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Characteristic functions of quantum heat with baths at different temperatures
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This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation
takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of
quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting
statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be
extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying
correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one
bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015); E. Aurell, Entropy 19, 595 (2017)].
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I. INTRODUCTION

The study of fluctuating work and heat in open quantum
systems is an active interface between nonequilibrium statis-
tical physics and quantum information. As statistical physics
the starting point is classical stochastic thermodynamics [1–4]
extended toward the quantum domain [5–12]. In quantum
information the term Quantum Thermodynamics has become
standard [13]; the approach is then full quantum descriptions
of nonequilibrium statistical physics of small systems often
formulated as resource theories [14,15].

Fluctuation relations in classical stochastic thermodynam-
ics follow from ratios of path probabilities in forward and
reverse processes. This is so both for standard models of
kinetic theory, where it has been known for almost two decades
[16–18], as well as at strong coupling [19–21]. In statistical
physics a main problem of quantum thermodynamics is there-
fore that a quantum path is not an observable and so cannot be
used as a conceptual building block of the theory. As quantum
information the main problem is, on the other hand, that work
and heat are not standard quantum operators in a Hilbert space
or in a space of density matrices. Indeed, in thermodynamics
these quantities are not exact differentials and are therefore
properties of processes with a history and not state functions.

One approach to quantum thermodynamics has its origin
in the work of Feynman and Vernon [22]. An open quantum
system is then explicitly modeled as a system of interest
interacting with a bath, and the bath variables are integrated
out. For a bath of harmonic oscillators initially in thermal equi-
librium this procedure can be carried out exactly and was used
by Leggett and coworkers to investigate quantum Brownian
motion, quantum tunneling, and the spin-boson problem in
three seminal papers in the 1980s [23–25]. This theory, covered
in several reviews and monographs, cf. Refs. [26–28], can be
extended to also treat quantum heat as investigated recently by
several groups [29–33].
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The first goal of the present paper is to extend the results
obtained for the expected value (first moment) in Refs. [29,30]
to full generating functions of quantum heat. Analogous results
have been obtained already in Refs. [32,33], up to differences
in the physical set-up, which will be discussed in the following.
The second goal is to show that all the procedures in the
paper can be carried out for a system interacting with two
or more baths at different temperatures. As far as I am aware
this observation is new. The Feynman-Vernon approach thus
opens a way to investigate the generating functions of quantum
heat in a genuine nonequilibrium setting of heat flow between
different reservoirs. As an example I derive an expression for
quantum thermal power, the expected bath energy change per
unit time in the long-time limit.

The organization of the paper is as follows. Section II states
the problem studied, and the calculation for one bath oscillator
is described in Sec. III. Related technical details are given in
Appendix A. The setting of two or more baths at different
temperatures and quantum thermal power are discussed in
Sec. IV. Various conceptual and technical problems related to
quantum heat are discussed in Sec. V. Section VI sums up the
paper and gives additional remarks. Appendix A summarizes
for completeness properties of Ohmic baths, with pointers to
more detailed presentations in the literature.

II. GENERATING FUNCTIONS OF QUANTUM HEAT

This section builds extensively on Refs. [29,30]. The setting
is that of one quantum system (“the system”) linearly coupled
to a large number of harmonic oscillators (“the baths”). The
total Hamiltonian of the bath and the system is

HTOT = HS +
∑

k

(
H

(k)
B + H

(k)
I + H

(k)
C

)
, (1)

where

HS = P 2

2M
+ V (X,t) (2)

is the system Hamiltonian (typically explicitly time dependent)
and k labels the baths. All parts of the Hamiltonian are for
simplicity of expression stated classically. When the distinction
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between the baths is not necessary the index k will be dropped.
The bath Hamiltonians (for each bath) are thus

HB =
∑

b

p2
b

2mb

+ 1

2
mbω

2
bq

2
b , (3)

where the mass and spring constant of oscillator b are mb and
mbω

2
b; ωb is the natural frequency in units rad/s, and qb and

pb are, respectively, the oscillator’s coordinate and momentum.
The interaction Hamiltonian is

HI (t) = −
∑

b

Cb(t)qbX, (4)

where the Cb(t) are functions of time which start out at zero,
rise up to a constant value at the beginning of a process, and
then go back to zero before the end of the process. Such time-
dependent system-bath coupling or other more radical changes
are needed to have a consistent classical theory of mesoscopic
heat at strong coupling, as recently discussed in Ref. [21]; see
references therein for other approaches. In this paper we will
for the most part leave these considerations aside and drop
the time dependence of Cb(t) when that is not a problem.
The last term in the Hamiltonian Eq. (1) is the Caldeira-
Leggett counter-term (a correction to the system Hamiltonian),

HC(t) = ∑
b

C2
b (t)X2

2mbω
2
b

. The counter-term, the interaction term in
Eq. (4) and the potential in Eq. (3) together form a sum of

complete squares,
∑

b
1
2mbω

2
b(qb − CbX

mbωb
)
2
.

Let now |i〉 and |f 〉 be two states of the system, and let the
system initially start in pure state |i〉〈i|. The oscillators in bath
k are initially in equilibrium at some inverse temperature βk .
The total initial state of the system and the baths is thus

ρTOT
i = ρ

eq
B1

(β1) ⊗ ρ
eq
B2

(β2) ⊗ · · · ⊗ |i〉〈i|, (5)

where ρ
eq
Bk

(βk) is the Gibbs state of bath k at inverse temperature
βk . Feynman and Vernon in a famous paper [22] considered
the probability of observing the system in final state |f 〉 given
that it started out in state |i〉 when it is interacting with one bath
at inverse temperature β. For this they introduced the notation

Pif = TrB〈f |(UρTOT
i U †)|f 〉. (6)

The formula extends in a trivial way when the system interacts
with more than one bath, as I will also comment upon later. The
goal of this paper is to compute the functionals (functionals of
the system, functions of the parameters in the arguments),

Fif (ν1,ν2, . . .) =
∏
k

TrBk
〈f |ei(

∑
k νkHBk )

(
UρTOT

i U †)|f 〉, (7)

Gif (ν1,ν2, . . .) =
∏
k

TrBk
〈f |ei(

∑
k νkHBk )

× (
Ue−i(

∑
k νkHBk

)ρTOT
i U †)|f 〉, (8)

where ν1,ν2, . . . are parameters that probe the energy of each
bath. When the parameters are small this is a way to gen-
erate moments (averages, variances, cross-correlations, etc.)
between energy changes in one or several baths. The derivative
with respect to just one ν at the origin (zero value of all of
them) brings out the expected energy change of that bath; for
a system connected to one bath the resulting functionals were

computed in Refs. [29,30]. When one or several ν are large the
functionals probe the distribution of large energy changes. The
functional Fif will be referred to as the characteristic function.
The functional Gif will be referred to as the full counting
statistics (FCS). As we will see in the following sections, Fif

and Gif are structurally very similar, though not identical. In
fact, they only differ by the same kind of terms already found
for their expected values in, respectively, Refs. [29,30].

Fif is related to the generating function of the energy of
the baths in the final state, as can be seen as follows. Consider
one bath and the probability pB(E|i,f ) of observing a bath
energy E at the final time, after the final measurement on the
system. The probability of observing one state of the bath |E〉,
is 〈E |ρpost

B |E〉, where ρ
post
B is the reduced density matrix of the

bath, after measuring the system and finding final state |f 〉.
This quantity is

ρ
post
B = 1

Pif

〈f |ρTOT|f 〉, (9)

where ρTOT is the total density operator of the system and the
bath at the end of the process. We then have

pB(E|if ) =
∑
E

1

Pif

1E(E),E〈E,f |ρTOT|E,f 〉, (10)

where E(E) is the energy of bath state |E〉. Integrating both
sides one has∫

eiνEpB(E|if )dE =
∑
E

1

Pif

eiνE(E)〈E,f |ρTOT|E,f 〉

= 1

Pif

Fif (ν), (11)

Fif (ν) is therefore up to the factor Pif the generating function
of the bath energy in the final state.

Gif (ν) can on the other hand be related to a bath energy
change in a two-measurement protocol. If the initial state of
the bath is both measured and recorded the initial state
of the system and the bath is a pure state, |Ei ,i〉. If the
initial state of the bath is measured but not recorded the
initial state is a statistical mixture where |Ei ,i〉 has Gibbs
weight Z−1

B (β) exp [−βE(Ei)]. Consider pB(�E,f |Ei ,i), the
conditional probability of observing a final state |f 〉 of
the system and bath energy change �E, conditioned on
total initial state |Ei ,i〉. Consider further pB(�E,f |i) =∑

Ei
pB(�E,f |Ei ,i)Z

−1
B (β) exp [−βE(Ei)], which is the aver-

age pB(�E,f |Ei ,i) over the stistical mixture. Similar to above,

pB(�E,f |i) =
∑
Ef ,Ei

Z−1
B (β)e−βE(Ei )1E(Ef )−E(Ei ),�E

×〈Ef ,f |ρTOT(Ei ,i)|Ef ,f 〉, (12)

where ρTOT(Ei ,i) is the total density operator of the system and
the bath at the end of the process when the system and the bath
started in the pure state |Ei ,i〉. Resolving the δ function one
can write

pB(�E,f |i) = 1

2π

∫
e−iν�EGif (ν)dν, (13)
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where

Gif (ν) =
∑
Ef ,Ei

Z−1
B (β)e−βE(Ei )eiν[E(Ef )−E(Ei )]

×〈Ef ,f |ρTOT(Ei ,i)|Ef ,f 〉. (14)

By linearity the Gibbs weight and the factor e−iνE(Ei ) can
be taken inside the the big unitary transformation defining
ρTOT(Ei ,i). The above is therefore alternatively

Gif (ν) = TrB〈f |eiνHB Ue−iνHB ρTOT
i U †|f 〉, (15)

which is the same expression as Eq. (8), for brevity stated
for one bath. Gif (ν), referred to a full counting statistics, is
hence the generating function of the energy change in the bath,
averaged over an initial equilibrium distribution of the bath.

III. THE PATH INTEGRAL EXPRESSIONS FOR THE
FUNCTIONALS Fi f AND Gi f

Path integrals for harmonic oscillators can be done exactly
since they are Gaussian. As the initial state of the bath
oscillators is factorized (they are independent) and since they
do not interact with one another, the path integral of each bath
oscillator can be done separately.

To keep the central message (and results) visible notional
simplifications will be introduced as needed. The first such
notation simplification, introduced by Feynman and Vernon
[22], is to write Pif for conditional probability of measuring
the system in final state |f 〉 given that it was initially in |i〉.
Using the shorthand,∫

if

(· · · ) =
∫

dXidYidXf dYf ψi(Xi)ψ
∗
i (Yi)ψ

∗
f (Xf )

×ψf (Yf )(· · · ),

where ψi and ψf are the wave functions of the states |i〉 and
|f 〉. I write the transition probability in Eq. (6) as

Pif =
∫

if

DXDYe
i
h̄
SS [X]− i

h̄
SS [Y ]+ i

h̄
Si [X,Y ]− 1

h̄
Sr [X,Y ], (16)

where the two path integrals are over, respectively, the forward
path X(t) from Xi to Xf and the backward path Y (t) from Yi to
Yf . These two path integrals emanate from a representation of
the total unitary U and its inverse U−1 in the time development
of the total density operator of the bath and the system ρ̂TOT

f =
Uρ̂TOT

i U−1, and then integrating out the bath variables. The
effects of the bath are thus captured by the two kernels Si and
Sr in Eq. (16), which couple the forward and backward paths,
and which are referred to as the real and the imaginary part of
the Feynman-Vernon action. The contribution to Si and Sr from
one oscillator with a time-dependent system-bath coupling is

Sb
i =

∫ t∫ s

(X − Y )(X′ + Y ′)
CbC

′
b

2mbωb

sin ωb(s − s ′)ds ′ds,

(17)

Sb
r =

∫ t∫ s

(X − Y )(X′ − Y ′)
CbC

′
b

2mbωb

coth

(
ωh̄β

2

)
× cos ωb(s − s ′)ds ′ds, (18)

where primed (unprimed) quantities refer to time s ′ (s) and β

is the inverse temperature of the bath to which this oscillator
belongs. The quantities in Si and Sr in Eq. (16) are the sums
of Sb

i and Sb
r from Eqs. (17) and (18). The expression for Sb

r is
symmetric in s ↔ s ′ and this integral can therefore be extended
over the whole square ti � s,s ′ � t . The expression for Sb

i is
on the other hand not symmetric in s ↔ s ′ so this integral has
to be taken over the triangular domain ti � s ′ � s � t .

The path integral expressions for Fif and Gif can be written

Fif =
∫

if

DXDYe
i
h̄
SS [X]− i

h̄
SS [Y ]

∏
b

F (F )
b (ν), (19)

Gif =
∫

if

DXDYe
i
h̄
SS [X]− i

h̄
SS [Y ]

∏
b

F (G)
b (ν), (20)

where the products are over the bath oscillators b. The results
of the corresponding integrations over each bath oscillator are
as in Ref. [29], Eq (13). I will write them as

F (F )
b (ν) =

(
2πh̄
ωm

)2
e

i
2mωh̄

uM̃F
−1

u+ i
h̄
B

Z(β)N (iβh̄)|N (t)|2N (h̄ν)(det M̃F )
1
2

, (21)

F (G)
b (ν) =

(
2πh̄
ωm

)2
e

i
2mωh̄

uM̃G
−1

u+ i
h̄
B

Z(β)N (iβh̄ − h̄ν)|N (t)|2N (h̄ν)(det M̃G)
1
2

. (22)

All quantities in above refer to one bath oscillator, the index b

understood in angular frequency ω, mass m, etc. The quantities

N (t) =
√

2πih̄ sin(ωt)
mω

in the denominators are the normalization
factors of the harmonic oscillators with the corresponding
timelike arguments. The vector u and the function B arise
from the propagators of the harmonic oscillator and are listed
in Appendix A; they do not depend on ν. The matrices M̃F and
M̃G collect terms from the harmonic oscillator propagators,
the initial equilibrium state of the bath, and eiνHB and (for Gif )
e−iνHB ; they depend on ν and are also listed in Appendix A.

It was shown in Ref. [29] that all the prefactors in Eq. (21)
combine to sinh ( ωh̄β

2 ) sinh−1 ( ωh̄(β−iν)
2 ). Using the same line of

argument it is seen that all the prefactors in Eq. (22) combine
to give one. The whole nontrivial part hence stems from u, B,
and M̃ and the results can be written as∏

b

F (F )
b (ν) = (trivial) · e

i
h̄
Si− 1

h̄
Sr+J (1)(ν)+J (2)(ν)+J (3)(ν), (23)

∏
b

F (G)
b (ν) = e

i
h̄
Si− 1

h̄
Sr+J (2)(ν)+J (3)(ν), (24)

where the Feynman-Vernon terms Si and Sr are given in
Eqs. (17) and (18). The three new functionals, which are all
symmetric in s ↔ s ′, are

J (1) = i

2mωh̄

∫ t∫ t

(XX′ + YY ′)CC ′ cos ω(s − s ′)

×
(

y − z

�
− i

2
coth

ωh̄β

2

)
, (25)

J (2) = i

2mωh̄

∫ t∫ t

(XY ′ − X′Y )CC ′ sin ω(s − s ′)

×
(

y ′z′ − yz

�
− 1

2

)
, (26)
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J (3) = i

2mωh̄

∫ t∫ t

(XY ′ + X′Y )CC ′ cos ω(s − s ′)

×
(

z′ − y ′

�
+ i

2
coth

ωh̄β

2

)
, (27)

where the auxiliary variables z, z′, y, y ′ and � are combinations
of trigonometric and hyperbolic functions in ν and β given
in Appendix A. The definitions of z, z′ and � differ a bit
between Case F (Fif ) and Case G (Gif ). However, for both
cases J (1), J (2), and J (3) all vanish at ν = 0. For Case G
(Gif ) the functional J (1) as defined by Eq. (25) is identically
zero, so that the only remaining pieces are J (2) and J (3), in
agreement with the expression given in Eq. (24).

IV. QUANTUM HEAT FLOWS AND QUANTUM
THERMAL POWER

The first point of this section is that if a system interacts
with two or more harmonic oscillator heat baths that do not
interact directly with one another, the corresponding Feynman-
Vernon actions simply add. The reason is the same as used to
derive the Feynman-Vernon action from one bath by adding
the contributions from each oscillator separately.

The second point is that the same property holds for
the generating functions Fif (ν1,ν2, . . .) and Gif (ν1,ν2, . . .)
introduced in Eqs. (7) and (8). For the rest of this section I
will assume that the system interacts with two baths, a cold
(“left”) bath at inverse temperature βL, and a hot (“right”) bath
at inverse temperature βR (βR < βL). It is natural to expect that
if the system has some structure all parts of the system do not
interact with two baths in the same way. Previously it was not
necessary to make this distinction, but here it is convenient to
think of one system coordinate XL, which interacts linearly
with the cold bath, and one system coordinate XR , which
interacts linearly with the hot bath, and all the other system
coordinates grouped into XC . Classically one then expects heat
to flow from right to left from the hot bath to XR , then from XR

through the system to XL, and then from XL out into the cold
bath. A similar setting was recently considered in Ref. [34].

Suppose one is mainly interest in the long-time limit of
the expected energy change in a bath per unit time, which
defines quantum thermal power in steady state. The energy
change should to leading order scale linearly in the time, with
a prefactor that will not depend on the initial or the final state
of the system. It therefore makes sense to consider the average
of the energy change(s) in the bath(s) over the final state of the
system (also at finite time), which is

pB(�E|i) =
∑
f

pB(�E,f |i). (28)

The corresponding generating functions is Gi(ν1,ν2). We have

Gi(ν1,ν2) =
∑
f

Gif (ν1,ν2). (29)

The starting point is then

Gi(ν1,ν2) = TrBL,BR,S

{
ei(ν1HBL

+ν2HBR
)

× [
Ue−i(ν1HBL

+ν2HBR
)ρTOT

i U †]}

=
∫

i

DXDYe
i
h̄
SS [X]− i

h̄
SS [Y ]

∏
b∈L

F (G)
b (ν1)

×
∏
b∈R

F (G)
b (ν2) δ(Xf − Y f ), (30)

where the trace is over the system and both baths and δ(Xf −
Y f ) is the path integral rendering of TrS . The subscript of the
integral

∫
i

indicates the remaining dependence on the initial
state of the system. The two products in Eq. (30) are∏

b∈L

F (G)
b (ν1)

= e
i
h̄
Si [XL,YL]− 1

h̄
Sr [XL,YL]+J (2)(ν)[XL,YL]+J (3)(ν)[XL,YL], (31)∏

b∈R

F (G)
b (ν2)

= e
i
h̄
Si [XR,YR ]− 1

h̄
Sr [XR,YR ]+J (2)(ν)[XR,YR ]+J (3)(ν)[XR,YR ], (32)

and the functionals are given as sums of the terms in
Eqs. (17), (18), and (25)–(27). Averages, correlations, and
cross-correlations of the energy changes in the two baths can
be evaluated as derivatives of Gi with respect to ν1 and ν2.

Quantum thermal machine are quantum systems that trans-
form heat to useful work. Quantum analogues of Carnot, Otto,
and diesel engines as well as quantum refrigerators have been
proposed and partly experimentally realized [35,36] and were
reviewed in Ref. [13]. The amount of heat flowing through
the working fluid of a quantum thermal machine per unit of
time limits how much work the machine can do per unit of time,
i.e., the power. The simplest quantity that can be considered
by the above analysis is quantum thermal power defined as the
energy change in the one of the baths per unit time, in the limit
when the process is in steady state.

To be concrete, let the bath be the cold bath. One can expect
the dependence on the initial state |i〉 of the system to drop out,
and one can write

Q̇ = lim
tf −ti→∞

∂iν1Gi |ν=0

tf − ti
=

∫ 0

−∞
h(2)(0,s)〈(XL(0)YL(s)

−XL(s)YL(0))δ(XL(0) − YL(0))〉ds

+
∫ 0

−∞
h(3)(0,s)〈(XL(0)YL(s) + XL(s)YL(0))

× δ(XL(0) − YL(0))〉ds, (33)

where the two kernels are the terms linear in ν1 of J (2) and
J (3) as given in Eq. (A21) and Eq. (A22).

h(2)(s,s ′) = i
∑

b

C2
b

2mb

coth

(
βh̄ωb

2

)
sin ωb(s − s ′), (34)

h(3)(s,s ′) =
∑

b

C2
b

2mb

cos ωb(s − s ′). (35)

Up to a factor β the above is the same as Eq. (16) in Ref. [29].
As we consider a long-time limit the time-dependence of Cb

in the equivalent expressions in Eqs. (A21) and (A22) can be
ignored. The expectation values in Eq. (33) are over a steady-
state reduced description of “left” part of the system only.
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An interesting special case is when the bath is Ohmic and
the temperature (in this case, of the cold bath) is sufficiently
high (Caldeira-Leggett limit). For completeness definitions
and basic properties of Ohmic baths are briefly summarized
in Appendix B. The two kernels can then be approximated
as h(2)(s,s ′) ≈ − 2i

βLh̄
η dδ(s−s ′)

d(s−s ′) and h(3)(s,s ′) ≈ −η d2δ(s−s ′)
d(s−s ′)2 [30],

where η is the friction coefficient. Integration by parts turns
Eq. (33) into

Q̇ =
∫

dXdYδ(X − Y )
iη

h̄β
〈ẊY − XẎ 〉ρL(X,Y )

+
∫

dXdYδ(X − Y )2η〈ẊẎ 〉ρL(X,Y ), (36)

where ρL(X,Y ) is the stationary reduced density matrix of the
left part of the system in the coordinate representation.

When the system has continuous state space the averages
in Eq. (36) and over the system development in the Caldeira-
Leggett limit and were evaluated in Ref. [29], Secs. 6.2 and
6.4. The result can be expressed by two operators:

Ô1 = −2
η

M

∂

∂(X − Y )
(X − Y ), (37)

Ô2 = −2ηh̄2 η

M2

∂2

∂(X − Y )2
, (38)

and

Q̇ = Tr[Ô1ρS] + Tr[Ô2ρS]. (39)

The Caldeira-Leggett limit is essentially a classical limit
because the Wigner transform of the density matrix obeys
classical Fokker-Planck equation. The above is hence just a
quantum way of writing the heat per unit time as in classical
stochastic thermodynamics.

For a quantum system with discrete state space (some
number of qubits), one would have to go back to Eq. (36)
for an Ohmic bath. If the qubits interact only through one
spin component, say through σ̂z, then the dynamics of the
system has a path integral representation first introduced by
Leggett and coworkers for the spin-boson problem [25]. This
approach (with or without a bath) has been developed further in
the statistical physics community to model quantum annealing
protocols [37,38]. If, however, the qubits interact in a more
general manner, as they would theoretically have to in general-
purpose quantum computational device, then a more involved
path integral representation would have to be used [39–41]. For
a quantum system interacting with baths that are not Ohmic
(non-Markovian state evolution), one would have to go back
to Eq. (33).

V. CONCEPTUAL AND TECHNICAL PROBLEMS
OF QUANTUM HEAT

In this paper I have defined quantum heat as the changes of
bath energy when the baths are initially in thermal equilibrium
and the system-bath interaction vanishes at the beginning and
the end of a process. This translates to the quantum domain
the strong-coupling classical definition of heat introduced
in Ref. [30]. It could have been assumed that it would be
simpler to take the system-bath interaction constant and to
somehow estimate quantum heat from the bath Hamiltonian

and interaction Hamiltonian at the initial and final time. The
section discusses why such an approach is not straightforward.

A first indication of a problem is that if one would simply
take quantum heat as change of bath energy and the system-
bath interaction constant in time there appears in the classical
limit (Caldeira-Leggett model) boundary contributions, dis-
cussed at length in Ref. [29]. In such an approach there is
hence not a complete quantum-classical correspondence for
heat even on the level of expectation values.

A second indication comes from the recent development
of strong-coupling stochastic thermodynamics [19,42]. Even
classically it is only when the system-bath interaction energy
is negligible that one can at the same time take it constant
and define heat as change in bath energy. If the system-bath
interaction energy is comparable to changes in system energy
or bath energy then a fraction should be counted as heat, and a
fraction as change of system energy. Certain choices of these
fractions, where also part of the bath energy is counted as
internal energy of the system, have been found to be consistent,
albeit at the price that the resulting heat has to determined by
thermodynamic integration. The latter has led to a vigorous
polemic [43], which I have recently discussed elsewhere [21].
The main problem in the present (quantum) context is that even
when the proposals in Refs. [19,42] can be accepted classically,
they lead to quite involved definitions in the quantum domain;
compare Eq. (28) in Ref. [19]. The alternative procedure of
a time-dependent system-bath interaction avoids this problem
on both the classical and the quantum level, at the price of a
new term in the work; see Ref. [30].

It can be concluded that quantum heat is in some sense
always a strong-coupling phenomenon, and problems with
various naïve versions of heat in open quantum systems
indeed central issues in quantum thermodynamics. The earliest
indication may have been Ref. [44], where it was shown
that the quantum dynamics of a single oscillator coupled
to a heat bath of harmonic oscillators depends sensitively
on the exact initial conditions, and in particular if the bath
is brought into contact immediately before or immediately
after the system is measured initially. A second problem was
identified in Refs. [45,46], where it was shown that different
definitions of specific heat of a quantum particle interacting
strongly with a bosonic heat bath yield different results. A
further step was taken in Ref. [12], where it was shown that
for a system interacting with a fermonic bath one cannot
consistently include any fixed nonzero fraction of the system-
bath interaction in the heat. This excludes, for instance, the
choice of including all system-bath interaction, as proposed
in Ref. [47]. However, including no part of the system-bath
interaction in the heat means to treat it as if weakly coupled,
which brings the issue that third law is no longer satisfied [12].
Note that the choice in Refs. [19,42] includes (classically) a
definite but not a fixed fraction of the system-bath interaction
energy in the heat.

Earlier work technically most similar to the determina-
tion of the generating function of heat in this paper are
Refs. [31–33]. Those papers mostly appeared before the
recent developments of (classical) strong-coupling stochastic
thermodynamics, and were hence developed independently
of that context. In Ref. [32] was computed a generating
function formed from inserting the operators eiνHB+iνλHSB at
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the final time and e−iνHB at the initial time; λ is here an
additional parameter. The interaction is with one bath at inverse
temperature β, and leads to expressions of a similar structure to
the ones given above for Gif . The expectation value formed by
differentiating this generating function with respect to iν at ν =
0 is 〈HB + λHSB〉f − 〈HB〉i where 〈· · · 〉i means averaging
with respect to the initial state of the bath (independent of
the system) and 〈· · · 〉f means averaging with respect to the
final state of the system and the bath. By the discussion
above this choice does not correspond classically to any of
the proposals currently considered viable for strong-coupling
heat in stochastic thermodynamics, the only exception being
λ = 0 and weak coupling. One may note that the boundary
contribution in the classical limit from Ref. [29] does not
appear in the formulation in Ref. [32], at least not at the
initial time, due to an additional assumption that the initial
state of the system is diagonal. In Ref. [33] (v1 as available
on arXiv, Supplemental Material Sec. III) a similar calculation
is carried out from the operators e−iν(HB+HSB ) at the final time
and e−iν(HB+HSB ) at the initial time, with the bath and system
initially in joint equilibrium. This leads again to expressions
of a similar structure to the ones given above for Gif . The
choice of an initial joint equilibrium state of the system and
the bath is the same as in Refs. [45,46]. Classically it can
be seen as special case of of the choice in [19,42] when the
initial state of the system is an equilibrium at mean force, for
a comparison see Ref. [21]. The corresponding expectation
value is 〈HB + HSB〉f − 〈H+ + HSB〉i where both averages
are over the system and the bath implies the same definition of
quantum heat as used in Ref. [47].

VI. DISCUSSION

I have in this paper computed the generating functions of the
distributions of the final energy in a bosonic bath (or baths) and
the change of bath energy as functionals of a system interacting
with the bath (or baths). From a technical point of view
analogous results were obtained Refs. [32,33] but in slightly
different settings which do fit the recently developed (classical)
stochastic thermodynamics at strong coupling [19,42]. The
version of strong-coupling used in this paper is based on the
system-bath interaction switched on/off at the beginning and
the end of the process and was discussed in detail for a classical
situation in Ref. [21]. The generating functions computed here
directly generalize earlier results on the expected value (first
moment) obtained in Refs. [29,30].

The most remarkable analytic properties of all these results
are quite explicit formulas for the generating functions. These
are quadratic functionals of the forward and backward paths in
the Feynman-Vernon formalism, with kernels of a similar type
as for the real and imaginary parts of the Feynman-Vernon
action, i.e., combinations of trigonometric and hyperbolic
functions of time differences, bath oscillator frequencies, bath
temperatures, and the generating function parameters. The
first and second derivatives of the generating functions at the
origin have been evaluated (in Appendix A) and determine
the expected value, variances, and cross-correlations of bath
energy changes.

I have also in this paper pointed out that the extended
Feynman-Vernon approach works equally well for systems

interacting with more than one bath at different temperatures.
It is therefore a principled way to define and estimate nonequi-
librium quantum heat flows. As an example I have derived the
quantum thermal power of a system connected to an Ohmic
heat bath and showed that it agrees with average power in the
classical limit.

The real potential advantage of the approach developed
here would be that it could also in practice be applied to
systems with discrete states. Superconducting qubits is the
currently favored platform for quantum computing [48]; every
computing element or “qubit” is then in fact a degree of
freedom of a large (mesoscopic) object at very low temperature
[49]. Understanding heat flow and other thermal properties of
such objects is an active area of research [35], where a general
theoretical framework so far has been lacking. In this context it
is noteworthy that generating functions of the type considered
here (with one bath) already were applied to the spin-boson
problem in Ref. [32].

Finally, a thermal bath consisting of harmonic oscillators is
a model of delocalized environmental modes such as phonons.
Another class of solvable models are chains of harmonic
oscillators with a prescribed state of heat flux, for recent use
(and for a system with discrete state), see Ref. [50]. Physically
this would model environmental modes that are localized,
hence not phonons, and which can be described as coupled
oscillators. The main degrees of freedom in a real material at
very low temperature, such as defects and nuclear spins, are
likely to be localized, but may be more accurately described
as a spin bath [51]. Path integral representations of systems
interacting with such spin baths were developed quite some
time ago [52] and could potentially be extended to also describe
heat flows between such baths.
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APPENDIX A: INVERTING THE MATRICES
AND DETERMINING THE FUNCTIONALS

This Appendix contains the derivation of Eqs. (23)–(27)
in the main text, and then the closed-form expressions of the
kernels J (1), J (2), and J (3) for cases F and G. Conventions
are as in Ref. [29] except that a factor i for convenience has
been included in the definitions of the matrices M̃ . The vector
u, appropriate for when the coupling coefficient depends on
time, is

u =

⎛
⎜⎜⎜⎜⎝

u = 1
sin ωt

∫ t sin ω(t − s)[C(s)X(s)]ds

v = 1
sin ωt

∫ t sin ω(t − s)[−C(s)Y (s)]ds

u′ = 1
sin ωt

∫ t sin ωs[C(s)X(s)]ds

v′ = 1
sin ωt

∫ t sin ωs[−C(s)Y (s)]ds

⎞
⎟⎟⎟⎟⎠. (A1)
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The function B is similarly

B = − 1

mω sin(ωt)

∫ t∫ s

sin ω(t − s) sin ωs ′CXC ′X′ds ′ds

+ 1

mω sin(ωt)

∫ t∫ s

sin ω(t − s) sin ωs ′CYC ′Y ′ds ′ds,

(A2)

where the primed (unprimed) quantities refer to time s ′ (s).
The matrix M̃ can be written in the same way for the two

cases by introducing auxiliary variables:

M̃ =

⎛
⎜⎜⎜⎝

−x − z z′ x ′ 0

z′ x − z 0 x ′

x ′ 0 −x + y −y ′

−x − z z′ −y ′ x + y

⎞
⎟⎟⎟⎠. (A3)

These auxiliary variables are the same as in Eqs. (25)–(27) in
the main text and are defined as follows:

Case F: In this case x = cot(ωt), x ′ = sin−1(ωt), y =
cot(ωh̄ν), y ′ = sin−1(ωh̄ν), z = cot(−iωh̄β) = i coth(ωh̄β)
and z′ = sin−1(−iωh̄β) = i sinh−1(ωh̄β).

Case G: In this case x, x ′, y and y ′ are the same as in case
F while z = cot[ωh̄(ν − iβ)] and z′ = sin−1[ωh̄(ν − iβ)].

Algebraic relations: In both cases the auxiliary variables
satisfy obvious relations, namely

z′2 − z2 = y ′2 − y2 = x ′2 − x2 = 1. (A4)

Using Eq. (A4) repeatedly it is straightforward to determine
the matrix inverse as

M̃−1 = 1

�

⎛
⎜⎜⎜⎝

y − z y ′ − z′ D −B

y ′ − z′ y − z −C A

D −C y − z y ′ − z′

−B A y ′ − z′ y − z

⎞
⎟⎟⎟⎠, (A5)

where new auxiliary variables are

A = 1

x ′ (1 + x(y − z) + yz − y ′z′), (A6)

B = 1

x ′ (x(z′ − y ′) + y ′z − yz′), (A7)

C = 1

x ′ (x(z′ − y ′) − y ′z + yz′), (A8)

D = 1

x ′ (−1 + x(y − z) − yz + y ′z′), (A9)

and

� = AD − BC = 2(y ′z′ − yz − 1). (A10)

The combination that enters the exponent in Eqs. (21) and (22)
in the main text is thus

uM̃−1u = 1

�
((y − z)(u2 + v2 + u′2 + v′2)

+(y ′ − z′)(2uv + 2u′v′) + 2Duu′

−2Buv′ − 2Cvu′ + 2Avv′), (A11)

where u, v, u′, and v′ are given in Eq. (A1). Combining this
with the term i

h̄
B and using trigonometric identities the whole

expression reduces to

Expr. = i

h̄
Si − 1

h̄
Sr + J (1) + J (2) + J (3), (A12)

where the Feynman-Vernon terms Si and Sr are given
in Eqs. (17) and (18). Restating for convenience here
Eqs. (25)–(27) in the main text they are

J (1) = i

2mωh̄

∫ t∫ t

(XX′ + YY ′)CC ′ cos ω(s − s ′)

×
(

y − z

�
− i

2
coth

ωh̄β

2

)
, (A13)

J (2) = i

2mωh̄

∫ t∫ t

(XY ′ − X′Y )CC ′ sin ω(s − s ′)

×
(

y ′z′ − yz

�
− 1

2

)
, (A14)

J (3) = i

2mωh̄

∫ t∫ t

(XY ′ + X′Y )CC ′ cos ω(s − s ′)

×
(

z′ − y ′

�
+ i

2
coth

ωh̄β

2

)
. (A15)

The only difference in the expressions for cases F and G are
the different interpretations of the auxiliary variables z, z′, and
�. We now proceed to simplify the coefficients in the kernels
in the two cases.

1. Case F

We here have

� = 2(z′y ′ − yz − 1) = 2i sinh−1(ωh̄β) sin−1(ωh̄ν)[1 − cos(ωh̄ν) cosh(ωh̄β) + i sin(ωh̄ν) sinh(ωh̄β)]

= 2i sinh−1(ωh̄β) sin−1(ωh̄ν){1 − cos[ωh̄(ν + iβ)]}, (A16)

and the expressions simplify to

y − z

�
= 1

2

cos(ωh̄ν) sin(ωh̄(−iβ)) − sin(ωh̄ν) cos[ωh̄(−iβ)]

1 − cos[ωh̄(ν + iβ)]
= 1

2
cot

[
ωh̄(ν + iβ)

2

]
,

y ′z′ − yz

�
= 1

2

1 − cos(ωh̄ν) cos[ωh̄(−iβ)]

1 − cos[ωh̄(ν + iβ)]
= 1

2
+ i

4

sin(ωh̄ν) sinh(ωh̄β)

sin2
(

ωh̄(ν+iβ)
2

) ,

z′ − y ′

�
= 1

2

sin(ωh̄ν) + i sinh(ωh̄β)

1 − cos[ωh̄(ν + iβ)]
= +1

4

sin(ωh̄ν) + i sinh(ωh̄β)

sin2
(

ωh̄(ν+iβ)
2

) .

062117-7



ERIK AURELL PHYSICAL REVIEW E 97, 062117 (2018)

All three functionals J (1), J (2), and J (2) vanish at ν = 0 as follows by insertion in the above. Their derivatives at ν = 0 are

∂J (1)

∂ν
|ν=0 = − i

8m

∫ t∫ t

(XX′ + YY ′)CC ′ cos ω(s − s ′)
1

sinh2
(

ωh̄β

2

) , (A17)

∂J (2)

∂ν
|ν=0 = − 1

4m

∫ t∫ t

(XY ′ − X′Y )CC ′ sin ω(s − s ′) coth

(
ωh̄β

2

)
, (A18)

∂J (3)

∂ν
|ν=0 = i

8m

∫ t∫ t

(XY ′ + X′Y )CC ′ cos ω(s − s ′)

(
1

sinh2
(

ωh̄β

2

) + 2

)
, (A19)

The derivative of the second term (y ′z′ − yz)/� gives the term called I (2) in Refs. [29,30], while the derivatives of (y − z)/�
and (z′ − y ′)/� combine to give the terms called I (1) and I (3) in Ref. [29], with the identification ν = iε and a factor two from
the definition of the double integrals.

2. Case G

We here have

� = 2(z′y ′ − yz − 1) = 2 sin−1[ωh̄(ν − iβ)] sin−1(ωh̄ν){1 − cos(ωh̄ν) cos[ωh̄(ν − iβ)] − sin(ωh̄ν) sin[ωh̄(ν − iβ)]}
= 2 sin−1[ωh̄(ν − iβ)] sin−1(ωh̄ν)[1 − cosh(ωh̄β)], (A20)

and the expressions simplify a bit further to

y − z

�
= 1

2

cos(ωh̄ν) sin[ωh̄(ν − iβ)] − sin(ωh̄ν) cos[ωh̄(ν − iβ)]

1 − cosh(ωh̄β)
= i

2
coth

(
ωh̄β

2

)
,

y ′z′ − yz

�
= 1

2

1 − cos(ωh̄ν) cos[ωh̄(ν − iβ)]

1 − cosh(ωh̄β)
= 1

2
− 1

4

sin ωh̄ν sin ωh̄(ν − iβ)

sinh2
(

ωh̄β

2

) ,

z′ − y ′

�
= 1

2

sin(ωh̄ν) − sin[ωh̄(ν − iβ)]

1 − cosh(ωh̄β)
= − i

2
cos(ωh̄ν) coth

(
ωh̄β

2

)
+ 1

2
sin(ωh̄ν).

The functional J (1) here vanishes completely, while the functionals J (2) and J (3) vanish at ν = 0. Their derivatives at ν = 0 are

∂J (2)

∂ν
|ν=0 = − 1

4m

∫ t∫ t

(XY ′ − X′Y )CC ′ sin ω(s − s ′) coth

(
ωh̄β

2

)
, (A21)

∂J (3)

∂ν
|ν=0 = i

4m

∫ t∫ t

(XY ′ + X′Y )CC ′ cos ω(s − s ′), (A22)

which are the the same as I (2) and I (3) in Ref. [30], with the identification ν = iε and a factor two from the definition of the
double integrals. The second derivatives at ν = 0, which determine the variance of the change in bath energy, are

∂2J (2)

∂ν2
|ν=0 = − iωh̄

4m

∫ t∫ t

(XY ′ − X′Y )CC ′ sin ω(s − s ′)
[

1 + coth2

(
ωh̄β

2

)]
, (A23)

∂2J (3)

∂ν2
|ν=0 = ωh̄

4m

∫ t∫ t

(XY ′ + X′Y )CC ′ cos ω(s − s ′) coth

(
ωh̄β

2

)
. (A24)

APPENDIX B: THE OHMIC BATH

For completeness I describe here properties of the Ohmic
bath, as such environments have been referred to at least since
the work of Caldeira and Leggett [23]. For classical systems
one of the first presentations was by Zwanzig [53]. The material
can also be found in monographs such as, e.g., Refs. [27,28].
The Ohmic bath with a time-dependent system-bath coupling
is described in more detail in Ref. [30].

The starting point is the spectrum of the bath oscillators is
continuous up to an upper cutoff � and increases quadratically
with frequency. The number of oscillators with frequencies in

the interval [ω,ω + dω] is f (ω)dω and

f (ω) = 2
π
ω−3

c ω2 ω < �,

f (ω) = 0 ω > �,
(B1)

where ωc is some characteristic frequency less than �. Alter-
natively, one can also consider an exponential cutoff exp (− ω

�
).

The interaction strength is given by a constant η with
dimension (mass/time), such that

Cb =
√

ω3
cmbη. (B2)
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From this follows that

C2
ωf (ω)

mω

= 2
√

η(t)η(s)

π
ω2 ω < �, (B3)

where quantities pertaining to a bath oscillator having that
angular velocity are indexed by ω.

Using that 1
2π

∫
cos ωtdω is a representation of δ(t), and

assuming � very large (�−1 much shorter than any relevant
time scale of the system), the classical dynamics of this system
is that of under-damped diffusion (Kramers-Langevin equa-

tion) with friction coefficient η and noise strength
√

2kBT η.
Quantum-mechanically the situation also depends on bath
temperature T , as discussed in Ref. [23]. If the thermal
time h̄/kBT is also shorter than any relevant timescale of
the system (high enough temperature), then coherences (off-
diagonal terms in the density matrix) are so small that the
system behaves essentially classically and also obeys Kramers-
Langevin equation, while if h̄/kBT is not so small there are
memory effects. A short discussion of the different timescales
involved can be found in Ref. [29], Appendices A and B.
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