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In recent years nondemographic variability has been shown to greatly affect dynamics of stochastic populations.
For example, nondemographic noise in the form of a bursty reproduction process with an a priori unknown burst
size, or environmental variability in the form of time-varying reaction rates, have been separately found to
dramatically impact the extinction risk of isolated populations. In this work we investigate the extinction risk of
an isolated population under the combined influence of these two types of nondemographic variation. Using the
so-called momentum-space Wentzel–Kramers–Brillouin (WKB) approach and accounting for the explicit time
dependence in the reaction rates, we arrive at a set of time-dependent Hamilton equations. To this end, we evaluate
the population’s extinction risk by finding the instanton of the time-perturbed Hamiltonian numerically, whereas
analytical expressions are presented in particular limits using various perturbation techniques. We focus on two
classes of time-varying environments: periodically varying rates corresponding to seasonal effects and a sudden
decrease in the birth rate corresponding to a catastrophe. All our theoretical results are tested against numerical
Monte Carlo simulations with time-dependent rates and also against a numerical solution of the corresponding
time-dependent Hamilton equations.
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I. INTRODUCTION

Stochastic processes that result in the extinction of a
stochastic population after maintaining a long-lived state,
affect a wide range of biological populations, and have at-
tracted much interest over the past decades. Manifestations
of such stochastic processes range from population biology,
epidemiology, cell biochemistry, virology, gene regulation, and
conservational ecology, see, e.g., Refs. [1–8].

If the population is isolated, then there is always an
absorbing state at zero. That is, extinction can occur due
to a rare sequence of death events owing to demographic
noise, which stems from the stochastic nature of the reactions
and discreteness of individuals. While most previous studies
of population extinction have focused on this type of noise,
see e.g., Refs. [9–21], nondemographic variability (see, e.g.,
Refs. [22,23]) may dramatically influence the extinction risk
of a population subject to demographic noise [24–36]. In
general, nondemographic noise originates from the variability
across individuals as well as from environmental variations and
can give rise to time-varying reaction rates. These variations,
however, are not necessarily stochastic and may be caused by
deterministic factors such as seasonal shifts in temperature or
humidity, competition, breeding sites, or forage availability,
see, e.g., Refs. [37–39]. Notably, while these factors result
in time-periodic reaction rates [16,25,31,35], a population
can also experience, e.g., a sudden drastic drop in the birth
rate due to a drastic deterioration of environmental conditions
[17].

In addition to varying the reaction rates, nondemographic
noise can also influence the reaction step size. Here, for
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example, instead of having a single birth event with a fixed
number of products A → 2A, nondemographic noise can give
rise to a bursty reproduction process A → A + kA, where
k = 0,1,2 . . . is a random non-negative integer that is drawn
from a given step-size distribution. This type of uncertainty, or
noise, appears in a wide variety of scientific areas including
population biology and ecology [40], viral dynamics [8],
and cell biology [41,42]. Importantly, such reaction step-size
noise contributes to the variability in the ecological traits of a
population and can strongly affect the extinction probability of
a population [32,36,38].

In previous works, the extinction risk of a population has
been studied separately under the influence of deterministically
time-varying rates [16,17,31,35] and reaction step-size noise
[32,33,36]. In reality, however, both these effects ought to be
taken into account. For example, seasonal variations of temper-
ature can cause a time modulation in the reaction rates, while
fluctuations in the offspring number per birth event (which also
depends on the seasonal variability) cause an uncertainty in the
reaction step size. As a result, in this paper we study how the
extinction risk of a population is influenced under the combined
effect of time-varying reaction rates and uncertainty in the
reaction step size, thus generalizing previous works in this
field [16,17,31,35]. For concreteness our starting point is the
generalized version of the Verhulst logistic model with bursty
reproduction that has been studied in Refs. [32,36]. To this
end, using the momentum-space Wentzel–Kramers–Brillouin
(WKB), or eikonal approach [11,13,14,19], we generalize the
derivation done in Refs. [32,36] to allow dealing with explicitly
time-dependent Hamiltonians and calculate the mean time to
extinction (MTE) for generic step-size distributions (SSDs).

The paper is organized as follows. In Sec. II, we employ the
generating function formalism in order to transform the master
equation into a partial differential equation for the probability
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generating function. Then we apply the eikonal method to
this equation, which yields in the leading order a Hamilton-
Jacobi equation with an effective (explicitly) time-dependent
Hamiltonian. The latter also accounts for the uncertainty in
the reaction step size due to the bursty reproduction. To this
end, we analyze the corresponding Hamiltonian flow in various
limits. In Sec. III we follow Assaf et al. [16] and apply
three perturbation techniques, in three different regimes, to
a population with time-periodic rates. The first regime is when
the modulation amplitude is small, and a linear theory (LT) with
respect to the modulation amplitude can be applied (Sec. III A).
In the second regime, in the limit of high modulation frequency,
we employ a formalism in the spirit of the Kapitsa method
[43] (Sec. III B), while in the third low-modulation frequency
regime, we employ an adiabatic theory (Sec. III C). Further-
more, in Sec. IV we consider a different time dependence of
the reaction rates in the form of a finite and predetermined
drop in the birth rate and compute the corresponding increase
in the extinction risk of the population [17]. We dedicate
Sec. V to a short description of the time-dependent Monte
Carlo simulation that we have used as well as to describe how
we solve the explicitly time-dependent Hamilton equations
using the shooting method. Finally, in Sec. VI, we discuss the
interplay between the two forms of nondemographic variability
that we have considered.

II. MASTER EQUATION, PROBABILITY GENERATING
FUNCTION, AND THE UNPERTURBED ACTION

Our starting point is the generalized Verhulst model with
bursty reproduction [33]. The microscopic dynamics of our
system are given by the following birth-death reactions with
the corresponding rates:

A
λn→ A + kA; λn = B(t)nD(k)/〈k〉; k = 0,1,2, . . . ,

A
μn→ ∅; μn = n + B0n

2/N. (1)

Here n is the population size and N � 1 is the typical
population size in the long-lived metastable state prior to
extinction, see below. Also, the burst size k is a priori unknown
and is drawn from a normalized SSD, D(k), with a mean
value of 〈k〉 and standard deviation σ . In addition, the birth
rate per capita satisfies B(t) = B0g(t), where g(t) is a known
function of time andB0 > 1 is the average reproduction rate per
capita.

Using Eq. (1), the deterministic (mean-field) dynamics
is governed by the following rate equation: ˙̄n = n̄[B(t) −
1 − B0n̄/N ]. In the time-independent case, B(t) = B0, this
equation has a stable fixed point at n̄ = N (B0 − 1)/B0, and
an unstable fixed point at n̄ = 0. Henceforth, we will assume
N � 1; that is, the typical population size at the stable fixed
point is large. In Fig. 1 we present the typical mean-field
dynamics of n̄(t) for a periodic birth rate.

The rate equation ignores demographic fluctuations. To
account for these, and to compute the MTE, we consider the
master equation describing the time evolution of the probability
Pn(t) of having n individuals at time t . Using Eq. (1) the master

FIG. 1. Numerical solution of the rate equation, see text: a com-
parison between the time-perturbed (dashed line) and unperturbed
(solid) cases. Parameters are B0 = 3 and N = 200 for both cases,
while the birth rate in the perturbed case is given by B(t) = B0[1 +
ε cos(ωt)] with ε = 0.1 and ω = 1.

equation reads

Ṗn = B(t)

〈k〉

[
n−1∑
k=0

D(k)(n − k)Pn−k − nPn

]

+ (n + 1)Pn+1 − nPn + B0

N
[(n + 1)2Pn+1 − n2Pn].

(2)

Note that the rate equation described above can be obtained
from this master equation by multiplying the latter by n, sum-
ming over all n’s, and using the definition n̄(t) = ∑

n nPn(t).
To treat master equation (2) we introduce the probability

generating function [3] G(℘,t) = ∑∞
n=0 ℘nPn(t), with ℘ be-

ing an auxiliary variable. Note that Pn(t) is given by the Taylor
coefficients of G(℘,t) around ℘ = 0. Multiplying Eq. (2) by
℘n and summing over all n’s, we arrive at a partial differential
equation for G(℘,t),

∂G

∂t
= (℘ − 1)

{[
B(t)℘f (℘) − 1 − B0

N

]
∂G

∂℘
− B0

N
℘

∂2G

∂℘2

}
,

(3)

where we have definedf (℘) = ∑∞
k=0 D(k)(℘k − 1)/[〈k〉(℘ −

1)], which is related to the probability generating function
of the SSD. Assuming N � 1, employing the eikonal ansatz
G(℘,t) ∼ exp [−NS(℘,t)] in Eq. (3), where S(℘) is the action
function [11], and neglecting subleading-order terms with
respect to N , we arrive at a Hamilton-Jacobi equation

∂S

∂t
= (℘ − 1)

{
[B(t)℘f (℘) − 1]

∂S

∂℘
+ B0℘

(
∂S

∂℘

)2
}

.

(4)

Introducing a canonically conjugate coordinate q =
−∂S/∂℘, and shifting the momentum p = ℘ − 1 [44], we
arrive at the following one-dimensional Hamiltonian flow,
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where p plays the role of the momentum [11]:

H (t) = pq[B(t)(p + 1)f (p + 1) − 1 − B0(p + 1)q], (5)

and to remind the reader, B(t) = B0g(t). At this point we note
that in the time-independent case, Eq. (5) coincides, up to a
canonical transformation, with the Hamiltonian obtained in
Ref. [33]. The corresponding Hamilton equations are

q̇ = q[B(t)(2p + 1)f (p + 1) − 1 − B0(2p + 1)q

+B(t)p(p + 1)f ′(p + 1)], (6)

ṗ = −p[B(t)(p + 1)f (p + 1) − 1 − B0(p + 1)2q]. (7)

For completeness we begin by outlining the results ob-
tained in Ref. [33] for the time-independent case, and then
we generalize the results to the time-dependent case. When
the rates are constant, Hamiltonian (5) is conserved and the
problem is integrable. The most probable path to extinction,
often referred to as the optimal path to extinction or instanton
[9], is a nontrivial zero-energy trajectory of (5) and is given by

q0(p0) = f (p0 + 1) − 1

B0(p0 + 1)
. (8)

The corresponding action along the instanton satisfies

S0 = −
∫ pf

0
q0(p)dp = 1

B0
ln(1 + pf ) −

∫ pf

0
f (p + 1)dp,

(9)

where pf is the momentum associated with the fluctuational
fixed point, (q = 0,p = pf ), which can be found by solving
the transcendental equation f (pf + 1) = 1/[B0(pf + 1)]. In
the leading order, the MTE is given by τ ∼ exp(NS0) [11].
Note that having found pf , the action S0 can be evaluated by
substituting the exact form of f (p + 1) into Eq. (9) [33].

III. PERIODIC ENVIRONMENT

Let us now assume that the time modulation is periodic,
g(t) = 1 + ε cos(ωt). The time-dependent Hamiltonian (5) is
now given by

H (q,p,t) = H0(q,p) + εH1(q,p,t), (10)

where

H0(q,p) = pq[B0(p + 1)f (p + 1) − 1 − B0(p + 1)q]

(11)

and

H1(q,p,t) = pqB0(p + 1)f (p + 1) cos(ωt). (12)

To compute the MTE up to leading order we need to find
the action along the perturbed instanton of the time-dependent
Hamiltonian. Denoting the coordinates of the perturbed path
by q(t,t0) and p(t,t0), a general expression for the action can
be written as [16]

S =
∫ ∞

−∞
{p(t,t0)q̇(t,t0) − H0[q(t,t0),p(t,t0)]

− εH1[q(t,t0),p(t,t0),t]}dt, (13)

where t0 is the phase element of the Poincaré map which gives
the minimal action [45–47]. As mentioned above, this problem
can be analytically solved only in specific limits. Following
Ref. [16] we now apply three perturbation techniques in three
different parameter regimes.

A. Linear theory

In this subsection we assume that the time perturbation is
small, i.e., ε 
 1. Let us define by q0(t − t0) and p0(t − t0)
the coordinate and momentum of the unperturbed zero-energy
instanton evaluated at time t − t0 [48]. For ε 
 1, it has been
shown that the action can be approximated as [16,45–47]:

S(t0) � S0 + 	S(t0), (14)

where S0 is the unperturbed action (9) and

	S(t0) = −ε

∫ ∞

−∞
H1[q0(t − t0),p0(t − t0),t]dt. (15)

To find the optimal correction, 	S(t0) must be minimized with
respect to t0. Substituting Eq. (8) into Eq. (7), we arrive at the
following integral equation:

t(p0) = t0 +
∫ p0 dp0

p0[B0(p0 + 1)f (p0 + 1) − 1]
, (16)

where the integration constant was absorbed in t0. Further,
using Eqs. (7) and (8) one finds along the unperturbed instanton
ṗ = B0qp(p + 1). Employing the latter and Eq. (12), Eq. (15)
becomes

	S(t0) = −ε

∫ pf

0
f (p0 + 1) cos(ωt)dp0, (17)

where pf is the fluctuational momentum defined above and t is
a function of p0 as indicated by Eq. (16). Note that a particular
choice of the SSD, D(k), determines the form of f (p) in both
Eq. (16) and (17). Finally, to find the minimal action, solution
(17) has to be minimized with respect to t0. As a result, and as
was previously shown by Dykman et al. [9,45,46], we find that
in the LT the modulation signal removes the degeneracy of the
unperturbed instanton trajectories with respect to the arbitrary
time shift t0. It is thus possible to select the optimal instanton
in relation to the modulation signal.

Having found t0 for which the correction to the action is
minimal, the MTE is given by

τ ∼ eN(S0+	S). (18)

where 	S = mint0 [	S(t0)] is negative and 	S(t0) is given by
Eq. (17). This indicates that the time modulation brings about
an exponential increase in the population’s extinction risk, by
a factor of eN |	S|.

Before considering particular examples, let us discuss the
validity of the LT. The conditions for the general linear
correction to hold is that ε 
 1 and

S0 + 	S � 1/N. (19)

Strictly speaking, we also need to separately demand that
|	S| � 1/N for the eikonal approximation to hold [16], but
our numerical results indicate that the theory works well
already when N |	S| � O(1), see below. In Fig. 2 we com-
pare the theoretical MTE [Eq. (18)] with numerical Monte
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FIG. 2. The logarithm of the MTE in the LT regime for the case of
binomial SSD as a function of ε: a comparison between the theoretical
result (solid line) and Monte Carlo simulations with time-dependent
rates (symbols). The parameters are B0 = 1.2, N = 3200, ω = 0.24,
m = 15, and ρ = 0.4. Here the theoretical MTE (that does not include
a preexponential prefactor) is multiplied by a constant so that it
coincides with the numerical result at ε = 0.05. Inset shows the ratio
between the theoretical and numerical results. Note that the range of
ε is such that N |	S| � O(1), see text.

Carlo simulations in the case of a binomial SSD. A detailed
description of the Monte Carlo simulation with time-dependent
rates that we have used, is found in Sec. V. The parameters for
the binomial SSD are the number of trials m and the probability
of success in each trial ρ. The figure demonstrates that the LT
holds well as long as ε 
 1.

In the next two subsections we will find the explicit reduc-
tion of the action in two simple cases: the case of single-step
reaction (SSR), D(k) = δk,1, and for a general SSD close to
the bifurcation limit.

1. Linear theory—SSR

In the SSR case, D(k) = δk,1, we substitute f (p) = 1 into
Eq. (16) and find t(p0), which can then be plugged into Eq. (17).
After some algebra, S(t0) can be shown to satisfy the following
integral:

	S(t0) = ε
B0 − 1

B0

∫ ∞

−∞

1

1 + e−x

1

1 + ex

× cos

(
ω

B0 − 1
x + ωt0

)
dx, (20)

which yields

	S(t0) = επω

B0
cos(ωt0)csch

(
πω

B0 − 1

)
, (21)

where csch(z) = 1/ sinh(z). Minimizing the action with re-
spect to t0 we find that t0 = π/ω, which yields the correction
to the action for the SSR case [31],

	SSSR = −επω

B0
csch

(
πω

B0 − 1

)
. (22)

FIG. 3. A comparison between the theoretical (solid line) and
numerical (symbols) actions in the case of the SSR, in the LT regime,
as a function of ε. The numerical solution is obtained by numerically
calculating the instanton trajectory of the perturbed Hamiltonian. The
parameters are B0 = 4 and ω = 3. Inset shows a numerical calculation
of t0 which minimizes the action, as a function of ε, see Sec. V. Here
t0 is measured in units of π/ω, and one can see that as long as ε 
 1,
the theoretical prediction of t0 = π/ω holds well.

Before we continue it is informative to look at this result in two
limits. In order to do so, we define by α ≡ ω/(B0 − 1) the ratio
between the system’s relaxation timescale ∼(B0 − 1)−1 and
the timescale of the modulation ∼ω−1. In the adiabatic limit,
α 
 1, where the modulation is slow, the correction to the
action reduces to 	SSSR = −ε(B0 − 1)/B0, which coincides
with our adiabatic approximation result for the SSR, presented
in Sec. III C. On the other hand, in the high-frequency limit,
α � 1, where the modulation is rapid, the LT correction to
the action becomes exponentially small in α, and the dominant
term in 	S becomes the O(ε2) term [16], see Sec. III B.

In Fig. 3 we compare the theoretical action with a numerical
solution of the Hamilton equations (see Sec. V for a detailed
description) in the SSR case. Excellent agreement is observed
as long as ε 
 1. Here the theoretical action is given by S =
S0 + 	S, where 	S is given by Eq. (22) while S0 is given by
Eq. (9) with f (p) = 1, which yields [18]

S0 = 1 − 1

B0
− 1

B0
ln(B0). (23)

Note that the numerical solution of the Hamilton equations also
allows finding t0 for which the action is minimal; to illustrate
this point the inset of Fig. 3 shows t0 as a function ε.

2. Linear theory—bifurcation limit

For general SSDs, an analytical solution for the action in
the LT regime can only be found close to the bifurcation limit,
where 0 < B0 − 1 
 1. To this end we a priori assume the mo-
mentum is small throughout the instanton trajectory (to be jus-
tified a posteriori). We denote p0 = (B0 − 1)/[1 + f ′(1)]p̃0,
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FIG. 4. A comparison between the LT theoretical action close to
the bifurcation limit (solid line) and the general LT theoretical action
(dashed line) for the case of a binomial SSD, as a function of B0. The
theoretical action at the bifurcation limit is given by Eqs. (25) and (26)
while the general LT action is given by Eqs. (16), (17), and (9). The
parameters are ε = 0.05, ω = 1, m = 10, and ρ = 0.2. Inset shows
the ratio between the dashed and solid lines as a function of B0.

where p̃0 = O(1), and f ′(1) is found using L’Hôpital’s rule,

f ′(1) = 1

2

(
σ 2

〈k〉 + 〈k〉 − 1

)
. (24)

Substituting p0 into Eqs. (16) and (17), keeping leading-order
terms with respect to B0 − 1 
 1, and minimizing the action
with respect to t0, we find that the minimum is obtained at
t0 = π/ω. As a result, 	S becomes

	S � −ε
πω

1 + f ′(1)
csch

(
πω

B0 − 1

)
, (25)

where the unpertubed action in this case satisfies [33]

S0 = 1

2

(B0 − 1)2

1 + f ′(1)
. (26)

Note that in the SSR case where f ′(1) = 0, Eq. (25) re-
duces to Eq. (22) close to bifurcation. Also note that, using
Hamilton equations (6) and (7), the unperturbed instanton
trajectory satisfies q(t − t0) = (B0 − 1)/[1 + e(B0−1)(t−t0)] and
p(t − t0) = −(B0 − 1)/{[1 + f ′(1)][1 + e−(B0−1)(t−t0)]}, thus
justifying a posteriori our assumption regarding the smallness
of the momentum. Finally, the result given by Eqs. (25) and
(26) is valid as long as S = S0 + 	S � 1/N , which puts
an upper limit on the value of ε, depending on the value of
α = ω/(B0 − 1).

In Fig. 4 we demonstrate that the theoretical result for
the action close to bifurcation, given by Eqs. (25) and (26),
converges to the general result obtained in Sec. III A as B0

approaches the value of 1.

B. Kapitsa correction

In this subsection we consider the high-frequency limit,
α � 1, in which the modulation frequency is high compared to

the typical relaxation rate of the system. The Kapitsa method
was originally developed in the context of the “Kapitsa pen-
dulum,” see, e.g., Ref. [43], and here we apply a Hamiltonian
extension of the method along the same lines of Ref. [16].

We begin with Hamiltonian (5) and denote

q(t) = Q(t) + B0

B0 − 1
ξ (t),

(27)

p(t) = P (t) + B0

B0 − 1
η(t),

where Q and P are slowly changing variables, and ξ and η

are rapidly changing, small corrections. Expanding H (q,p,t)
[given by Eq. (5)] around q = Q and p = P up to second order
in ξ and η yields

H (q,p,t)

� H (Q,P,t) + ξ
∂H (Q,P,t)

∂Q
+ η

∂H (Q,P,t)

∂P

+ ξ 2 ∂2H (Q,P,t)

∂Q2
+ η2 ∂2H (Q,P,t)

∂P 2
+ ξη

∂2H (Q,P,t)

∂P∂Q

≡ H̃ (Q,P,t). (28)

Using Eqs. (27) and (28) the Hamilton equations become

q̇ = Q̇ + B0

B0 − 1
ξ̇ � ∂H̃ (Q,P,t)

∂P
,

ṗ = Ṗ + B0

B0 − 1
η̇ � −∂H̃ (Q,P,t)

∂Q
. (29)

Demanding that the rapidly oscillating terms balance each
other, we obtain

ξ̇ = ε(B0 − 1) cos(ωt)Q[(2P + 1)f + P (P + 1)f ′]

η̇ = −εP (B0 − 1)(P + 1)f cos(ωt), (30)

where f = f (P + 1). Treating Q and P as constants, we can
solve these equations to find

ξ = ε

α
sin(ωt)Q[(2P + 1)f + P (P + 1)f ′]

η = − ε

α
sin(ωt)P (P + 1)f. (31)

From this result it is clear that since α � 1, ε � 1 does not
need to be small in order for this approximation scheme to be
valid.

We now employ a canonical transformation to transform
from the old (q,p) to the new (Q,P ) variables, see Appendix A
for details. The effective Hamiltonian, averaged over a period
of a rapid oscillation 2π/ω, becomes

H̄ (Q,P ) = H0(Q,P ) +
( ε

α

)2
H2(Q,P ), (32)

where H0(Q,P ) is the unperturbed Hamiltonian, given by
Eq. (11), and H2(Q,P ) is given by Eq. (A4) in Appendix A.
Since this effective Hamiltonian is time independent, it is
straightforward to find the effective instanton. Using Eq. (32),
and repeating the steps that led to Eqs. (8) and (9), the instanton
reads

Q(P ) = Q0(P ) +
( ε

α

)2
QK (P ), (33)
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FIG. 5. Projections on the (Q,P ) plane of instantons for two sets
of parameters in the high-frequency regime. Here we compare the
theoretical instanton (dashed line) given by Eqs. (33), (8), and (35),
with the numerically found instanton (solid line), see Sec. V, for the
SSR case. The parameters are B0 = 4 and ε = 0.5. In (a) α = 3, and
the theoretical correction to the action 	S deviates by 30% from the
numerical result. In (b) α = 5, and the deviation of the theoretical
result from the numerical one is 14%.

where Q0(P ) is the unperturbed instanton (8), and QK (P )
is given by Eq. (A5) in Appendix A. As a result, the action
becomes

S = −
∫ Pf

0
Q(P )dP = S0 +

( ε

α

)2
	SK, (34)

where the second term, 	SK ≡ ∫ Pf

0 QK (P )dP , is the Kapitsa
correction, while S0 is given by Eq. (9).

Let us demonstrate this method by explicitly calculating
the Kapitsa correction for the SSR case. Here f (P ) = 1, and
QK (P ) given by Eq. (A5) becomes

QK (P ) = 1 − B0 + 3P − 4B0P − 4B0P
2

2B0
. (35)

Using the fact that in this case Pf = −(B0 − 1)/B0, the
Kapitsa correction in Eq. (34) becomes [31]

	SK = 1

4B0
− 1

6
− 1

12B3
0

. (36)

Figure 5 shows examples of numerically found instantons, for
two different values of α in the high-frequency regime. Here we
compare for the SSR case the theoretical instanton trajectories
given by Eq. (33) with Eqs. (8) and (35), with numerically
found instantons, according to the recipe given in Sec. V. One
can see that as α is increased, the numerical instanton and
action along it, converge into the theoretical results.

1. Kapitsa correction—bifurcation limit

We now briefly present the results of the Kapitsa correction
close to the bifurcation limit, B0 − 1 
 1, by repeating the
steps done in Sec. III A 2. Substituting P = −(B0 − 1)/[1 +
f ′(1)]P̃ and Q = Q̃(B0 − 1) into QK (P ) [Eq. (A5) in Ap-
pendix A] and keeping only leading-order terms with respect
to B0 − 1 
 1, we arrive at

Q̃(P̃ ) � 1
2 (P̃ − 1). (37)

Using this result and the fact that Pf = −(B0 − 1)/[1 + f ′(1)]
in this limit, 	SK becomes

	SK = −1

4

(B0 − 1)2

1 + f ′(1)
. (38)

Thus, the total action close to the bifurcation takes the follow-
ing compact form:

S = S0

[
1 − 1

2

( ε

α

)2
]
, (39)

where S0 is given by Eq. (26). Equation (39) is valid as long as
B0 − 1 
 ω 
 (B0 − 1)−1/2, namely, the frequency cannot be
too high. This is because, on the one hand, the Kapitsa method
requires α � 1 or ω � B0 − 1, whereas on the other hand, in
S we have neglected O(B0 − 1)3 terms, while keeping terms
of O[(B0 − 1)2α−2] (here ε � 1).

C. Adiabatic approximation

In the adiabatic limit the modulation frequency is much
smaller than the typical relaxation rate of the system, i.e.,
α 
 1. In this case we can consider an approximation that
is nonperturbative in the modulation amplitude. It has been
shown by Assaf et al. [16] that the average extinction rate r̄ex

in the adiabatic limit is

r̄ex = ω

2π

∫ 2π
ω

0
rex(t ′)dt ′, (40)

with rex(t) being the instantaneous value of the slowly time-
dependant extinction rate. In this approximation the MTE is
equal to 1/r̄ex.

The mean extinction rate under bursty reproduction and
constant reaction rates has been calculated by Be’er et al. [33],
including pre-exponential corrections. Following the steps
outlined in the Appendix of Ref. [33], the time-instantaneous
extinction rate in our case is given by

rex(t) = A(t)e−NS[pf (t),t], (41)

with

S(p,t) =
∫ 0

p

{
f (p′ + 1)[1 + ε cos(ωt)] − 1

B0(p′ + 1)

}
dp′,

(42)

and

A(t) = −pf {B0[1 + ε cos(ωt)] − 1}
[
NSpp(pf ,t)

2π

]1/2

.

(43)

Here pf is explicitly time dependent and is defined by

f (pf + 1)[1 + ε cos(ωt)] = 1

B0(pf + 1)
, (44)

whileSpp(pf ,t) is the second derivative of the action in Eq. (42)
with respect to p evaluated at p = pf (t). Substituting Eq. (41)
into Eq. (40), the average extinction rate is given by

r̄ex = ω

2π

∫ 2π
ω

0
A(t ′)e−NS[pf (t ′),t ′]dt ′, (45)
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FIG. 6. The MTE, τBN, for the case of a binomial SSD in the
adiabatic regime: theory (solid line) versus Monte Carlo simulations
(symbols). In (a) the MTE is plotted against ε, and the parameters are
B0 = 3, ω = 0.06, m = 10, and ρ = 0.3. In (b) the MTE is plotted
against the SSD’s mean, 〈k〉 = mρ, and the parameters are B0 = 3,
ω = 0.06, and ε = 0.3.

which can be found via the saddle-point approximation

r̄ex � ω

2π
A(ts)e

−NS[pf (ts ),ts ]

[
2π

N |Stt [pf (ts),ts]|
]1/2

. (46)

Here the saddle point is found at ts = π/ω, and Stt [pf (ts),ts] is
the second derivative of action (42) with respect to t evaluated
at ts , while the time-dependent fluctuational momentum pf

has to also be evaluated at ts according to Eq. (44). After
some algebra, it can be shown that the average extinction rate
becomes

r̄ex � Ce−NS[pf (ts ),ts ], (47)

where S is given by Eq. (42). Here the pre-exponent

C = −pf [B0(1 − ε) − 1]

⎡
⎣ (1−ε)f ′(pf + 1)+ 1

B0(1+pf )2

4π2ε
∫ 0
pf

f (p′+1)dp′

⎤
⎦

1/2

,

(48)

is independent on N and the modulation frequency ω, and pf

is evaluated at ts according to Eq. (44).
To illustrate this result, let us consider the SSR case for

which f (p) = 1. Here Eq. (47) becomes

r̄ex =
{

(1 − ε)

4π2ε
[B0(1 − ε) − 1]3

}1/2

e−N[S0+	S], (49)

where S0 is given by Eq. (23) in accordance with Eq. (9) for the
SSR case, and 	S = −1/B0 ln(1 − ε) − ε. Note that for ε 

1, this result reduces to 	S = −ε(1 − 1/B0) in agreement with
the LT result obtained in Sec. III A 1. In Fig. 6 we compare
theoretical results in the adiabatic limit with Monte Carlo
simulations for the case of a binomial SSD, and excellent
agreement is observed.

The adiabatic theory is applicable as long as ω is much
smaller, at all times, than the system’s instantaneous relaxation

rate, B0[1 + ε cos(ωt)] − 1. This yields

B0(1 − ε) − 1 � ω, (50)

which also entails that B0(1 − ε) > 1. That is, ε cannot
be too close to 1; otherwise, the adiabatic approximation
breaks down. In addition, we must have S[pf (ts),ts] � N−1

for the eikonal approximation to be valid. Finally, for the
saddle-point approximation to be valid, the width around the
saddle, |Stt [pf (ts),ts]|−1/2, has to be much smaller than π/ω,
the distance between the saddle point and the integration
boundaries in Eq. (40).

IV. CATASTROPHE

Having considered time-periodic reaction rates, we now
turn to the case of a catastrophe, which we model by a
temporary drop in the population’s birth rate. Here the quantity
of interest is not the MTE but rather the change in the extinction
risk due to the catastrophe. Indeed, if the population dwells
in a long-lived metastable state prior to extinction, before
the catastrophe occurs the slowly time-dependent extinction
probability satisfies P0(t) ≡ 1 − e−t/τ , where τ is the MTE
of the population [18,34]. The catastrophe brings about an
increase in the extinction risk 	P0 due to the temporary
decrease in the birth rate, and it is our goal in this section
to calculate this change. Here we generalize the treatment in
Ref. [17] which included the SSR case and calculate the growth
in the extinction risk for a general SSD.

In Fig. 7 we plot two typical stochastic trajectories of an
established population undergoing a catastrophe, manifested
by a sudden drop in the birth rate for a prescribed duration T .
In Fig. 7(a) we show an example of a population that recovers
from a catastrophe, while in Fig. 7(b) the latter brings about
a rapid population extinction. Note that under the assumption
that the extinction probability remains small in the aftermath
of the catastrophe (see below), the effect of the latter on the
MTE is negligible. This is because in this regime, the majority
of trajectories recover after the catastrophe.

FIG. 7. Example of two trajectories (thin solid lines) showing the
dynamics of the population in the aftermath of a catastrophe in the
case of a binomial SSD. The catastrophe is manifested by a sudden
drop, at some given time, in the birth rate (illustrated by the thick solid
line) for a given duration T . While in (a) the population recovers, in
(b) the catastrophe brings about population extinction. The parameters
are N = 100, B0 = 3, T = 1.5, m = 10, and ρ = 0.2.
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To represent a catastrophe of duration T , we substitute

g(t) =
{

1 t < 0 or t > T

0 0 < t < T
(51)

into Hamiltonian (5), and we set it to start at some arbitrary
time t0 = 0. To proceed we calculate the different segments
of the Hamiltonian, before, after, and during the catastrophe
and then demand continuity between the different instanton
solutions. The Hamiltonian before and after the catastrophe is
the time-independent Hamiltonian [Eq. (11)]. Whereas during
the catastrophe the birth rate vanishes and the Hamiltonian
becomes

Hc(p,q) = −pq[1 + B0(p + 1)q], (52)

which is independent on the specific choice of SSD. Now, in
order to find the complete instanton, it is necessary to match the
instaton during the catastrophe to the pre- and postcatastrophe
instanton. The latter is the zero energy line of Eq. (11), given by
Eq. (8). During the catastrophe, however, the a priori unknown
energy, Ec = Hc, is no longer zero. It can be found by matching
the nonzero energy line during the catastrophe

qc = 1

2B0(p + 1)

[√
1 − 4B0(p + 1)Ec

p
− 1

]
(53)

with q0 given by Eq. (8). Solving q0 = qc gives us the
intersections points p1(Ec) and p2(Ec)

1 +
√

1 − 4B0(p1,2 + 1)Ec

p1,2
= 2B0(p1,2 + 1)f (p1,2 + 1),

(54)

which can be explicitly found for any particular choice of SSD.
In order to determine Ec we demand that the duration of the
catastrophe be T . Putting B(t) = 0 in Hamilton equation (7)
evaluated at q = qc, using Eq. (53), and integrating from t0 = 0
to t = T , we obtain

T =
∫ p2(Ec)

p1(Ec)

dp√
p2 − 4pB0(p + 1)Ec

, (55)

whose solution yields the energy Ec associated with the
catastrophe. Having found Ec, the action is given by [17]

S(T ) = S0 −
∫ p1(Ec)

p2(Ec)
{q0(p) − qc(p)}dp − EcT . (56)

According to the eikonal theory, this result for the decrease
in action, together with Eq. (55), allows finding the increase in
the extinction risk of the population up to exponential accuracy:

	P0 ∼ e−NS(T ). (57)

Note that this result is valid as long as NS(T ) � 1. Also
note that if 	P0 � P0 (that is, if the catastrophe significantly
increases the extinction risk), then Eq. (57) approximately
describes the extinction risk in the aftermath of the catastrophe.
In Fig. 8 we compare Eq. (57) with Monte Carlo simulations
for the case of a binomial SSD. As expected, the theory holds
as long as the duration T is not too long such that NS(T ) � 1.

While we have given a general recipe to find the increase
in the population’s extinction risk for a generic SSD, it is

FIG. 8. Probability of extinction for the binomial SSD in the
aftermath of a catastrophe: theory (solid line) and Monte Carlo
simulations (symbols), as a function of the catastrophe duration T .
The parameters are B0 = 1.1, N = 12 000, m = 10, and ρ = 0.3. The
theoretical result is multiplied by a constant prefactor to match the
simulation result at T = 1.1.

informative to examine these results close to the bifurcation
limit where B0 − 1 
 1. In Appendix B we show that in
this limit the analytical solution drastically simplifies, and the
action can be written as

S(T ) = 2S0

eT + 1
, (58)

with S0 given by Eq. (26). This result is a generalization of the
result obtained by Assaf et al. [17] for the case of the SSR,
corresponding to f (p) = 1.

V. NUMERICAL CALCULATIONS

To verify our analytical results we have used two different
numerical methods. The first method is a time-dependent
Monte Carlo simulation. It is based on an extended ver-
sion of the time-independent Gillespie algorithm [49,50],
which accounts for time-dependent reactions rates, see, e.g.,
Refs. [51,52]. In short, Gillespie’s algorithm is composed of
two steps: (i) advancing the time until the next reaction and (ii)
choosing a reaction from all possible reactions and updating the
population size accordingly. The second step is insensitive to
whether the reaction rates are explicitly time dependent; here,
accounting for bursty reproduction was done by considering all
possible birth processes as independent reactions. To account
for the time-dependent rates, we denote by aαβ the transition
probability per unit time from state β to state α, and by
aα = ∑

β aαβ , the transition probability to reach α from all
other states. At any given time t , the probability Pα that the
system is still in configuration α after time δt has elapsed is
thus [51,52]

Pα(t) = exp

[
−

∫ t+δt

t

dt ′aα(t ′)
]
. (59)

In order to choose the time step δt in which the next reaction
will occur, we generate a random number from a uniform
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distribution in the interval [0,1] and demand that this random
number be equal to Pα . In the time-independent case, δt can
be explicitly found from this equation [49], but for time-
dependent rates, this yields a transcendental equation [52],
which has to be solved for each time step. Having found
the time step δt , the next reaction is chosen according to the
original Gillespie step, with the reactions rates evaluated at
time t + δt [51].

When the MTE is long, employing such an algorithm,
which includes solving a transcendental equation at each time
step, may be extremely time-consuming. As a result, we
have also devised a numerical method to solve the explicitly
time-dependent Hamilton equations numerically. For a time-
independent Hamiltonian, finding the instanton numerically
can be done directly using the shooting method. Here we
start at time t = 0 in the close vicinity of the mean-field fixed
point (qmf + δq,δp), where δq,δp 
 1. To find the unstable
eigendirection of the instanton, along which it leaves the
vicinity of the mean-field fixed point at t = 0 and enters at
some final time the close vicinity of the fluctuational point
(0,pf ), we substitute q = qmf + δq and p = δp into the
unperturbed instanton [Eq. (8)]. Retaining leading-order terms,
we arrive at δq = [f ′(1) + 1/B0]δp, which determines the
desired eigendirection. Having found the numerical solution to
Eqs. (6) and (7) for some initial condition in the close vicinity
of (qmf ,0) on the unperturbed instanton, one can find the action
according to Eq. (9).

In the time-dependent case, however, the perturbed instan-
ton is more intricate to find. Here we start from the same
initial conditions as for the time-independent case, but we now
pay attention to the relative phase between the unperturbed
instanton and the perturbed trajectory. As a result, we solve
Eqs. (6) and (7) for various relative phases and only then
choose such a phase that minimizes the action of the perturbed
instanton. This relative phase in the numerical solution is easily
related to the minimization of the LT in Sec. III A, as both
represent the deviation of the perturbed trajectory from the
original time-independent trajectory (see Fig. 3). In Fig. 9 we
give an example of a typical time-dependent trajectory in the
(q,p,t) phase plane obtained in the manner described above.
Additional examples for instantons in the high-frequency
regime and with intermediate perturbation strength (ε = 0.5)
are shown in Fig. 5. Finally, we have checked that in the course
of numerically finding the instantons, our algorithm gave a
relative error on the order of 0.1% of the unperturbed action
S0. As a result, throughout this work we have only taken such
results into account where 	S/S0 � 10−2, which guarantees
that the correction to the action includes an error of 10% at
most.

VI. SUMMARY AND DISCUSSION

In this paper we have investigated the dynamics of a stochas-
tic population under the joint influence of two nondemographic
effects: a time-varying environment that gives rise to time-
dependent reaction rates and bursty reproduction that gives rise
to uncertainty in the reaction step size. Two time-modulation
protocols have been considered: a periodically varying birth
rate and a sudden temporary drop of the birth rate to zero. By
using various analytical tools as well as extensive numerical

FIG. 9. An example of an instanton trajectory of the perturbed
Hamiltonian in the SSR case. The parameters are B0 = 4, ε = 0.3,
and ω = 6. The trajectory first performs large-amplitude oscillations
around the mean-field fixed point (q,p) = (0.75,0) and finally enters
the vicinity of the fluctuational point (q,p) = (0, −0.75).

simulations we have shown that such time modulation always
decreases the MTE compared to the time-independent case.
As a result, a time-varying environment always increases the
extinction risk of a population. By accounting for bursty repro-
duction with an arbitrary SSD, this work generalizes previous
works in this field which have treated constant-step-size reac-
tions such as the Verhulst or the branching-annihilation models.

How does bursty reproduction affect the extinction risk in
the presence of time-dependent rates? In the time-independent
case it has been shown by Be’er and Assaf that bursty reproduc-
tion increases the extinction risk compared to the case of SSR
(single-step birth reaction) [33]. However, when compared
with a birth reaction that produces exactly K individuals
(K-step reaction), depending on the skewness of the SSD, it
has been shown that bursty reproduction can also decrease
the extinction risk of the population [36]. Here we generalize
these results by considering time-dependent rates and using
a beta-binomial (BBN) distribution, which is a generalized
version of the binomial distribution, see below.

In Fig. 10 we study the dependence of the extinction risk
on the first two moments of the SSD. In Figs. 10(a) and 10(b)
we show that the MTE is exponentially reduced as the mean
of the SSD is increased by comparing the K-step reaction
results with those using SSR. The reason for this increase
in the population’s extinction risk is that as the SSD’s mean
increases, birth events become less frequent and it is more
likely to observe a series of death events that leads to population
extinction. Yet, looking at the ratio of the MTEs, this effect is
significantly reduced when the rates are time dependent, see
Fig. 10(b).

In Figs. 10(c) and 10(d) we study how the width of the
SSD affects the extinction risk by comparing the results of
the K-step reaction with those using the BBN distribution.
The latter is defined by three parameters: the number of
independent trials m, and α,β which are the parameters of
the beta distribution from which the probability of success
of a single trial is taken. By tuning the parameters such
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FIG. 10. Panel (a) shows the MTE for the case of a K-step
reaction, see text, as a function of K . Here the different lines
correspond to the theoretical results in the adiabatic limit for ε =
0.05,0.15,0.25 (solid, dashed, and dash-dotted lines, respectively),
while the symbols are results of Monte Carlo simulations. Panel (b)
shows the MTE in (a) normalized by the MTE in the case of the
SSR, namely K = 1. Parameters in (a) and (b) are B0 = 3, N = 70,
and ω = 0.01. Panel (c) shows the MTE for the case of a BBN
distribution, see text, as a function of the standard deviation σ , where
the SSD’s parameters (m,α,β) are chosen to maintain a constant mean
of K = 5 (see text). The different lines correspond to the theoretical
results in the adiabatic limit for ε = 0.05,0.15,0.25 (solid, dashed,
and dash-dotted lines, respectively), while the symbols are results of
Monte Carlo simulations. Panel (d) shows the MTE in (c) normalized
by the MTE in the case of a K-step reaction with K = 5 and σ = 0.
Parameters in (c) and (d) are B0 = 6, N = 80, and ω = 0.01.

that the mean of the BBN coincides with K , we show that
the MTE is exponentially decreased when the SSD’s width
is increased, see Fig. 10(c). The reason for this increase in
the population’s extinction risk is that as the SSD’s width
increases, large-burst-size birth events become more likely and
thus, it is more likely to observe a series of death events that
drives the population to extinction. Yet, looking at the ratio
of the MTEs, again the effect of MTE reduction is drastically
reduced when introducing time-dependent rates, see Fig. 10(d).

We have also examined how the SSD’s third moment affects
the population’s extinction risk. In Fig. 11 we compare the
BBN results with those of a symmetric three-value triangular
(TR) SSD. To study the net effect of the third moment, the TR
distribution is tuned such that the mean and variance coincide
with that of the BBN distribution. Figure 11 demonstrates that
when the SSD is positively skewed, the MTE is increased and
vice versa, while for zero skewness the MTEs almost coincide.
This is because for positively skewed SSDs (here the BBN),
the median is smaller than the mean, and thus small-burst-size
birth events are more likely than in the TR case, where the
median is equal to the mean. Yet, similarly to the cases of the
first and second moments, as the time modulation amplitude
ε increases, the effect of increasing the MTE as the skewness
increases is diminished [53].

FIG. 11. The ratio between the MTEs in the cases of a BBN and
a three-value TR (see text) distribution, as function of the BBN’s
skewness. The lines correspond to theoretical results in the adiabatic
limit for ε = 0.05,0.25,0.45 (respectively, solid, dashed, and dash-
dotted lines). The parameters are B0 = 6, N = 1000, ω = 0.01, and
the SSD parameters are chosen such that the SSD’s mean and variance
be equal at each point.

To understand the interplay between having time-dependent
rates and bursty reproduction, we consider the adiabatic limit
(Sec. III C). Here the system “waits” until the effective birth
rate goes to its minimum, B0(1 − ε) (see Sec. III C), and only
then it goes to extinction. Thus, the typical population size,
which directly depends on the birth rate, and from which the
system goes extinct, is decreased. Therefore, since the MTE
is exponentially sensitive to the typical population size, we
find that the effect of increase or decrease in the extinction
risk is exponentially diminished due to the time-dependent
rates. Finally, note that while Figs. 10 and 11 demonstrate the
adiabatic regime, we have checked that this effect (although
weaker) still exists in the nonadiabatic regime as well.

APPENDIX A: KAPITSA RESULTS

In this Appendix we provide some intermediate results
for the high-frequency limit, α = ω/(B0 − 1) � 1. Using
Eqs. (27) and (31), we perform an almost canonical transfor-
mation from the old variables q and p to the new variables Q

and P :

p(Q,P,t) = P
[
1 − ε

α
(P + 1)f sin(ωt)

]
, (A1)

q(Q,P,t) = Q

1 − ε
α

sin(ωt)[(2P + 1)f + P (P + 1)f ′]

� Q

{
1 + ε

α
sin(ωt)[(2P + 1)f + P (P + 1)f ′]

+
( ε

α

)2
sin2(ωt)[(2P + 1)f + P (P + 1)f ′]2

}
.

(A2)

This transformation is canonical up to third order in
O[(1/α)3] 
 1, since the Poisson brackets satisfy {q,p}Q,P =

062114-10



POPULATION EXTINCTION UNDER BURSTY … PHYSICAL REVIEW E 97, 062114 (2018)

1 + O[(1/α)3]. The generating function of this transformation
satisfies [43]

F2(q,P,t) = qP
[
1 − ε

α
(P + 1)f sin(ωt)

]
. (A3)

This allows making the transformation H ′ = H + ∂F2/∂t ,
where by time averaging the new Hamiltonian H ′ over a
period of rapid oscillation 2π/ω, we arrive at the effective
time-independent Hamiltonian [Eq. (32) in the main text].
Here the correction to the unperturbed Hamiltonian, due to
the high-frequency time modulation, reads:

H2 = 1
2QP

[
B0P (1 + P )2f 3 − P (1 + P )

× [1 + 3P + 4B0Q(1 + P )(1 + 2P )]ff ′

−P 2(1 + P )2[1 + 3B0Q(1 + P )](f ′)2

+ f 2
( − {P + 2P 2 + B0Q(1 + P )[1 + 5P (1 + P )]}

+B0P (1 + P )2
[
(1 + 2P )f ′ + 1

2P (1 + P )f ′′])].
(A4)

Finally, this correction brings about a correction to the unper-
turbed instanton (8), which has the form

QK (P )

= 1

4B0
(−2B0(1 + 2P )2f 3 + 4P 2(1 + P )(f ′)2

+ 2Pff ′[3 + 5P − 3B0P (1 + P )2f ′] + f 2{2 + 6P

+B0P (1 + P )[−6(1 + 2P )f ′ + P (1 + P )f ′′]}).
(A5)

This result allows us to explicitly calculate the correction to
the action in Eq. (34), see Sec. III B in the main text.

APPENDIX B: CATASTROPHE CALCULATIONS
IN THE BIFURCATION LIMIT

In this Appendix we calculate the action in the case of a
catastrophe close to the bifurcation limit. Here the treatment

goes along the same lines as in Sec. III A 2. We denote p0 =
(B0 − 1)/[1 + f ′(1)]p̃0 and q0 = (B0 − 1)q̃0, where p̃0 and
q̃0 are O(1). We also denote H = H̃ (B0 − 1)2/[f ′(1) + 1].
Thus, in the leading order the Hamiltonian before and after the
catastrophe reduces to

H̃ = p̃q̃(p̃ − q̃ + 1)(B0 − 1), (B1)

while the normalized instanton is q̃ = 1 + p̃. The Hamiltonian
during the catastrophe [Eq. (52)] reduces in leading order to

H̃c = −p̃q̃. (B2)

Demanding that Ẽc = H̃c, the nonzero energy trajectory dur-
ing the catastrophe becomes q̃c = −Ẽc/p̃. The intersection
points between the instantons before or after and during the
catastrophe are found by solving q̃c = q̃:

p̃1,2 = − 1
2 (1 ±

√
1 − 4Ẽc). (B3)

During the catastrophe the Hamilton equation for the momen-
tum reduces to ˙̃p = p̃, which yields p̃2/p̃1 = eT . As a result
we find [17]

Ẽc = eT

(1 + eT )2
= 1

4
cosh−2(T/2), (B4)

p̃1 = −1

2
[1 + tanh(T/2)], p̃2 = −1

2
[1−tanh(T/2)]. (B5)

Finally, using Eq. (56) we arrive at

S(T ) = (B0 − 1)2

2[1 + f ′(1)]
[1 − tanh(T/2)] = 2S0

eT + 1
, (B6)

where we have used the definition of S0 from Eq. (26).
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