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Energy conservation and H theorem for the Enskog-Vlasov equation
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The Enskog-Vlasov (EV) equation is a widely used semiphenomenological model of gas-liquid phase
transitions. We show that it does not generally conserve energy, although there exists a restriction on its
coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an
H theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the
parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the
thermodynamics of noble fluids, and there exists a version simple enough for use in applications.
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I. INTRODUCTION

The Enskog-Vlasov (EV) equation was put forward in
1971 by Grmela [1] as a semiphenomenological model for
gas-liquid phase transitions. It combines the Enskog collision
integral [2] for a dense hard-sphere fluid with a Vlasov term
for modeling the van der Waals forces (similar to the way
electromagnetic forces are modeled in plasma [3]). Since then,
several modifications of the EV equation have been proposed
[4,5] differing from the original version and one another by the
details of the structure of the Enskog and Vlasov terms. It has
been shown [5] that EV models provide an accurate description
of transport coefficients of real fluids.

Given the semiphenomenological nature of the EV equa-
tion, it is essential that it satisfies all of the fundamental
principles, such as the Onsager reciprocal relations, conser-
vation laws, and the H theorem. Some of these features have
indeed been verified: Ref. [6] pointed out a form of the Enskog
collision integral that is consistent with the Onsager relations
and Ref. [7] proved an H theorem for the corresponding
version of the Enskog equation. References [8–10] extended
the latter result to all versions the Enskog-Vlasov equation,
and conservation of mass and momentum for these follows
from the results of Ref. [5]. No one, however, has specifically
checked whether the EV equation conserves energy—probably
assuming this property to be a given.

In the present paper, we demonstrate that all of the versions
of the EV equation used previously do not conserve energy,
and we rectify this problem by pointing out an energy-
preserving form of the Vlasov term. We also suggest a version
of the Enskog integral that complies with the H theorem
and is still general enough to allow the fluid’s equation of
state to have an arbitrary dependence on the density. The
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compliance with the H theorem and the energy conservation
have profound mathematical implications: in application to the
state of thermodynamic equilibrium, the compliant versions of
the EV equation allow one to interrelate the parameters of
coexisting liquid and vapor, i.e., derive the so-called Maxwell
construction. Note that, even though the Maxwell construction
is discussed in any text on statistical physics, its derivation
has so far relied on the laws of thermodynamics—whereas
ours is based on a kinetic model, i.e., effectively, on the first
principles. Besides, the mere fact that the proposed version of
the EV model yields the correct liquid-vapor relationship can
be viewed as a validation of the former.

This paper has the following structure. In Sec. II, we
formulate the EV equation in the most general form, and in
Sec. III, we reduce generality to ensure energy conservation
and validity of an H theorem. In Sec. IV, we study thermo-
dynamic properties of the EV model and compare them to
those of noble fluids (which are best suited for an Enskog-style
hard-sphere description). In Sec. V, we derive the Maxwell
construction, and Sec. VI presents a version of the EV equation
that satisfies all the physical requirements, is sufficiently
accurate, and yet simple enough to use in applications.

II. FORMULATION

Consider a fluid of hard spheres, of diameter D and mass
m, described by a one-particle distribution function f (r,v,t),
where r is the position vector, v is the velocity, and t is the time.

In the classical version of the Enskog theory [2], the two-
particle distribution function is

f (2)(r1,v1,r2,v2,t) ≈ η(r,r1,t) f (r1,v1,t) f (r2,v2,t),
where η(r,r1,t) is an adjustable (fitting the experimental data)
function of the number density,

n(r,t) =
∫

f (r,v,t)d3v, (1)

evaluated at r = 1
2 (r1 + r2). In later work [6], η was assumed

to be a specific functional of n(r,t) defined through a limiting
procedure involving multiple integrals of increasing order,
often denoted by ηHS (where the “HS” stands for “hard
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spheres”). Given the complexity of the latter approach, it is the
former that is mostly used in applications (e.g., Refs. [11–14]).

To model the van der Waals force, let the spheres
(molecules) exert on each other an attractive force with an
isotropic potential �(|r|), and let F(r,t) be the force generated
collectively by the molecules at a point r, at a time t . All of
the previous work assumes

F(r,t) = −
∫

μ(r,r1,t) n(r1,t)∇�(|r − r1|)d3r1, (2)

where μ is an adjustable functional of n [1], μ = H (|r − r1| −
D), where H is a Heaviside step function [4], or μ = η [5].
Of the three approaches, it is the second that is mostly used in
applications.

We assume that f is governed by the Enskog-Vlasov
equation [1]:

∂f (r,v,t)

∂t
+ v · ∇f (r,v,t) + 1

m
F(r,t)

∂f (r,v,t)

∂v

= D2
∫∫

[η(r,r + Dκ,t) f (r,v′,t) f (r + Dκ,v′
1,t)

− η(r,r − Dκ,t) f (r,v,t) f (r − Dκ,v1,t)]

× g · κ H (g · κ)d2κd3v1, (3)
where v and v1 and v′ and v′

1 (the pre- and postcollision
velocities of colliding spheres) are related by

v′ = v + κ(g · κ), v′
1 = v1 − κ(g · κ), (4)

g = v1 − v, (5)

and κ is a unit vector parametrizing all possible orientations of
a pair of spheres at the moment of collision.

Given specific expressions for η and μ, Eqs. (1)–(5) fully
determine the evolution of f .

III. CAN THE COEFFICIENTS η AND μ BE ARBITRARY?

In this section, we determine for which η and μ Eqs. (1)–(5)
conserve energy and satisfy an H theorem.

A. Conservation of energy

Assuming for simplicity that f decays sufficiently fast as
|r| → ∞, we define the net energy as

U =
∫∫

m|v|2
2

f (r,v,t)d3vd3r

+ 1

2

∫∫
μ(r,r1,t) n(r,t) n(r1,t) �(|r−r1|)d3r1d

3r, (6)

where the kinetic-energy term is standard and the potential-
energy term is the same as that in Ref. [15]. Given Eq. (6), it
can be readily shown that Eqs. (1)–(4) imply

dU

dt
=

∫∫∫∫
f (r,v,t) f (r1,v1,t) �(r − r1)

×
[
∂μ(r,r1,t)

∂t
+ (v · ∇ + v1 · ∇1)μ(r,r1,t)

]

× d3v1d
3vd3r1d

3r,

i.e., U is conserved only if μ = const. Since, in expression (2),
a constant μ can be absorbed into the potential �, we simply
set μ = 1.

Note also that, if μ = 1, �(r) may not involve infinitely
high, repulsive walls (as the Sutherland potential does), as
they would cause a divergence in integral (2). This does
not give rise to a contradiction though: the repulsive com-
ponent of the intermolecular interaction is supposed to be
taken into account in the collision integral, not the Vlasov
term.

B. The H theorem

As shown in Refs. [8–10] (and recapped briefly in
Appendix A), an H theorem holds for the EV equation with
an entropy of the form

S = −kB

∫∫
f (r,v,t) ln f (r,v,t)d3vd3r + kBQ[n], (7)

where the functional Q[n] is related to η(r,r1,t) by

∇ δQ[n]

δn(r,t)
=

∫
η(r,r1,t) n(r1,t)δ(|r − r1| + D)

r − r1

D
d3r1,

(8)

δ(r) is the Dirac δ function and kB is the Boltzmann constant.
It is unclear, however, whether Eq. (8) has a solution

for Q for any given η; it does not seem to have one, for
example, for Enskog’s original model where η is a func-
tion of n[ 1

2 (r + r1),t]. So far, a solution of Eq. (8) has
been shown to exist only in two cases: for η = 1 (see
Ref. [8]) and for η = ηHS (as follows from the results of
Ref. [7]).

It can be verified by substitution that the following classes
of η and Q also satisfy Eq. (8):

η(r,r1,t) = 1 +
∞∑
l=1

cl

∫ l
[

l+1∏
i=2

n(ri ,t) H (D − |r − ri |) H (D − |r1 − ri |)
]⎡
⎣ l+1∏

i=2

l+1∏
j=i+1

H (D − |ri − rj |)
⎤
⎦ l+1∏

i=2

d3ri , (9)

Q[n] = −1

2

∫∫
n(r,t) n(r1,t) H (D − |r − r1|)d3rd3r1 −

∞∑
l=1

cl

(l + 1)(l + 2)

∫ l+1 ∫
n(r,t)

[
l+1∏
i=1

n(ri ,t) H (D − |r − ri |)
]

×
⎡
⎣ l+1∏

i=1

l+1∏
j=i+1

H (D − |ri − rj |)
⎤
⎦d3r

l+1∏
i=1

d3ri , (10)
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where
∫ l denotes multiple integrations involving l repeated

integrals, and cl are arbitrary constants. Note that η = ηHS is
included in Eq. (9) as a particular case, involving certain values
of cl .

Even though series (9) and (10) seem to be too complex
for applications, they are surprisingly manageable analytically
and can be used to clarify important theoretical issues. They
are also sufficiently general, describing fluids with an arbitrary
dependence of the entropy and pressure on the density (see the
next section).

IV. THE THERMODYNAMICS OF ENSKOG-VLASOV
FLUIDS

There are two ways of deriving the equation of state (EoS)
for a fluid described by a kinetic equation. First, one can
derive the corresponding hydrodynamic approximation and
extract the EoS from the momentum equation (e.g., Ref. [5]).
Second, one can adapt the expressions for the entropy S and the
(internal) energy U to the case of N molecules in a container
of a finite volume V , and then find the pressure p from

p =
(

∂U

∂V

)
N,S=const

, (11)

as done in Ref. [16]. We use the latter approach (as it
involves less algebra) and show its equivalence to the former
in Appendix B.

A. The equation of state

Consider the EV equation in a finite domain and impose a
suitable conservative condition at the domain’s boundary. Let
also the domain’s size exceed both D and the spatial scale of
the intermolecular potential �(|r|).

In what follows, we need

E = −
∫

�(r)d3r, (12)

which is referred to as the Vlasov parameter.
Let the fluid be in a state of equilibrium characterized by a

temperature T , so that

f = Nm3/2

V (2πkBT )3/2 exp

(
−m|v|2

2kBT

)
.

Substituting this expression into Eqs. (6), (7), and (10) with
μ = 1 and η given by Eq. (9), we obtain (constant terms
omitted)

U (T ,V,N ) = 3NkBT

2
− EN2

2V
, (13)

S(T ,V,N ) = kB

[
N ln

T 3/2V

N
+ 3N

2
− N �

(
D3N

V

)]
,

(14)

where the function �(ξ ) is defined by the following series:

�(ξ ) = 2π

3
ξ +

∞∑
l=1

clAl ξ
l+1

(l + 1)(l + 2)
, (15)

with the coefficients Al given by

Al =
∫ l+1

[
l+1∏
i=1

H (1 − |r̂i |)
]

×
⎡
⎣ l+1∏

i=1

l+1∏
j=i+1

H (1 − |r̂i − r̂j |)
⎤
⎦ l+1∏

i=1

d3r̂i , (16)

where r̂i = ri/D. Even though definition (15) of �(ξ ) involves
arbitrary coefficients cl , it still implies that

�(0) = 0, (17)

�′(0) = 2π

3
, (18)

where �′(ξ ) = d�(ξ )/dξ .
Substituting Eqs. (13) and (14) into Eq. (11) and rewriting

the result in terms of n = N/V , we obtain the desired EoS,

p(T ,n) = nkBT [1 + D3n�′(D3n)] − En2

2
, (19)

while Eqs. (13) and (14) yield the following expressions for
the per-molecule densities of energy and entropy:

Û (T ,n) = 3kBT

2
− En

2
, (20)

Ŝ(T ,n) = kB

[
ln

T 3/2

n
+ 3

2
− �(D3n)

]
. (21)

We also need the per-molecule density of the Gibbs free energy,
defined by

Ĝ(T ,n) = Û (T ,n) − T Ŝ(T ,n) + p(T ,n)

n
,

which yields

Ĝ(T ,n) = kBT
[

ln n − 3
2 ln T + 1

+�(D3n) + D3n�′(D3n)
] − En. (22)

Thus, all thermodynamic properties of an EV fluid can be
extracted from the expressions for the entropy and the internal
energy, without deriving the hydrodynamic approximation.
Furthermore, once the entropy expression and the EoS are
known, one can readily obtain the hydrodynamic equations
in the following form:

∂n

∂t
+ ∇ · (Vn) = 0,

∂Ŝ

∂t
+ V · ∇Ŝ = 0,

∂V
∂t

+ (∇ · V)V + 1

mn
∇p = 0,

where n, T , and the macroscopic velocity V are the unknowns,
whereas p(n,T ) and Ŝ(n,T ) are given by Eqs. (19) and (21).

Finally, it follows from EoS (19) that the van der Waals fluid
is a particular case of the EV fluid with

E = 2a, D3 = 3

2π
b, �(ξ ) = − ln

(
1 − 2π

3
ξ

)
,

where a and b are the van der Waals parameters, and the factor
2π
3 is introduced to satisfy constraint (18).
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B. How well are real fluids described by
the Enskog-Vlasov equation?

The EV model implies the following restrictions of the
thermodynamic properties of a fluid:

(a) As follows from Eq. (20), the nonideal component of
the per-molecule internal energy,

	Û = U − 3kBT

2
, (23)

may not depend on the temperature T and should vary linearly
with the density n.

(b) As follows from Eq. (21), the nonideal component of
the per-molecule entropy,

	Ŝ = Ŝ − kB

(
ln

T 3/2

n
+ 3

2

)
, (24)

may not depend on T .
(c) The expression

	p = p + 1
2En2

nkBT
− 1 (25)

may not depend on T and should be interrelated with 	Ŝ

through Eqs. (19) and (21), which imply

	Ŝ = kB�(ξ ), (26)

	p = ξ�′(ξ ), (27)

where ξ = D3n.
It is interesting to see how well these properties hold for

real fluids—specifically, for noble ones, which are naturally
suited for Enskog’s hard-sphere approximation. Since helium,
at least to a degree, is governed by quantum effects (which
the EV model neglects), whereas data on radon and oganesson
are difficult to come by, we have only examined neon, argon,
krypton, and xenon.

Restrictions (a)-(c) are illustrated for neon in Figs. 1(a)–
1(c), respectively. The data on neon’s thermodynamic proper-
ties have been downloaded from Ref. [17] in isobaric form, for
four values of p linked to the fluid’s critical pressure pcr [see
the legend of Fig. 1(b)].

One can see that, with a reasonable accuracy, the four
isobars collapse onto the same curve, with only two areas
of below-par accuracy: the small-density region and that near
the critical point. The former is unimportant, however: since
Figs. 1(a)–1(c) depict the nonideal components of the thermo-
dynamic parameters—which, for small n, are small—the error
they introduce to the full parameters is negligible.

Fitting a linear function to the data in Fig. 1(a) (for
simplicity, only the p = 2pcr isobar was used), we determined
the Vlasov parameter E. This has been done for all four fluids
examined (see Table I).

Figures 1(b) and 1(c), in turn, allow one to find the function
�(n) [which determines the fluid’s EoS and entropy—see
Eqs. (19) and (21)]. Two versions of �(n) for neon have been
obtained: �S was derived from 	Ŝ(n) using Eq. (26) and �p

was derived from 	p(n) using Eq. (27). In both cases, the
p = 2pcr isobar was used.

Eventually, �(n) needs to be transformed into �(ξ ) with
ξ = D3n, which requires the knowledge of the molecule’s
effective diameter D. In principle, D can be extracted from
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FIG. 1. The nonideal component of (a) the internal energy (23),
(b) the entropy (24), and (c) the pressure (25) vs density n. The
corresponding values of the pressure p relative to the critical value
pcr are stated in the legend in panel (b) but apply to all panels.

Eq. (18) which implies

D3 =
[

3

2π

d�(n)

dn

]
n=0

.

This expression, however, involves differentiation of a function
deduced from experimental data, which may result in an
unpredictably large error—so, instead, we used an approach
involving integration (see Appendix C).

The resulting molecular diameters are presented in Table I:
remarkably, in all four cases, D−3 is very close to the respective
triple-point density, ntp. Note that the coincidence is not due to
ntp corresponding to the densest packing of spheres (if it did,
D3ntp would be equal to

√
2, not unity).

TABLE I. The Vlasov parameter E and the cube of the molecular
diameter D (normalized by N2

A and the triple-point density, respec-
tively) for noble fluids.

EN 2
A (J l/mol2) D3ntp

Ne 52 0.94
Ar 326 0.98
Kr 552 0.98
Xe 988 0.98
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FIG. 2. The function �(ξ ): (a) �p(ξ ) derived from the EoS data
for four noble fluids (the four curves are virtually distinguishable);
(b) �p(ξ ) and �S(ξ ) for neon, the latter is derived from the entropy
data.

Using the molecular diameters calculated, we have rescaled
the functions �p(n) of the four noble fluids into the respective
�p(ξ ) and plotted the latter in Fig. 2(a). One can see that
the four curves are virtually indistinguishable, thus proving
the universal character of �(ξ ). If approximated by a fifth-
order polynomial satisfying restrictions (17) and (18) (see
Appendix C), the universal function has the form

�(ξ ) ≈ 2.09ξ−2.89ξ 2 + 14.53ξ 3−19.91ξ 4 + 9.73ξ 5. (28)

Note that the fifth-order approximation is virtually indis-
tinguishable from the sixth-order one—hence, Eq. (28) can
be regarded as a near-perfect fit of the experimental data.
If its graph were plotted in Fig. 2(a), it would be visually
indistinguishable from the other four curves.

We have also calculated the entropy-based �S(ξ ) which
turned out to differ slightly from the (EoS-based) �p(ξ ) [see
Fig. 2(b)].

To determine which one of the two versions of � is more
accurate, we carried out cross-approximation, i.e., used �p to
calculate the per-molecule entropy and compared the result
to the real-entropy data for neon, and used �S to calculate
the pressure and compared the result to the real-pressure
data—see Figs. 3 and 4, respectively. One can see that �S is
slightly less accurate for the highest-pressure isobar, whereas
�p is consistently accurate across the whole pressure range.
A similar but much more pronounced difference is observed
for xenon, as Figs. 5 and 6 show that �p works considerably
better than �S .

V. EQUILIBRIUM OF PHASES AS DESCRIBED
BY THE ENSKOG-VLASOV EQUATION

The Enskog-Vlasov set (1)–(5), regardless of η and μ,
admits an exact reduction to the state of isothermal equilibrium,

f (r,v,t) = n(r)

(
m

2πkBT

)3/2

exp

(
−m|v|2

2kBT

)
,

where n(r) satisfies (see Ref. [1])

∇n(r) + n(r)

kBT

∫
μ(r,r1) n(r1)∇�(|r − r1|)d3r1

+ n(r)
∫

η(r,r1) n(r1)
r1 − r

D
δ(|r1 − r| − D)d3r1 = 0.

(29)

Note that, if μ = 1 and the spatial scale of n(r) is much greater
than D, Eq. (29) reduces to an equation derived in Ref. [18]
using the partition function approach.

Observe that Eq. (29) is a three-dimensional vector equation
for a single scalar unknown, and it is unclear whether it admits
a solution (it would do only if the curl of the second and third
terms is zero, e.g., in a one-dimensional geometry).

Note, however, that for μ = 1 and subject to Eq. (8), the
second and third terms of Eq. (29) can be rewritten in a gradient
form, so their curl is zero. Then Eq. (29) can be integrated,
yielding

ln n(r) + 1

kBT

∫
n(r1) �(|r − r1|)d3r1 − δQ[n]

δn(r)
= const.

(30)

Thus, the mere fact that the EV equation conserves energy
and satisfies the H theorem resolves the existence issue for its
equilibrium solutions.

Furthermore, we can now prove that, for a given tempera-
ture, the density of the saturated vapor is unique, i.e., derive the
Maxwell construction. The derivation is carried out for Q[n]
given by series (10).

Let n depend only on z and be such that

n → n± as z → ±∞, (31)

where n− and n+ are the densities of the liquid and the vapor,
respectively. Note that, since at infinity n is constant, the
functional Q[n] (which is a part of the entropy expression)
becomes a function, Q(n), and one can readily obtain

Q(n) = −n�(D3n),

where �(ξ ) is defined by Eqs. (15) and (16). Then it follows
from Eqs. (30) and (10) that

ln n+ − En+
kBT

+ �(D3n+) + D3n+�′(D3n+)

= ln n− − En−
kBT

+ �(D3n−) + D3n−�′(D3n−), (32)

where E is given by Eq. (12).
Comparison of condition (32) and definition (22) shows that

the former is a requirement that the per-molecule densities of
the Gibbs free energy for the vapor and the liquid be equal (as
they indeed should [19]).
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FIG. 3. The “real” (extracted from Ref. [17]) dependence of the
per-molecule entropy of neon on its density, for four isobars (see the
legend). The dotted curves show the dependence predicted by Eq. (21)
with � = �p .

To uniquely fix the dependence of n± on T , one more
condition is needed. To derive such, define r⊥ = (x,y) and
introduce


(|z|) =
∫

�(|r|)d2r⊥, (33)

χ (z,z1) =
∫∫

η(r,r1) δ(|r1 − r| − D)d2r⊥, (34)

in terms of which Eq. (29) takes the form

dn(z)

dz
+ n(z)

kBT

∫
n(z1)

d
(|z − z1|)
dz

dz1

+ n(z)
∫

χ (z,z1) n(z1)
z1 − z

D
dz1 = 0.
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FIG. 4. The real (extracted from Ref. [17]) dependence of the
temperature of neon on its density, for four isobars (see the legend).
The dotted curves show the dependence predicted by Eq. (19) with
� = �S .
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FIG. 5. The same as in Fig. 3, but for xenon instead of neon.

Integrate this equation with respect to z from −Z to Z and
take the limit Z → ∞ (such a nonstraightforward procedure
helps to avoid multiple integrals depending on the order of
integration). As a result, one obtains

n+ − n− + 1

kBT
I1 + I2 = 0, (35)

where the regions of integration in I1 and I2 can be conveniently
subdivided into three parts, as follows:

I1 = lim
Z→∞

∫ Z

−Z

(∫ −Z

−∞
+

∫ Z

−Z

+
∫ ∞

Z

)
n(z) n(z1)

× d
(|z − z1|)
dz

dz1dz,

I2 = lim
Z→∞

∫ Z

−Z

(∫ −Z

−∞
+

∫ Z

−Z

+
∫ ∞

Z

)
χ (z,z1)

× n(z) n(z1)
z1 − z

D
dz1dz.

We first consider I1—where the middle integral is evidently
zero. The other two can be simplified using the fact that

5 10 15 20

200

300

400

500

600

FIG. 6. The same as in Fig. 4, but for xenon instead of neon.
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(|z|) → 0 as |z| → ∞. Taking into account Eq. (31) and
recalling Eq. (33), we obtain

I1 = − 1
2E(n2

+ − n2
−). (36)

In a similar fashion, one can use Eqs. (34) and (9) to reduce I2

to

I2 = 2π

3
[n+(D3n+) − n−(D3n−)]

+
∞∑
l=1

clBl[n+(D3n+)l+1 − n−(D3n−)l+1], (37)

where

Bl =
∫ ∞

0

∫ 0

−∞

∫
δ(1 − |r̄1 − r̄|)(z̄ − z̄1)

×
∫ l

[
l+1∏
i=2

H (1−|r̄ − r̄i |)
]⎡
⎣ l+1∏

i=2

l+1∏
j=i+1

H (1−|r̄i−r̄j |)
⎤
⎦

×
[

l+1∏
i=2

d3r̄i

]
d2r̄⊥1dz1dz. (38)

As shown in Appendix D 2,

Bl = Al

l + 2
, (39)

where Al is given by Eq. (16). Then, by virtue of Eq. (19),
equalities (35)–(37) can be transformed into a requirement that
the pressures in the vapor and the liquid be equal,

p(n+) = p(n−). (40)

We emphasize that conditions (32) and (40) follow directly
from the equilibrium version of the EV equation. They are in-
trinsic properties of all existing solutions, not an heuristic tool
for determining which one of them is physically meaningful.

VI. THE SIMPLEST VERSION OF THE ENSKOG-VLASOV
EQUATION

When using an H -theorem-satisfying version of the EV
equation, two distinct difficulties arise.

First, it is not easy to derive the coefficient η (which appears
in the EV equation) from a given EoS of a fluid. To understand
why, recall that η is determined by expansion (9) where cl can
be related to the Taylor coefficients of the EoS-derived function
� through equality (15), yielding

cl = (l + 1)(l + 2)

Al

[
1

(l + 1)!

dl+1�

dξ l+1

]
ξ=0

,

where Al are given by Eq. (16). Unfortunately, Al can be
calculated analytically only for l = 1 (see below)—but for
higher l, even numerical evaluation of the multiple integrals
involved becomes increasingly difficult.

Second, even if one has somehow managed to calculate cl , η
has to be computed through series (9)—which, again, involves
multiple integrals of increasing order, making numerical sim-
ulation of the EV equation impossible.

It turns out, however, that series (9) can be truncated just
after two terms—which would dramatically simplify the prob-

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

FIG. 7. Comparison of �(ξ ) given by the fifth-order polynomial,
Eq. (28), and its second-order counterpart, Eqs. (42)–(44).

lem, and yet yield a reasonably accurate fit of the experimental
data.

Thus, set cl = 0 for l � 2, so that Eq. (9) becomes

η(r,r1,t) = 1 + c1

∫
n(r2,t)H (D − |r − r2|)

×H (D − |r1 − r2|)d3r2. (41)

The corresponding version of Eq. (15) yields

�(ξ ) = 2π

3
ξ + c1A1

6
ξ 2, (42)

where

A1 =
∫∫

H (1 − |r1|) H (1−|r2|) H (1−|r1−r2|)d3r1d
3r2

can be calculated by replacing the Heaviside functions with
their Fourier transforms, yielding

A1 = 5π2

6
. (43)

Fitting expression (42) to the EoS data for noble fluids from
Ref. [17] and taking into account Eq. (43), one obtains

c1 ≈ 0.43. (44)

In Fig. 7, we compare the second-order approximation
Eqs. (42)–(44), to its fifth-order counterpart, Eq. (28) (the latter
fits the data nearly perfectly). Evidently, the former provides a
reasonably accurate approximation of the latter.

As for the effective molecular diameter, one can safely
assume it to be related to the triple-point density by

D ≈ (
ntp

)−1/3
. (45)

Even though the physical foundation of this relationship
remains unclear at this stage, it has been verified beyond
reasonable doubt (at least, for noble fluids—see Table I).

Finally, the EoS corresponding to Eq. (42) is

p(T ,n) = nkBT

[
1 + 2.09

(
n

ntp

)
+ 0.61

(
n

ntp

)2
]

− En2

2
.

(46)
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Observe that, unlike the van der Waals EoS, Eq. (46) formally
allows the density to assume infinitely large values. This does
not give rise to a problem, however, as in most applications n

does not exceed ntp and, by inference, never reaches the density
of the densest packing of spheres (which equals

√
2D−3, i.e.

is approximately 1.4 times larger than ntp).

VII. SUMMARY AND CONCLUDING REMARKS

Thus, the Enskog-Vlasov model (1)–(5) conserves energy
only if μ = 1, and the most general version of Eqs. (1)–(5) that
satisfies the H theorem is the one with η given by series (9).
The undetermined coefficients cl in the series are supposed to
be fitted to the experimental data.

It has been shown that the steady solutions of the energy-
preserving, H -theorem-compliant version of the EV equation
satisfies the Maxwell construction, i.e., the densities of a vapor
and a liquid in a state of equilibrium are uniquely related to the
temperature. Unlike the existing derivations of this property,
ours does not rely on the laws of thermodynamics, but is based
on a kinetic model, albeit a semiphenomenological one.

We have also shown that the EV model provides an ac-
curate description of the thermodynamics of noble fluids, for
which we have calculated the values of the Vlasov parameter
(governing their intermolecular interaction) and the effective
molecular diameters. Paradoxically, the latter turned out to be

related [by Eq. (45)] to the fluids’ densities at their respective
triple points—which seems to suggest that the molecular size
is what determines the onset of a liquid-solid phase transition.

Since the “full” EV equation is difficult to use in ap-
plications due to multiple integrals of increasing order in
series (9), we have proposed a reduced version, with the
series truncated after the second term—so η is given by
the (much simpler) expression (41). The latter involves only
one adjustable coefficient, c1, but still provides a reasonably
accurate fit for noble fluids [with c1 given by Eq. (44)].
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APPENDIX A: DERIVATION OF EQ. (8)

Multiply the EV Eq. (3) by ln f (r,v,t), integrate it with
respect to v and r, and add the mass conservation law in the
form

d

dt

∫∫
f (r,v,t)d3vd3r = 0.

Then, assuming for simplicity that f (r,v,t) decays sufficiently
fast as |r| → ∞ or |v| → ∞, one obtains

d

dt

∫∫
f (r,v,t) ln f (r,v,t)d3vd3r = D2

∫∫ ∫∫
[η(r,r + Dκ,t) f (r,v′,t) f (r + Dκ,v′

1,t)

− η(r,r − Dκ,t) f (r,v,t) f (r − Dκ,v1,t)] ln f (r,v,t)g · κ H (g · κ)d2κd3v1d
3vd3r,

where v′, v′
1, and g are defined by Eqs. (4) and (5). Carrying out the usual algebra on the right-hand side of the above equation

(e.g., symmetrizing it with respect to interchanging v ↔ v1 and/or κ ↔ −κ , changing the variables of integration from (v,v1) to
(v′,v′

1) and/or from r to r + Dκ , etc.), one obtains

− d

dt

∫∫
f (r,v,t) ln f (r,v,t)d3vd3r

= D2

2

∫∫∫∫
η(r,r + Dκ,t)

[
f (r,v1,t) f (r + Dκ,v,t) ln

f (r,v1,t) f (r + Dκ,v,t)

f (r,v′
1,t) f (r + Dκ,v′,t)

]
g · κ H (g · κ)d2κd3v1d

3vd3r.

Using the inequality a ln(a/b) � a − b (valid for a,b > 0) we can rewrite the resulting inequality in the form

− d

dt

∫∫
f (r,v,t) ln f (r,v,t)d3vd3r

� D2

2

∫∫∫∫ ∫
η(r,r1,t)[f (r,v1,t) f (r1,v,t) − f (r,v,t) f (r1,v1,t)]δ(r − r1 + Dκ) g · κ H (g · κ)d2κd3v1d

3vd3rd3r1.

The integration with respect to κ can now be carried out, and the resulting inequality can be rewritten in the form

− d

dt

∫∫
f (r,v,t) ln f (r,v,t)d3vd3r � −

∫ [∫
η(r,r1,t) n(r1,t) δ(|r − r1| + D)

r − r1

D
d3r1

][∫
v f (r,v,t)d3v

]
d3r.

(A1)

Next, introduce an undetermined functional Q[n] and consider

dQ[n]

dt
=

∫
δQ[n]

δn(r,t)
∂n(r,t)

∂t
d3r,
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which can be rearranged using the identity

∂n(r,t)
∂t

= −∇
∫

v f (r,v,t)d3v

and integration by parts into

dQ[n]

dt
=

∫ {
∇ δQ[n]

δn(r,t)

}[∫
v f (r,v,t)d3v

]
d3r. (A2)

Assume now that an H theorem holds, of the form

d

dt

{
−

∫∫
f (r,v,t) ln f (r,v,t)d3vd3r + Q[n]

}
� 0.

As follows from Eqs. (A1) and (A2), this last inequality holds
only subject to Eq. (8), as required.

APPENDIX B: THE EQUIVALENCE OF EoS (15)–(19)
TO THAT OF REF. [5]

In Ref. [5], the EoS of an EV fluid was derived using the
hydrodynamic approximation of Eqs. (1)–(5). Adapting this
result for μ = 1 and η given by Eq. (9), we obtain EoS (19)
with an alternative definition of �(ξ ),

�(ξ ) = 2π

3
ξ +

∞∑
l=1

clCl ξ
l+1

l + 1
, (B1)

where

Cl = 2π

3

∫ l
[

l∏
i=1

H (1 − |e − r̂i |) H (1 − |r̂i |)
]

×
⎡
⎣ l∏

i=1

l∏
j=i+1

H (1 − |r̂i − r̂j |)
⎤
⎦ l∏

i=1

d3r̂i (B2)

and e is a unit vector (its direction does not affect the value of
Cl , as the rest of the integrand in Eq. (B2) is isotropic). Evi-
dently, Eqs. (B1) and (B2) coincide with Eqs. (15) and (16) if

Al = (l + 2)Cl, (B3)

which is indeed the case as proved in Appendix D 1.

APPENDIX C: DEDUCING THE MOLECULAR DIAMETER
FROM EXPERIMENTAL DATA

The following approach is based on the fact that the noble
fluids are EV fluids – thus, their EoS are determined by (19)

with the same function �(ξ ), but fluid-specific molecular
diameter Dα (α assumes the values Ne, Ar, Kr, and Xe).
Accordingly, the functions �α(n) deduced from experimental
data in Sect. IV B are supposed (in the EV model) to be related
to the universal �(ξ ) by

�α(n) = [�(ξ )]ξ=Dαn.

We seek �(ξ ) in the form of a polynomial of the Kth order
constrained by conditions (17) and (18), i.e.,

�(ξ ) = 2π

3
ξ +

K∑
k=2

bkξ
k, (C1)

where bk are are undetermined coefficients. Introduce also

F (Dα,bk) =
∑

α

∫ 1

0

[
�(ξ ) − �α

(
ξ/D3

α

)]2
dξ, (C2)

where Dα are (at this stage undetermined) molecular diameters
of the gases involved. For specific values of bk and Dα , the
function F (Dα,bk) is a measure of how far apart �(Ne), �(Ar),
�(Kr), and �(Xe) are from � and, thus, from one another.

The coefficients bk and the molecular diameters Dα were
determined by minimizing F , i.e., employing the assumption
that, given the right choice ofDα , all�α(ξ/D3

α) should collapse
onto a universal function �(ξ ) given by Eq. (C1).

Note that, to avoid integration of discretely valued
experiment-deduced functions in expression (C2), it is con-
venient to replace them with their polynomial fits [the polyno-
mials should be of the same order as those in Eq. (C1)].

APPENDIX D: PROOFS OF IDENTITIES (B3) AND (39)

1. Identity (B3)

Rearrange expression (B2) as follows:
(i) replace e with an arbitrary vector r̂l+1 and, to com-

pensate for the change, multiply the whole expression by
δ(|r̂l+1| − 1);

(ii) integrate with respect to d3r̂l+1 and, to compensate for
the “extra” integration, divide by 4π .

As a result, one obtains

Cl = 1

6

∫ l+1

δ(1 − |r̂l+1|)
[

l∏
i=1

H (1 − |r̂l+1 − r̂i |) H (1 − |r̂i |)
]⎡
⎣ l∏

i=1

l∏
j=i+1

H (1 − |r̂i − r̂j |)
⎤
⎦ l+1∏

i=1

d3r̂i . (D1)

This expression can be further rearranged by inserting into the integrand the (unit) factor (x̂2
l+1 + ŷ2

l+1 + ẑ2
l+1), equivalently

replacing it with 3ẑ2
l+1, and replacing ẑl+1δ(1 − |r̂l+1|) with −dH (1 − |r̂l+1|)/dẑl+1, which yields

Cl = −1

2

∫ l+1

ẑl+1
dH (1 − |r̂l+1|)

dẑl+1

[
l∏

i=1

H (1 − |r̂l+1 − r̂i |) H (1 − |r̂i |)
]⎡
⎣ l∏

i=1

l∏
j=i+1

H (1 − |r̂i − r̂j |)
⎤
⎦ l+1∏

j=1

d3r̂j . (D2)
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Integrating Eq. (D2) by parts with respect to ẑl+1 and recalling Eq. (16), one obtains

Cl = 1

2
Al + 1

2

∫ l+1

ẑl+1H (1 − |r̂l+1|)
⎧⎨
⎩

l∑
i=1

⎡
⎣i−1∏

j=1

H (1 − |r̂l+1 − r̂j |)
⎤
⎦dH (1 − |r̂l+1 − r̂i |)

dẑl+1

⎡
⎣ l∏

j=i+1

H (1 − |r̂l+1 − r̂j |)
⎤
⎦

⎫⎬
⎭

×
[

l∏
i=1

H (1 − |r̂i |)
]⎡
⎣ l∏

i=1

l∏
j=i+1

H (1 − |r̂i − r̂j |)
⎤
⎦ l+1∏

i=1

d3r̂i .

Now, replace dH (1 − |r̂l+1 − r̂i |)/dẑl+1 with −dH (1 − |r̂l+1 − r̂i |)/dẑi , integrate by parts with respect to ẑi , and take into
account the ensuing cancellations, which yields

Cl = 1

2
Al + 1

2

∫ l+1

ẑl+1H (1 − |r̂l+1|)
[

l∏
i=1

H (1 − |r̂l+1 − r̂i |)
]⎧⎨
⎩

l∑
i=1

⎡
⎣i−1∏

j=1

H (1 − |r̂j |)
⎤
⎦dH (1 − |r̂i |)

dẑi

⎡
⎣ l∏

j=i+1

H (1 − |r̂j |)
⎤
⎦

⎫⎬
⎭

×
⎡
⎣ l∏

i=1

l∏
j=i+1

H (1 − |r̂i − r̂j |)
⎤
⎦ l+1∏

i=1

d3r̂i .

Next, move ẑl+1H (1 − |r̂l+1|) within the summation in the figure brackets and “inter-rename” r̂l+1 ↔ r̂i to obtain

Cl = 1

2
Al + 1

2

∫ l+1
(

l∑
i=1

ẑi

)
dH (1 − |r̂l+1|)

dẑl+1

[
l∏

i=1

H (1 − |r̂l+1 − r̂i |) H (1 − |r̂i |)
]⎡
⎣ l∏

i=1

l∏
j=i+1

H (1 − |r̂i − r̂j |)
⎤
⎦ l+1∏

i=1

d3r̂i .

(D3)
Finally, replace r̂i → r̂l+1 − r̂i for i � l and take into account Eq. (D2), which yields

Cl = 1

2
Al − lCl − 1

2

∫ l+1
(

l∑
i=1

ẑi

)
dH (1 − |r̂l+1|)

dẑl+1

[
l∏

i=1

H (1 − |r̂i |) H (1 − |r̂l+1 − r̂i |)
]

×
⎡
⎣ l∏

i=1

l∏
j=i+1

H (1 − |r̂i − r̂j |)
⎤
⎦ l+1∏

i=1

d3r̂i .

Adding this equality to Eq. (D3), one obtains Eq. (B3) as required.

2. Identity (39)

Since the integrand in Eq. (38) depends on ẑ1 − ẑ (and not on ẑ1 and ẑ separately), Eq. (38) can be rearranged by replacing r̂
with r̂new = r̂ − r̂1 and integrating with respect to ẑ1, which yields (the subscriptnew omitted)

Bl =
∫ ∞

0

∫
ẑ2δ(1 − |r̂|)

∫ l

⎡
⎣ l+1∏

j=2

H (1 − |r̂ − r̂j |) H (1 − |r̂j |)
⎤
⎦

⎡
⎣ l+1∏

j=2

l+1∏
i=j+1

H (1 − |r̂j − r̂i |)
⎤
⎦

⎡
⎣ l+1∏

j=2

d3r̂j

⎤
⎦d2r̂⊥dz.

This expression can be further rearranged by expanding the integration with respect to z from (0,∞) to (−∞,∞) and dividing
by 2, and also symmetrizing the ẑ2 term:

Bl = 1

6

∫
(x̂2 + ŷ2 + ẑ2)δ(1 − |r̂|)

∫ l

⎡
⎣ l+1∏

j=2

H (1 − |r̂ − r̂j |) H (1 − |r̂j |)
⎤
⎦

⎡
⎣ l+1∏

j=2

l+1∏
i=j+1

H (1 − |r̂j − r̂i |)
⎤
⎦

⎡
⎣ l+1∏

j=2

d3r̂j

⎤
⎦d2r̂.

Comparing this expression to Eq. (D1), one can see that Bl = Cl—hence, given Eq. (B3), Bl = Al/(l + 2) as required.
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