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Anomalous bulk behavior in the free parafermion Z(N) spin chain
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We demonstrate using direct numerical diagonalization and extrapolation methods that boundary conditions
have a profound effect on the bulk properties of a simple Z(N ) model for N � 3 for which the model Hamiltonian
is non-Hermitian. For N = 2 the model reduces to the well-known quantum Ising model in a transverse field.
For open boundary conditions, the Z(N ) model is known to be solved exactly in terms of free parafermions.
Once the ends of the open chain are connected by considering the model on a ring, the bulk properties, including
the ground-state energy per site, are seen to differ dramatically with increasing N . Other properties, such as the
leading finite-size corrections to the ground-state energy, the mass gap exponent, and the specific-heat exponent,
are also seen to be dependent on the boundary conditions. We speculate that this anomalous bulk behavior is a
topological effect.
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I. INTRODUCTION

It is well known that non-Hermitian systems are expected
to behave differently from Hermitian systems. This is because
non-Hermitian Hamiltonians describe the dynamics of physi-
cal systems that are not conservative. Specifically, hermiticity
guarantees that the energy spectrum is real and that time
evolution is probability-preserving. Although there are many
examples of integrable Hermitian Hamiltonians, integrable
non-Hermitian spin chain Hamiltonians are relatively rare.
An important exception is the class of non-Hermitian spin
chains whose Hamiltonians arePT symmetric, ensuring a real
eigenspectrum [1,2].

Arguably the simplest of all exactly solved Hermitian
Hamiltonians are those described by free fermions. Indeed,
the concept of free fermions plays a pervasive and enduring
role in the description of interacting classical and quantum
spin systems. Recently, it has become apparent that there is a
simple exactly solved non-Hermitian Z(N ) Hamiltonian

Hopen(L) = −
L−1∑
j=1

σjσ
†
j+1 − λ

L∑
j=1

τj , (1)

which displays the remarkable property of free parafermions
[3–7], with a complex eigenspectrum. This model is an N -state
generalization of the widely studied (Hermitian) quantum Ising
chain in a transverse field. Here σj and τj are the usual Z(N )
operators, which in matrix form are defined by

σj = I ⊗ I ⊗ · · · ⊗ I ⊗ σ ⊗ I ⊗ · · · ⊗ I, (2)

τj = I ⊗ I ⊗ · · · ⊗ I ⊗ τ ⊗ I ⊗ · · · ⊗ I, (3)
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†batchelor@cqu.edu.cn

where I , σ , and τ are each N × N matrices, with σ and τ

in position j . Here I is the identity, with σ and τ having
components

σm,n = ωm−1δm,n, τm,n = δm,n+1 (4)

with ω = e2πi/N and τm,N = δm,1. These are the clock and shift
matrices satisfying

στ = ωτσ, σ † = σN−1, τ † = τN−1 (5)

with σN = τN = I . For N = 2 they are the usual Pauli
matrices σ z and σx .

The parameter λ plays the role of temperature. Following
[8], for the duality transformation for general Z(N ) quantum
chains, it is simple to verify that Hamiltonian (1) is self
dual, namely H (λ) = λH (1/λ). We then expect, by usual
arguments, that the model is critical at the self-dual point
λ = λc = 1. This is verified in the open boundary case, where
the finite-size gaps are exactly known [7].

Generalizations of the Hamiltonian (1) with the Hermitian
conjugate term included have been the subject of recent studies
[9], mostly for N = 3, in the context of parafermionic edge
modes [10]. The unique property of Hamiltonian (1) is that the
energy eigenspectrum has the simple form

−E/λ = ωs1ε1 + ωs2ε2 + · · · + ωsLεL (6)

for any choice of the integers sk = 0, . . . ,N − 1. This covers
all NL eigenvalues in the spectrum. Just as the special N =
2 case E/λ = ±ε1 ± ε2 ± · · · ± εL can be taken as the basic
property of a free fermion system, the form (6) is also the basic
property of a free parafermion system.

The quasienergy levels εj (j = 1, . . . ,L) appearing in (6)
are functions of λ. Defining g = 1/λN/2, the values εN

j are
determined by the eigenvalues of the L × L matrices C†C or
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CC†, where

C =

⎡
⎢⎢⎢⎢⎣

1
g 1

g 1
. . .

. . .
g 1

⎤
⎥⎥⎥⎥⎦ (7)

with

εj = (1 + g2 + 2g cos kj )1/N . (8)

The roots kj , j = 1, . . . ,L, satisfy the equation [7]

sin(L + 1)k = −g sin Lk. (9)

Using this solution, a number of exact results have been derived
for this model [7]. Although it has a simpler Hamiltonian than
the free fermionic superintegrable chiral Potts model, the free
parafermionic model is seen to share some critical properties
with it, namely the specific-heat exponent α = 1 − 2/N and
the anisotropic correlation length exponents ν‖ = 1 and ν⊥ =
2/N .

Here we consider the more general Hamiltonian

H (L,a) = Hopen(L) − a σLσ
†
1 , (10)

where Hopen(L) is as defined in (1) and a is a real parameter in-
terpolating between periodic boundary conditions (PBC) (a =
1) and antiperiodic boundary conditions (a = −1). Obviously,
a = 0 recovers the model with open boundary conditions
(OBC). The motivation for the present study is to investigate
the role of boundary conditions on the properties of the free
parafermion Z(N ) model for N � 3 [11]. As discussed for
the chiral Potts model from the perspective of conformal field
theory [12], several of the usual properties of Hermitian sys-
tems, such as insensitivity of bulk thermodynamic quantities
to boundary conditions, can fail in the non-Hermitian case. As
foreshadowed, this note of caution applies even more so for
the model under consideration [7]. We report here that the role
of boundary conditions is seen to have a profound effect on the
bulk properties of the non-Hermitian free parafermion Z(N )
Hamiltonian.

II. BULK GROUND-STATE ENERGY PER SITE

A. Periodic boundary conditions

As remarked above, the Z(N ) model defined in Eq. (10) is
solved exactly for general N and finite L for the case of OBC
(a = 0). For PBC (a = 1) we resort to numerical diagonaliza-
tion to calculate the ground-state energy per site eL = E0(L)/L
for the Z(N ) model for chain sizes L = 2,3, . . . ,Lmax. For
comparison we also consider OBC in the same way. From the
energy expression (6) it is evident that the ground-state energy
is real for OBC, corresponding to the integers sk = 0 for all
k. For PBC, although no similar such exact solution has been
obtained for PBC, we observe that the ground-state energy is
also real. Proof of this observation based on the symmetries of
these quantum chains is still missing.

In the present study, we concentrate on the value λ = 1.
The values for the ground-state energy per site are plotted for
some fixed chain sizes and different values of N in Fig. 1. We
clearly see that for a given size L, the difference between eL for
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FIG. 1. The ground-state energy per site for the Z(N ) spin
chain with periodic boundary conditions (PBC) and open boundary
conditions (OBC) for N = 3, 4, 5, 6, 7, 8, 10, and 20. The data points
(see legend) are the values for the Z(N ) model for chain sizes L = 7,
10, and 11.

PBC and OBC increases with N . Moreover, while eL increases
with N for OBC, it decreases with N for PBC. Extrapolated
estimates for e∞ are shown in Table I. The extrapolations were
performed using van der Broeck–Schwartz extrapolants with
ε-extension (VBS) [13]. In each case, the error indicated is an
evaluation taking into account the stability as ε is changed in
the extrapolation. The estimates for e∞ are visualized in Fig. 2,
which shows the striking dependence of the bulk ground-state
energy per site on the boundary conditions. The known exact
result for e∞ with OBC is given further below in Eq. (13), with
e∞ = −1 in the limit 1/N → 0.

B. General boundary conditions

To further investigate the effect of the boundary conditions,
we now consider the general boundary Hamiltonian H (L,a)

TABLE I. Estimated results for the ground-state energy per site of
the Z(N ) model for periodic boundary conditions (PBC) and for open
boundary conditions (OBC). The extrapolated values are obtained for
chain sizes L = 2,3, . . . ,Lmax. The exact values for OBC are also
shown.

Lmax Extrap. PBC Extrap. OBC Exact OBC

Z(3) 21 −1.1544 ± 0.0002 −1.1321 ± 0.0002 −1.13209336...
Z(4) 17 −1.2219 ± 0.0002 −1.0787 ± 0.0001 −1.07870520...
Z(5) 14 −1.3280 ± 0.0002 −1.0524 ± 0.0001 −1.05246524...
Z(6) 13 −1.4192 ± 0.0002 −1.0375 ± 0.0001 −1.03754819...
Z(7) 12 −1.4913 ± 0.0002 −1.0282 ± 0.0001 −1.02823144...
Z(8) 11 −1.5482 ± 0.0001 −1.0220 ± 0.0001 −1.02201332...
Z(10) 10 −1.6312 ± 0.0002 −1.0145 ± 0.0001 −1.01447454...
Z(20) 7 −1.8080 ± 0.0004 −1.0038 ± 0.0001 −1.00384106...
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FIG. 2. Depiction of the contrast between the extrapolated esti-
mates for the ground-state energy per site for the Z(N ) model with
PBC and OBC for N = 3, 4, 5, 6, 7, 8, 10, and 20. These results are
the values shown in Table I.

given in Eq. (10). Here the parameter a interpolates between
the open and periodic cases. In Fig. 3 we show the values of
eL(a) = E0(L,a)/L for the Z(6) model for chain sizes L =
2–9. We see in this figure the existence of peaks as a function
of the parameter a. As L becomes larger, the peaks tend to the
position a = 0, i.e., the OBC case, and they become sharper
as the chain size grows. In Fig. 4 we show the curves of Fig. 3
in a larger scale around a = 0, at which the exact result is
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FIG. 3. The ground-state energy per site for the Z(6) model (10)
for the general boundary conditions defined by the parameter a.
The VBS-extrapolated results are also shown (the deviations in the
extrapolations are subjective).
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FIG. 4. The ground-state energy per site for the Z(6) model (10)
for the general boundary conditions defined by the parameter a. The
exact value for the open boundary case is shown.

known. These figures appear to indicate that, except for the
OBC a = 0, all the closed boundaries a �= 0 have the same
value for the ground-state energy per site in the infinite size
limit. In Fig. 3 we also show the values obtained from the VBS
extrapolations using the lattice sizes L = 2–9. Here the errors
shown in the extrapolation are not errors in the strict sense, but
rather subjective evaluations taking into account the behavior
of the extrapolations.

To confirm the abnormal behavior at a = 0, we compute
numerically the derivative e′

L(L,a) = deL(a)/da|a=0. Specif-
ically, we compute the right-derivative

df (x)

dx
= −3f (x) + 4f (x + �x) − f (x + 2�x)

2�x

+O[(�x)2]. (11)

The results for this derivative up to L = 9 are shown in Table II
for the Z(6) model. These values are shown in a log-log plot
in Fig. 5. We clearly see that the derivatives diverge to −∞
polynomially with L. A fit for the Z(6) model, obtained from

TABLE II. The derivative deL(a)/da|a=0 with increasing chain
size L for the Z(6) model (10) with boundary conditions specified by
the parameter a.

L e′
L(L,a)|a=0

2 −0.91763825
3 −1.58769897
4 −3.32838276
5 −7.67373638
6 −18.7154986
7 −46.7908356
8 −112.234431
9 −233.157167
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FIG. 5. A log-log plot of the derivative deL(a)/da|a=0 as a
function of 1/L for the Z(6) model (10) with boundaries specified
by the parameter a.

the chain sizes L = 6–9 (dashed rectangle in Fig. 5), gives
deL(a)/da|a=0 ≈ −0.000 25L6.25. The tendency for an infinite
derivative can also be seen in Fig. 6, where we plot the inverse
of the derivative as a function of 1/L. Here the tendency is
clearly toward the value zero as L → ∞.

C. Leading finite-size corrections

In the open boundary case, the leading finite-size correc-
tions to the ground-state energy are known to be given exactly
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FIG. 6. The inverse of the derivative deL(a)/da|a=0 as a function
of 1/L for the Z(6) model (10) with boundary conditions specified
by the parameter a.
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Z(10) e∞= -1.6312
Z(20) e∞= -1.8080

FIG. 7. The fittings, following Eq. (14), for the ground-state
energy per site E0(L)/L as a function of 1/L for the Z(N ) model
(N = 5, 7, 8, 10, and 20) with periodic boundaries. The values e∞ in
the bulk limit are shown in the inset.

by [7]

E0(L) = Le∞ + f∞ + bN

Lν
+ O

(
1

L1+ν

)
, (12)

where

e∞ = − 2ν

√
π

�
(

1
2 + 1

N

)
�

(
1 + 1

N

) , f∞ = 1

2
e∞ + 2ν−1 (13)

and ν = 2/N . The amplitude bN is also known. In the periodic
case, we would expect the leading behavior to be of the form

E0(L)

L
= e∞ + b

Lγ
+ o(1/Lγ ) (14)

with the exponent value γ = 1 + ν. To test this, we have
evaluated the exponent γ in two distinct ways. First, we have
made a fit where e∞, b, and γ are free parameters. Second,
we take the extrapolated values shown in Table I for the
ground-state energy per site e∞ and then perform a fit of the
form

E0(L)

L
− e∞ = b

Lγ
(15)

with b and γ taken as free parameters. For the sake of
illustration, we show in Fig. 7 the various fittings for the Z(N )
model for values N = 5, 7, 8, 10, and 20.

The values obtained by the two procedures are shown in
Table III. In columns 2–4 of Table III we show the results
obtained for the exponent via the first method, with the results
obtained via the second method shown in column 5. We believe
that the second method is more reliable since it takes into
account the extrapolated values of e∞, given in Table I. Taking
into account both methods, we give the estimate shown in
column 6, where the error is an indication of the expected
precision (clearly subjective).
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TABLE III. The PBC values e∞(fit), b(fit), and γ (fit) are the
results obtained by fitting the finite-size correction form given in
Eq. (14). The PBC values γ (extr) are obtained using the extrapolated
values for e∞ in Eq. (15). The penultimate column shows the estimated
values for the PBC finite-size correction exponent γ taking into
account both methods. Also shown for comparison is the exponent
γopen obtained by using the same lattice sizes in the extrapolation.

N e∞(fit) b(fit) γ (fit) γ (extr) γ γopen

3 −1.15355 −0.68 1.68 1.70 1.68 ± 0.02 1.67
4 −1.22118 −0.72 1.89 1.92 1.90 ± 0.03 1.50
5 −1.32810 −0.63 2.02 2.02 2.02 ± 0.02 1.40
6 −1.41952 −0.53 2.05 2.01 2.03 ± 0.03 1.33
7 −1.49135 −0.46 2.06 2.02 2.04 ± 0.03 1.29
8 −1.54849 −0.40 2.06 2.03 2.04 ± 0.03 1.25
10 −1.63144 −0.33 2.06 2.02 2.04 ± 0.03 1.20
20 −1.80820 −0.17 2.07 2.03 2.05 ± 0.03 1.10

We clearly see from the results of Table III that the leading
finite-size correction for the ground-state energy is governed by
the exponent values γ ≈ 2 for N � 4, which are quite distinct
from the corresponding values with OBC, namely γ = 1 +
2/N . For comparison of the methods, we also show, up to two
decimal digits, the values obtained in this way for the exponent
γ in the OBC case, using the same lattice sizes as in the periodic
case. They are in close agreement with the known result.

III. GAP EXPONENT

The excitation energies above the ground state, and con-
sequently the energy gaps of the parafermionic models, have
complex values irrespective of whether the boundary condi-
tions are open or periodic. Although some energy levels are
real, those with the lowest real part are complex. In this section,
we consider the gap with the lowest real part. The model (10)
has a Z(N ) symmetry, due to the commutation relation

[H,P] = 0, P =
L∏

j=1

τj . (16)

The ground state belongs to the Z(N ) charge P = 0, with
the first gap to the sector of charge P = 1. The correlation
length exponent ν can be estimated from the leading finite-size
behavior of the first gap, with

GL = Re{E1(L) − E0(L)} = A

Lν
+ o(1/Lν), (17)

where A is a constant. We consider the finite-size estimator for
the exponent ν defined by

νL,L+1 = ln(GL/GL+1)

ln[(L + 1)/L]
. (18)

In Table IV, we show the results obtained from VBS
extrapolants of the data for νL,L+1. We show in the third column
the results with our subjective evaluation of the errors. We also
show in this table the results obtained for the exponents for
OBC, using the same chain sizes. In the last column, we show
the known exact results for OBC. We clearly see that the values
of the gap exponent ν are quite distinct for PBC vs OBC. It

TABLE IV. The gap exponent ν obtained for the periodic Z(N )
model using the VBS extrapolation of the estimators (18). Also shown
are the results obtained for OBC with the same chain sizes used in
the periodic case. The exact results for OBC are shown in the last
column.

N ν(extr.) ν (predicted) νopen(extr.) νopen(exact)

3 1.080 1.080 ± 0.005 0.667 2/3 = 0.666 . . .

4 1.005 1.005 ± 0.003 0.500 2/4 = 0.5
5 1.001 1.001 ± 0.002 0.400 2/5 = 0.4
6 1.002 1.002 ± 0.002 0.333 2/6 = 0.333 . . .

7 1.000 1.000 ± 0.001 0.288 2/7 = 0.2857 . . .

8 1.000 1.000 ± 0.001 0.250 2/8 = 0.25
10 1.000 1.000 ± 0.001 0.200 2/10 = 0.2
20 1.000 1.000 ± 0.001 0.100 1/10 = 0.1

seems that the exponent for the periodic case is close to (if not
exactly) the value ν = 1, which is distinct from OBC where
ν = 2/N . To illustrate this difference, we show in Fig. 8 the
extrapolated results for PBC together with the exact results for
OBC.

IV. SPECIFIC-HEAT EXPONENT

We calculate in this section the specific heat of the Z(N )
model with PBC at the critical point λ = λc = 1. This quantity
is given by

C(λ,L) = − 1

L

d2E0(L)

dλ
. (19)

At the critical point, we should expect the leading finite-size
behavior

C(λ = 1,L) ∼ ALα/ν‖ , (20)

5 10 15 20
 N

0

0.2

0.4

0.6

0.8

1

1.2

ν

ν periodic
ν open

FIG. 8. The results for the exponent ν obtained from the VBS
extrapolations of the estimator (18) for the periodic Z(N ) model and
the corresponding exact results for OBC.
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TABLE V. The specific heat C(λ = 1,L) for the Z(N ) model with
L sites, for N = 3, 5, 6, 7, and 8.

L N = 3 N = 5 N = 6 N = 7 N = 8

2 0.433013 0.248680 0.175466 0.117594 0.092118
3 0.629961 0.278889 0.189414 0.130737 0.105481
4 0.755042 0.278853 0.191451 0.135007 0.110214
5 0.840759 0.276337 0.192507 0.137145 0.112457
6 0.901140 0.274801 0.193252 0.138354 0.113684
7 0.943967 0.274056 0.193770 0.139095 0.114426
8 0.974148 0.273712 0.194129 0.139580 0.114908
9 0.995022 0.273552 0.194384 0.139914 0.115238
10 1.008975 0.273475 0.194570 0.140154 0.115475
11 1.017767 0.273437 0.194710 0.140331 0.115650
12 1.022719 0.273417 0.194816 0.140466
13 1.024835 0.273406
14 1.024883 0.273401
15 1.023453
16 1.020994
17 1.017848
18 1.014273
19 1.010465
20 1.006565

where A is a constant. In the case of OBC, α = 1 − 2/N and
ν‖ = 1 [7]. In the periodic case, the finite-size values of (20)
are given in Table V for the Z(N ) model with N = 3, 5, 6, 7,
and 8. Surprisingly, we see that the data saturate as L increases,
with a clear indication that the specific-heat exponent α = 0 for
the periodic case, as for the N = 2 Ising model. Actually, the
results we have obtained show that the periodic case, at least
for N > 4, exhibits a similar behavior to that of the standard
Ising model. This fact should be explored further in subsequent
studies.

V. SUMMARY AND DISCUSSION

The bulk properties of the Z(N ) model defined by the
non-Hermitian Hamiltonian (10) have been demonstrated here
to exhibit a striking dependence on boundary conditions. For
illustrative purposes, we have focused on the critical point
λ = 1. For N = 2, the widely studied Hermitian quantum Ising
chain in a transverse field, the bulk properties are well known
to be independent of the boundary conditions. As can be seen
clearly in Fig. 2, the difference between the values obtained
for the bulk ground-state energy per site e∞ with OBC (a = 0)
and PBC (a = 1) increases with increasing N for N � 3. As
a function of the boundary condition parameter a, the bulk
ground-state energy per site is a singular point at a = 0, as can
be seen for the Z(6) model in Figs. 3 and 4. We observed the
divergence of the derivative with respect to the parameter a at
a = 0. This is precisely the open boundary case.

The finite-size corrections to the bulk ground-state energy
per site are also dependent on the boundary conditions. We
found that for PBC the leading finite-size correction to the bulk
ground-state energy is of the form (14) governed by the expo-
nent values γ ≈ 2 for N � 4, which are distinct from the
corresponding exactly known values for OBC, namely γ =
1 + 2/N .

The first mass gap exponent has also been numerically
estimated for PBC, with values for all N close to the Ising
N = 2 value ν = 1. This result is again strikingly different
from the known value ν = 2/N for OBC; recall Fig. 8.
Moreover, the analysis of the specific heat in Sec. IV indicates
that for PBC the values of the specific-heat exponent α

are also suggestive, at least for N > 4, of the Ising model
value α = 0. The fact that for the periodic case, for large
N , the exponent γ in (15) is close to 2 suggests that we
have a relativistic energy-momentum dispersion relation, and
possibly an underlying conformal invariance in the bulk limit.
Since for large N the exponents ν ≈ 1 and α ≈ 0, the natural
possibility would be the Ising universality class with central
charge c = 1/2. To test this possibility, we have calculated the
mass gaps with the lowest real part in the eigensectors labeled
by the momentum 2πp/L (p = 0,1, . . . ,N − 1) and Z(N )
charges (Q = 0, . . . ,N − 1) of the Z(8) quantum chain with
L = 10. Exploring the well-known consequences of conformal
invariance, the mass gap amplitudes of finite lattices give us
predictions for the conformal dimensions in clear contradic-
tion with the expected results of an Ising conformal field
theory.

At this stage, we can only begin to speculate as to the
reasons why the boundary conditions have such a profound
effect on the bulk properties of this simple Z(N ) model.
Systems for which the boundary conditions affect the finite-
size corrections are usual, normally producing an additional
surface term of O(1/L) in the energy. There also exist systems
in which the mass gap and critical behavior may change
or even vanish under a change of boundary conditions. An
example is the non-Hermitian Hamiltonian associated with the
time-evolution operator of the asymmetric exclusion process
where the open problem is gapped (the Hamiltonian is related
to the XXZ quantum chain in the gapped ferromagnetic
regime) but the closed system is gapless and critical (in the
KPZ universality class) [14–16]. However, the ground-state
energies (with value zero in this example) are the same for
both boundary conditions. Systems for which the bulk energy
changes with the boundary conditions are surprising excep-
tions. A prominent example for two-dimensional classical
systems is the six-vertex model with domain-wall boundary
conditions, for which the bulk free energy differs from the
well-known result obtained using periodic or open boundary
conditions [17]. For the model under consideration here it
took some time for us to be fully convinced by our numerical
results. For the periodic Z(N ) model at λ = 1, the ground-state
energy per site decreases with increasing N , in contrast to the
open case, where it increases. The ordinary Z(N ) Hermitian
quantum chains such as the Potts or the Z(N ) parafermionic
models [18] give a bulk ground-state energy that is independent
of the boundary conditions and decreases with increasing
N [19,20]. This suggests that the ground state of the Z(N )
model with open ends is constrained (probably topologically
restricted), but by insertion of a single link connecting both
sides of the chain, and thereby changing the lattice topology,
the energy of the ground state is decreased enormously [by
O(L)]. Conversely, the physics of the Z(N ) model defined
on a ring changes drastically by cutting a single link. In this
sense, it is the Z(N ) model with OBC that is the exceptional
case.
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Here we can also throw into the mix the fact that the
Z(N ) model with OBC is described by the physics of free
parafermions. The free parafermion description works per-
fectly for this model when subject to OBC, but there is of
course no guarantee of a solution in terms of free parafermions
for PBC. The underlying reason may thus again be topological
and related to the ordering of the parafermionic operators.
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