
PHYSICAL REVIEW E 97, 062120 (2018)

Lévy walks with variable waiting time: A ballistic case
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The Lévy walk process for a lower interval of an excursion times distribution (α < 1) is discussed. The particle
rests between the jumps, and the waiting time is position-dependent. Two cases are considered: a rising and
diminishing waiting time rate ν(x), which require different approximations of the master equation. The process
comprises two phases of the motion: particles at rest and in flight. The density distributions for them are derived,
as a solution of corresponding fractional equations. For strongly falling ν(x), the resting particles density assumes
the α-stable form (truncated at fronts), and the process resolves itself to the Lévy flights. The diffusion is enhanced
for this case but no longer ballistic, in contrast to the case for the rising ν(x). The analytical results are compared
with Monte Carlo trajectory simulations. The results qualitatively agree with observed properties of human and
animal movements.
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I. INTRODUCTION

The ansatz of the Lévy walk model is a time of flight
distribution ψ(τ ) which determines the size of the particle
displacement. It possesses a slowly decaying asymptotics,
ψ(τ ) ∼ τ−1−α , where 0 < α < 2. The case of the lower
interval, α < 1, is usually called a “ballistic case” since it
is characterized by a ballistic diffusion: the mean-squared
displacement rises with time as t2, as a consequence of the
infinite mean of ψ(τ ) [1]. Processes characterized by very long
tails of the time of flight distribution and ballistic transport are
encountered, e.g., for phenomena related to nanocrystals [2,3],
where the Lévy statistics, ergodicity breaking, and aging are
observed. The distribution of a blinking time of quantum dots
appears universal indicating a power-law form with α = 0.5
[3]. The Lévy walk in the ballistic regime was analyzed,
e.g., in respect to the aging phenomena and compared with
corresponding jumping processes [4]. The Lévy walk with
rests, which includes both the ageing phenomena and the
algebraic resting time distribution, was recently applied to
model a neuronal transport; the experimental data for this
process indicate α = 0.52 [5]. The power-law tails of the
distributions are typical for migration problems of humans
and animals [6–14]. In particular, the Lévy index in its lower
interval was reported in a study of marine predator vertical
movements: α = 0.9 for a leatherback turtle and α = 0.7 for
a magellanic penguin [15].

The Lévy walk model can be generalized by introducing
rests at the points of the consecutive velocity renewals [16–18].
The waiting time is given by an independent distribution which
may be exponential or possessing long algebraic tails. In the
latter case, the competition between the Lévy walk stretches
and rests modifies the time dependence of the variance:
diffusion is no longer ballistic, and the two effects may be
compensated leading to a normal diffusion [19]. The heavy
tails of the time distribution are observed for the human
behavior (ranging from communication to entertainment and
work patterns) [20] and emerge in an analysis of a population
dynamics in the framework of a random networks theory [21].

Similarly as for the standard Lévy walk, the walker position
is restricted by the total evolution time t and a velocity v:
|x| < vt . However, since the walker typically moves in an
environment with a differentiated structure, some regions may
exhibit stronger trapping effects, and the waiting time may not
have the same distribution in the entire space. This is the case
for the transport in the disordered systems [22] and migration
of humans and animals [13,14]. In particular, the human
movements estimated from a banknotes flow and discussed
in Ref. [6] depend on environment conditions. Moreover, the
trapping emerges in the Hamiltonian dynamical systems when
a trajectory performs a Lévy walk in a chaotic environment.
It may encounter a regular structure in the phase space and
then stick to it [23]; such a structure is self-similar. The
medium heterogeneity can be taken into account in a Lévy
flights model by introducing a variable diffusion coefficient,
as was done, e.g., for the folded polymers [24]. The transport
in a medium with heterogeneously distributed traps can be
formulated in the framework of a subordination technique
where the heterogeneity is taken into account as a position-
dependent subordinator [25]. Then the resulting Fokker-Planck
equation possesses a position-dependent diffusion coefficient
and may be of a fractional order both in position and time.
The fractional derivative over time reflects long tails of the
waiting time distribution. In an alternative approach to the
problem of the random walk in nonhomogeneous media (with
long rests), one assumes that the order of the time derivative
(which corresponds to an exponent of the anomalous diffusion)
is position-dependent [26].

The properties of the Lévy walk model for the waiting time
distribution with a position-dependent rate were analyzed for
the subballistic case (α > 1) [27]. In the present paper, we
extend that analysis to the case α < 1. In Sec. II we define
the densities of two phases of the motion, particles in flight
and at rest. They are governed by a master equation which
is transformed to fractional equations and solved for both
the rising and diminishing waiting time rate. Those cases are
separately considered in Secs. III and IV, respectively.
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II. GENERAL EXPRESSIONS

As usual, we define the Lévy walk as a jumping process for
which the (finite) time of a single flight is a random variable and
follows from a one-sided stable distribution with a power-law
asymptotics ψ(τ ); in the following, we will consider the case
α < 1. The jump density distribution,

ψ̄(ξ,τ ) = 1
2δ(|ξ | − vτ )ψ(τ ), (1)

reflects a coupling between the jump size and the time of flight
(v = const). Before the jump, the particle rests at the point x

and the waiting time is random: exponentially distributed with
a mean given by a function 1/ν(x). Therefore, the process
consists of two phases, flying and resting, which are described
by two density distributions, pv(x,t) and pr (x,t), respectively.

The master equation for pr (x,t) can be obtained from an
infinitesimal transition probability x ′ → x by the integration
over all possible x ′ and times of flight [27]. It reads

∂

∂t
pr (x,t) = −ν(x)pr (x,t) +

∫ t

0

∫
ν(x ′)pr (x ′,t − t ′)

× 1

2
ψ(t ′)δ(|x − x ′| − vt ′) dt ′ dx ′. (2)

The density pv(x,t), in turn, takes into account flights not
terminated at time t , i.e., particles that are still in flight at the
point x. It is given by the integral

pv(x,t) =
∫ ∫ t

0
ν(x ′)	(t ′)δ(|x − x ′| − vt ′)

× pr (x ′,t − t ′) dx ′ dt ′, (3)

where 	(t) means a survival probability: 	(t) = ∫ ∞
t

ψ(t ′) dt ′.
The normalizations of the individual density for the both

phases, φr (t) = ∫
pr (x,t) dx and φv(t) = ∫

pv(x,t) dx, are
not preserved and depend on time. The time evolution of the
normalization integrals is governed by the following equations:

∂

∂t
φr (t) = −�(t) +

∫ t

0
�(t − t ′)ψ(t ′) dt ′

φv(t) =
∫ t

0
�(t − t ′)	(t ′) dt ′, (4)

where �(t) = ∫
ν(x)pr (x,t) dx. The limit of small s in the

Laplace expansion of the function ψ(t),

ψ(s) = 1 − c1s
α, (5)

differs from the case of the upper interval of α, where the
leading term is proportional to s. After taking into account the
expansion (5), the transformed Eq. (4) becomes

sφr (s) − 1 = −c1s
α�(s),

φv(s) = c1s
α−1�(s). (6)

Equation (6) can be easily solved for the case ν(x) = const = 1;
after simple algebra and inverting the Laplace transform,
we obtain the final result in the form of a Mittag-Leffler

function [28],

φr (t) = E1−α(−c1t
1−α), (7)

which means that the normalization integral of the resting
phase declines with time as a power law, tα−1, for t � 1; φv(t),
in turn, rises as 1 − φr (t).

We want to solve Eq. (2) and find densities for both
phases, but the form of the solution and techniques applied
depend on whether the function ν(x) is rising or diminishing,
which corresponds to declining and rising mean waiting time,
respectively. We will consider both cases separately.

III. MEAN WAITING TIME AS A DIMINISHING
FUNCTION OF POSITION

In this section, we assume that the walker dwells relatively
short in a distant area, i.e., ν(x) is a rising function. The starting
point is Eq. (2), which will be analyzed for small s and k. The
Fourier transform from that equation reads

∂

∂t
pr (k,t) =−[ν(x)pr (x,t)]F +

∫ t

0
[ν(x ′)pr (x ′,t − t ′)]F

× ψ(t ′) cos(vkt ′) dt ′. (8)

Then we take the Laplace transform, apply Eq. (5) and expand
cos(vkt ′) ∼ 1 − (vkt ′)2/2, which yields

s3−αpr (k,s) − s2−αP0(k)

= −c1[s2 + Bv2k2][ν(x)pr (x,t)]F−L, (9)

where B = α(1 − α)/2 and P0(x) stands for an initial condi-
tion. Since the term s3−α is small compared to the term s2, it
can be neglected, and, for P0(x) = δ(x), the Fourier inversion
of Eq. (9) yields

s2ν(x)pr (x,s) = Bv2 d2

dx2
[ν(x)pr (x,s)]. (10)

Inversion of the Laplace transform produces a wave equation:

ν(x)
∂2

∂t2
pr (x,t) = Bv2 ∂2

∂x2
[ν(x)pr (x,t)]. (11)

The solution of Eq. (10) is straightforward:

ν(x)pr (x,s) = A(s) exp(−xsb/v), (12)

where b = 1/
√

B and A(s) is an arbitrary function which is
to be determined from the normalization condition. Note that
neglecting in the expansion in the powers of k the terms higher
than k2 changes the front position at a given time. This resolves
itself to a smaller effective value of the velocity: v → v/b. In
the following, we set v = b.

The Laplace transform, applied to Eq. (3), yields an equation
for the density of particles in flight,

pv(k,s) = [
c1s

α−1 − c1s
α−3 1

2 (α − 1)(α − 2)k2]
× [ν(x)pr (x,t)]F−L, (13)

which, after combining with the Fourier transform from
Eq. (10), produces the expression

pv(k,s) = 2c1

α
sα−1[ν(x)pr (x,t)]F−L. (14)
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To evaluate the function A(s) in Eq. (12), we utilize the
normalization condition of the total density,

φr (s) + φv(s) = 1/s, (15)

where φr (s) is evaluated from the density pr (x,t) in the form

pr (x,t) = 1

b

∫ t

0
A(t − t ′)δ(x − t ′)/ν(x) dt ′, (16)

according to Eq. (12). Then Eq. (15) becomes

[1/ν(t)]LA(s) + 2c1

α
sα−2A(s) = 1/s. (17)

To further proceed with the analysis of the above equa-
tion, one has to assume a specific form of ν(x). It will be
parametrized as a power law,

ν(x) = |x|−θ (θ > −α), (18)

and the parameter θ serves as a measure of the gradient of the
trap density; we will demonstrate that predictions of the model
(density distributions, relaxation, and diffusion properties)
qualitatively depend on θ . The form (18) is natural if the
environment has a self-similar structure [29,30] and is often
observed, e.g., in migration problems. It has been argued
[15] that movements of some animals are characterized by
the power-law dependences because the prey (e.g., krill) is
distributed in this way and, for this problem, θ > 0. Obviously,
the animals abide longer in regions where food is in abundance.
In this section, we consider the case θ < 0.

For the power-law form of ν(x), Eq. (17) becomes

(1 + θ )A(s) + 2c1

α
sα+θ−1A(s) = sθ , (19)

which is the Laplace transform of an Abel equation of the
second kind. The inversion yields

A(t) + 2c1

α(1 + θ )(1 − θ − α)

∫ t

0

A(t ′)
(t − t ′)α+θ

dt ′

= − sin(πθ )

π
t−θ−1, (20)

and the solution of the above equation is well known [31]; it
reads

A(t) = − sin(πθ )

π

[
t−θ−1 +

∫ t

0
(t − t ′)−θ−1e′

1−α−θ (t ′,a) dt ′
]
,

(21)

where a = 2c1/α(1 + θ ) and

e′
1−α−θ (t ′,a) = d

dt
E1−α−θ (−at1−α−θ )

= −t−α−θE1−α−θ,1−α−θ (−at1−α−θ ). (22)

Performing the integral in Eq. (21) yields the final expression:

A(t) =− sin(πθ )

π
[t−θ−1 − t−α−2θE1−α−θ,1−α−2θ (−at1−α−θ )].

(23)

For |θ | < α, the second term behaves like ∼t−θ−1, according to
the asymptotic form of the generalized Mittag-Leffler function
Eα,β(x). This implies a decline of A(t), and, consequently, a
decay of the resting phase.

To derive a finite form of the density pr (x,t), we invert
Eq. (12) and obtain the expression A(t − x)|x|θ ; the inserting
of the asymptotic form of A(t) yields

pr (x,t) ∼ |x|θ (t − x)−θ−1. (24)

Then, if |x| is small compared to t , the term |x|θ determines
the position dependence of the density. The density of particles
in flight follows from Eq. (14), which, for the power law ν(x),
becomes

pv(x,s) = 2c1

α

sθ+α−1

(θ + 1) + 2
α
sθ+α−1

exp(−xs). (25)

The final expression follows from the inversion of the
Laplace transform:

pv(x,t) = 2c1

α
{δ(t − x) + (t − x)−α−θ

× E1−α−θ,1−α−θ [−a(t − x)1−α−θ ]}. (26)

The intensity of both phases of the motion depends on time,
and the relaxation of φr (x) can directly be derived from A(t)
by means of Eqs. (16) and (19):

φr (s) = s−θ−1A(s) = 1

s

s1−α−θ

(1 + θ )s1−α−θ + 2c1/α
, (27)

which results in a Mittag-Leffler relaxation pattern,

φr (t) = 1

(1 + θ )
E1−α−θ

[
− 2c1

α(1 + θ )
t1−α−θ

]
, (28)

with the asymptotics φr (t) ∼ tα+θ−1. The intensity of the flight
phase, φv(t), rises to unity.

On the other hand, the density distributions were calculated
from simulations of individual trajectories by means of a
Monte Carlo method. The time of flight was sampled from
the distribution

ψ(t) =
{
αεαt−1−α for t > ε

0 for t � ε
; (29)

in all calculations, ε = 0.1 and v = b. The waiting time was
determined from the exponential distribution with the rate (18).
Figure 1 presents the density distributions of both phases of
the motion. For a fixed t , pr (x,t) declines according to xθ , and
this dependence persists over a wide range of x; the simulation
results agree with Eq. (24). pv(x,t), in turn, assumes a constant
value if x is not very large. In the latter case, for a large α,
the density falls before the singularity at x = vt emerges. The
analytical results, which are compared with the simulations in
the figure, follow from Eq. (26), where the function Eα,β(x)
was numerically calculated. Both results agree if x is not very
large.

The time dependence of the moments can be simply deter-
mined by a differentiation of the characteristic function of the
total density p(x,t) = pr (x,t) + pv(x,t). For the variance we
have [27],

〈x2〉(s) = − ∂2

∂k2
p(k,s)|k=0

= 2c1(1 − α)2sα−3[ν(x)pr (x,t)]F−L(k = 0), (30)
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FIG. 1. Density distributions obtained from Monte Carlo simula-
tions for t = 103 and θ = −0.2. (a) pr (x,t) for α = 0.5, 0.7, and 0.9
(black dashed lines, from bottom to top). Red solid lines follow from
Eq. (24). (b) pv(x,t) for α = 0.3, 0.5, and 0.7 (black dashed lines,
from bottom to top at left side). Red solid lines follow from Eq. (26).

which, after the evaluation of the Fourier transform, becomes

〈x2〉(s) = 2c1(1 − α)2s−2[1/s − φr (s)]. (31)

Inserting into the above equation φr (s) from Eq. (27) and
dropping the term that falls faster with s yields

〈x2〉(t) ∝ t2. (32)

We conclude that the ballistic diffusion emerges for any α

and any θ < 0, similarly to a well-known result for both the
homogeneous process [ν(x) = const] and Lévy walks without
rests [1].

IV. MEAN WAITING TIME AS A RISING
FUNCTION OF POSITION

In the preceded section, the master equation (9) was handled
in the limit of small s for a given k: the first term (proportional
to s3−α) was neglected, which resulted in the wave equation.
However, that procedure becomes problematic if ν(x) is a
diminishing function, as the following arguments demonstrate.
Let us define an auxiliary function w(x,t) = ν(x)pr (x,t);
then, after inversion of the Fourier transform, Eq. (9) takes

FIG. 2. (a) Intensity of the resting phase obtained from Monte
Carlo simulations for α = 0.5 and the following values of θ : 0.4, 0.2,
0, −0.1, −0.2, and −0.4 (points, from top to bottom at right side).
Solid red lines mark the dependence tα+θ−1. (b) Intensity of the flying
phase for α = 0.5 and the following values of θ : 0.5, 0.6, 0.8, and 1
(points, from top to bottom at right side).

the form

s3−αν(x)−1w(k,s) − s2−αW0(x) = −c1

(
s2 + d2

dx2

)
w(x,t).

(33)

It is obvious that if |x| is large and ν(x) falls sufficiently fast,
s1−αν(x)−1 may not be negligible for large |x|. First, we will try
to assess how fast ν(x) must fall to prevent neglecting that term.
For that purpose, we assume ν(x) in the form (18) (θ > 0). The
comparison of typical times characterizing the two phases of
the motion shows that there is a distinguished threshold value
of θ , θth = 1 − α, which marks a transition from the flying
particles-dominated process to the predominance of the resting
phase. The time related to the flying phase can be estimated by
a mean time of flight for a given t , tv = ∫ t

0 t ′t ′−1−α dt ′ ∝ t1−α ,
while the time of the resting phase by the waiting time for a
givenx, tr = |x|θ . If we approximate |x|by the fronts, |x| = vt ,
then tr/tv ∝ tα+θ−1. Therefore, if 0 � θ < θth the flying phase
prevails at large time, similarly to the case θ < 0, and one can
expect that the results of Sec. III remain valid. On the other
hand, those results [in particular, Eq. (26)] do not make sense
for θ > θth. The threshold value of θ is visible in the Monte
Carlo simulations presented in Fig. 2: φr (t) falls for all θ < θth,
and the pattern agrees with Eq. (28).
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To analyze the case θ > θth, we take into account all the
terms in Eq. (33). One encounters here a well-known problem
of the order of limits in s and k: the result may depend on
this order. In particular, the proper asymptotics of the density
distributions in the Lévy walk model (without rests) is achieved
when the limits s → 0 and k → 0 are taken simultaneously
[32], i.e., when s/k converges to a constant, finite value κ .
In order to apply this procedure to Eq. (9), we rewrite this
equation as

s2−α

s2 + k2
[spr (k,s) − P0(k)] = −c1[|x|−θpr (x,t)]F−L, (34)

where the fraction s2−α

s2+k2 = |k|−α κ2−α

κ2+1 ≡ D|k|−α . Finally,

spr (k,s) − P0(k) = −D|k|α[|x|−θpr (x,t)]F−L, (35)

and the inversion of the Laplace transform yields

∂

∂t
pr (k,t) = −D|k|α[|x|−θpr (x,t)]F . (36)

Note that neglecting the term s2 in Eq. (33) also results in
the above equation, which observation emphasizes the fact
that the first term is essential for the process. Equation (36)
represents the Fourier transformation of a fractional Fokker-
Planck equation with the variable diffusion coefficient |x|−θ ,

∂

∂t
pr (x,t) = D

∂α

∂|x|α [|x|−θpr (x,t)], (37)

and describes a Markovian version of a continuous time
random walk (CTRW) with the jumping rate |x|−θ [33]. In
general, the CTRW model [34] includes a possibility of long
rests, which results, in the homogeneous case, in a fractional
derivative over time and the anomalous diffusion [35]. Its
coupled form was applied, e.g., in finance [36]. Taking into
account only the term k0 in the expansion of the Fourier
transform of Eq. (37) yields the asymptotic solution (|k| � 1)
which agrees with the α-stable distribution,

pr (x,t) ∼ D〈|x|−θ 〉t |x|−1−α, (38)

and corresponds to the Lévy flights. The variable rate of the
resting time influences time characteristics of the solution, but
the distribution shape does not depend on θ .

The agreement of Eq. (38) with CTRW, for which jumps are
instantaneous, becomes obvious when one compares typical
times of resting and flying. For large θ , tr � tv and the time of
flight may be neglected.

The density pr (x,t), resulting from trajectory simulations,
is presented in Fig. 3 for two values of α. It reveals the form
x−1−α , which comprises the entire range of x if θ is very large.
The stable form of the distribution tails abruptly terminates at
the fronts, and we observe a shape of truncated Lévy flights
with a simple cutoff [37]. This form of the distribution is
typical, e.g., for migration problems; it represents the mobility
patterns of humans in such areas as college campuses, a
metropolitan area, a theme park, and a state fair [10]. The stable
distribution with α < 1 and an exponential cutoff was reported
in an analysis of movements of people using data from their
mobile phones [7,8]. The pattern of human travels emerging
from the analysis of the bank notes dispersal also reveals the
Lévy statistics in the lower interval of the stability index,

FIG. 3. pr (x,t) calculated from trajectory simulations. Solid lines
mark the dependence x−1−α .

α = 0.59 [6]. The comparison of densities for two values of
the parameter α, presented in Fig. 3, demonstrates that the
stabile asymptotics comprises the narrower range of |x| if α

is smaller; this effect disappears, however, for large θ . Then
ν(x)−1 strongly rises with the distance, the time of flight may be
neglected, and the process resembles CTRW even for relatively
small |x|.

The comparison of Eqs. (24) and (38) shows that the den-
sities pr (x,t) for θ < 0 and θ > θth are qualitatively different
[cf. also Figs. 1(a) and 3]. This observation does not hold for
the density of the flying particles, pv(x,t), which is presented

FIG. 4. pv(x,t) calculated from trajectory simulations for α = 0.5
and the following values of θ : 0.6, 1, 2, and 3 (from top to bottom).
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FIG. 5. The diffusion index μ [cf. Eq. (39)] as function of θ for
α = 0.3, 0.6, and 0.9 (from top to bottom).

in Fig. 4. The plateau, resulting from Eq. (26) and shown
in Fig. 1(b), is still visible, but it becomes shorter when θ

rises. Instead, pv(x,t) slowly declines, and this behavior is
also visible for θ < 0 [α = 0.7 in Fig. 1(b)]. Therefore, no
clear threshold value of θ can be recognized in that analysis,
in contrast to the other observables.

The time dependence of pr (x,t) cannot be determined from
the asymptotic solution (38) since the evaluation of the mean
in this equation requires a knowledge of pr (x,t) for all x.
Time dependence of φv(t) and 〈x2(t)〉 was determined from
the numerical analysis. Figure 2 (b) presents the intensity of
the flying phase, φv(t), for some values of θ � θth. It falls as a
power law and converges to a constant for θ = θth. The decline
of the flying phase is a natural consequence of the diminishing
of tv/tr for θ > θth.

The analysis of the fluctuations forα > 1 [27] shows that the
variable waiting time rate essentially influences the diffusion
pattern. While for the homogeneous case always the enhanced,
subballistic behavior is possible, for the case with the variable
rate ν(x), the subdiffusion is also observed. For the present case
(α < 1), the Monte Carlo simulations indicate a power-law
growth of the variance,

〈x2〉(t) ∝ tμ, (39)

for all θ > −α and Fig. 5 shows the exponent μ as a function
of θ . Since the flying phase prevails for θ < θth, Eq. (32) is
valid there, and the threshold values in the figure agree with
θth. For θ > θth, all the presented cases are characterized by
the enhanced diffusion (μ > 1), but the transport is slower
than ballistic. The decline of the function μ(θ ) is strongest for
large α. The already mentioned analysis of human movements
[10] (which indicates the truncated Lévy statistics) reveals
such a form of transport: the enhanced diffusion but weaker
than ballistic. The slowing of the diffusion process due to the
resting times is observed in systems homogeneous in space if
the waiting time has long, power-law tails [19].

V. SUMMARY AND CONCLUSIONS

The analysis of the Lévy walk process with position-
dependent resting times [27] [defined by the rate ν(x)] has been
extended to the lower interval of the stability index, α < 1.
The shape of the density distributions qualitatively depends
on ν(x). If ν(x) is a rising function, the density of the resting
phase, pr (x,t), is just 1/ν(x), while the density of the flying
phase, pv(x,t), assumes a constant value in a wide range of
x. The individual normalization of both phases is not preserved:
the relative intensity of resting particles declines with time. On
the other hand, the case of diminishing ν(x) is characterized
by pr (x,t) in the form of the α-stable distribution cut off at the
fronts. This result agrees with the prediction of the Markovian
CTRW defined in terms of the stable distribution of the jumping
size and the waiting time distribution with a variable rate. The
stable form of pr (x,t) is unusual in the Lévy walk processes
but comprehensible when one considers typical times of both
phases of the motion; since the resting time is very long, the
time of flight can be neglected, and the instantaneous jumping
approximates the process well.

According to the above results, the truncated power-law
form of the distribution, present, e.g., in patterns of the human
movements, is a natural consequence of the heterogeneous
environment structure, which corresponds to the increasing
density of traps with the distance: the walker encounters
more favored places. Moreover, that form does not emerge
for α > 1 when a stretched-exponential asymptotics always is
observed [27].

When ν(x) rapidly falls, the procedure of neglecting the
terms in the master equation, which are small for s → 0,
in order to obtain a fractional equation cannot be applied.
Decisive for the dynamics, the term appears which its impor-
tance owes to the x dependence. The proper (compatible with
the simulations) form of pr (x,t) is achieved if the limits s → 0
and k → 0 are taken simultaneously.

The diffusion properties of the Lévy walk process are
determined by the integrated density for the flying phase,
φv(t), which always means the ballistic diffusion if this phase
prevails. In the opposite case, the numerical calculations
indicate the rise of the variance, which is slower than ballistic
but the diffusion remains enhanced.

The ansatz of the presented random walk model, namely,
that the waiting time rate depends on position, stems from
the observation that the walker moves in an environment that
usually possesses a structure; this affects the relative time inter-
vals between consecutive displacements. One encounters such
complex media when considering, e.g., movements of humans
and animals. The presented results qualitatively agree with
some features of migration: both the density in the form of the
truncated Lévy distribution and the enhanced diffusion weaker
than ballistic are observed in the migration problems. From
the perspective of our formalism, these properties are possible
when the resting time distribution depends on position.
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