→z0

(z − z0)e2iξz

(z − z0)(z − z1)(z − z2)(z − z3)

+ lim
z→z1

(z − z1)e2iξz

(z − z0)(z − z1)(z − z2)(z − z3)

]

= πe−√
2ξμ

√
2μ3

[cos(
√

2ξμ) + sin(
√

2ξμ)].

As
∫
C1

dze2iξz/(μ4 + z4) tends to zero for R → ∞,

lim
R→∞

∣∣∣∣∣
∫ π

0
dϕ

iReiϕe2iξReiϕ

μ4 + R4e4iϕ

∣∣∣∣∣
� lim

R→∞

∫ π

0
dϕ

|iReiϕe2iξReiϕ |
|μ4 + R4e4iϕ |

= lim
R→∞

∫ π

0
dϕ

e−2ξR sin ϕ

R3
∣∣∣μ4

R4 + e4iϕ

∣∣∣ = 0,

it is found that

∫ ∞

0
dz

cos(2ξz)

μ4 + z4
= πe−√

2ξμ

2
√

2μ3
[cos(

√
2ξμ) + sin(

√
2ξμ)].

(A10)

The results from (A9) and (A10), inserted into (33), yield the
expression (35).
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