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Hierarchical lattice models of hydrogen-bond networks in water
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We develop a graph-based model of the hydrogen-bond network in water, with a view toward quantitatively
modeling the molecular-level correlational structure of the network. The networks formed are studied by the
constructing the model on two infinite-dimensional lattices. Our models are built bottom up, based on microscopic
information coming from atomistic simulations, and we show that the predictions of the model are consistent
with known results from ab initio simulations of liquid water. We show that simple entropic models can predict
the correlations and clustering of local-coordination defects around tetrahedral waters observed in the atomistic
simulations. We also find that orientational correlations between bonds are longer ranged than density correlations,
determine the directional correlations within closed loops, and show that the patterns of water wires within these
structures are also consistent with previous atomistic simulations. Our models show the existence of density and
compressibility anomalies, as seen in the real liquid, and the phase diagram of these models is consistent with
the singularity-free scenario previously proposed by Sastry and coworkers [Phys. Rev. E 53, 6144 (1996)].
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I. INTRODUCTION

Water is a universal solvent for a wide range of different
solutes such as ions [1] and biological systems such as proteins
and DNA [2,3], and it is also found near extended interfaces
relevant for many different physical and chemical processes
[4]. Unlike other simple liquids, water features numerous
anomalies such as the existence of a temperature of maximum
density and also a very high heat capacity and dielectric
constant [5]. Despite long study on both experimental and
theoretical fronts, understanding the microscopic origins of
these anomalies continues to be a contentious area of research
[6–9]. Over the past decade, there have been been experiments
challenging the extent of the local tetrahedrality of water
[10,11].

The predominant explanation for the anomalous properties
of water is the two-critical-point scenario [12–15], which posits
the existence of two supercooled liquid phases, a low-density
liquid (LDL) and a high-density liquid (HDL), separated by a
first-order line which terminates in a critical point. The LDL
and HDL phases differ in their local orientational ordering of
water molecules. The molecular structure of the LDL phase, as
seen in simulations, is a more open and tetrahedral structure and
thus occupies more volume. On the other hand, the HDL liquid
is a distorted tetrahedral structure characterized by higher
entropy [16]. Since experimentally proving the two-critical-
point scenario remains a challenge [17], the field has been
mostly driven by theoretical and computational studies [6].

Besides atomistic based simulations [18–20], there have
also been numerous theoretical studies using simplified lattice
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models to study particular properties of water. The simplest
models in this regard are coarse-grained models, such as
three-state models [21], where each lattice site represents a
mesoscopic region of the liquid. In most other models, each
lattice site represents a single water model, with the state of the
bonds representing the presence or absence of hydrogen bonds.
Models like the Bell [22–24] and Besseling-Lykema [25] mod-
els consider water molecules to be always constrained to be
tetrahedral molecules with orientational interactions between
nearest neighbors. This results in two competing orientational
orderings at low temperatures, which subsequently results in
two phases which can be interpreted to be the HDL and
LDL phases. Other models have also been developed where
interesting physics results from the interplay of tetrahedral
bonding with density [26]. It is also worth mentioning the
Mercedes-Benz model, a model of tetrahedral molecules in
three dimensions interacting via orientational and van der
Waals interactions, as an example of an off-lattice model which
takes into account orientational interactions, but only considers
tetrahedral molecules [27,28]. It has been used to model
the hydrophobic interaction between nonpolar solutes and
water [29].

An interesting class of models which allows for nonte-
trahedrality was studied by Stanley, Sastry, Franzese, and
coworkers [16,30–33]. These models differ from the previ-
ous ones because the HDL and LDL phases vary in their
local tetrahedrality. The density and compressibility anomalies
result from assigning different volumes to tetrahedral and
nontetrahedral configurations. The model developed in this
paper is related to this class of models, and we discuss these
models further when we investigate the phase diagram for our
model in Sec. V.

In most lattice models of water developed up to this point,
a realistic description of the local coordination environment
of the water molecules, like that described earlier, is not taken
into account. Since most of these models are not built on any
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input from microscopic information, a comparison between
the reality of supercooled water and the symmetry structure of
the phases seen in the models is challenging to justify. A recent
examination of some of these models [34] has in fact shown
that the proposed low-temperature phases obtained using these
models actually correspond to amorphous solids or glasses [35]
rather than liquids.

We aim to develop models of the H-bond network that
predict microscopic properties like the correlation functions
and properties of small rings or loops. A possible strategy
to construct such models is to make use of recent atomistic
simulation data where it has been possible to study properties
of the network structure [36,37] and to try to extract the most
relevant sets of parameters as input. In this work, we use
such information from the study by Gasparotto et al. [38] to
construct a lattice model of water where coordination defects
are included in the network and then use that to understand
both the type of phase diagram of water that emerges as well
as the properties of the network. Gasporotto and coworkers
[38] used atomistic molecular dynamics simulations to exam-
ine coordination defects in water at various temperatures as
well as the structural correlations between the defects. They
found that at ambient conditions about 60% of the water
molecules accept and donate two hydrogen bonds. There is,
however, an appreciable population of both undercoordinated
and overcoordinated defects, that is, water molecules that
accept or donate one or three hydrogen bonds. The defects
tend to cluster with each other and are characterized by
a specific temperature dependence. Most of the qualitative
features observed were found to be independent of the water
model used, suggesting in fact that these features likely
emerge from some generic properties of the hydrogen bond
network.

We build our models from such knowledge of the population
densities of the coordination defects in the network. Although
there have been studies on the energetics of molecules with
multiple H bonds and the effect of different local configurations
on the energy of a single molecule [39,40], we opt instead for
a semiempirical approach and set the weights in our model
from the densities of various types of molecules observed
in simulations (as will be elaborated in Sec. II). We study
our network models analytically on two different infinite-
dimensional lattices, namely the six-coordinated Bethe and
Husimi lattices [41], which function as substrates for forming
the network we wish to describe. The phase diagram for
our network model consists of two phases with a symmetry-
breaking transition between the phases, reinforcing the no-
tion of the singularity-free-scenario proposed by Sastry and
coworkers [31].

Our network models successfully reproduce several prop-
erties of the short-ranged correlations between coordination
defects of the network at ambient conditions. An important
result of our findings is that many of these correlations are
purely entropically driven since our models do not have any ex-
plicit enthalpic interactions between water molecules. We also
examine the changes in these properties as a function of both
temperature and pressure. Orientational correlations between
bonds are also computed on the Bethe and Husimi lattices and
found to be longer range than those where orientations are
neglected. In addition, topological properties like directional

correlations within closed loops are also in good agreement
with previous atomistic simulations [42,43]. Finally, we show
that the inclusion of topological defects in the model does not
qualitatively change the physics of observing the anomalies
like the density maximum or compressibility minimum but
instead can shift the exact location of their position on the
temperature-pressure phase diagram.

Although this will not be tackled in this work, it is
worth mentioning that the model we present here serves as
an important starting point for examining dynamics of the
network. There have been several atomistic-based simulations
showing the importance of collective network fluctuations
where the reorganization of water defects, rings, and wires
are suggested to play an important role in dynamics [44–46].
Since the lattice model we develop here captures some of
the essential physics of water networks observed in atomistic
simulations, we believe that it provides a framework to examine
network dynamics. This will be the subject of a forthcoming
study [47].

The structure of the paper is as follows: In Sec. II, we detail
the construction of our model and method we use to solve it
on the Bethe and Husimi lattices. In Sec. III, we compare the
predictions of our model for more microscopic properties such
as the radial distribution functions and loop statistics with data
from simulations. In Sec. IV, we show that our model displays
anomalous behavior of the density and compressibility. In
Sec. V, we examine the phase diagram of the network and
show that it is consistent with the singularity-free scenario.
We conclude in Sec. VI with a look toward future applications
and extensions of our model.

II. CONSTRUCTION OF THE MODEL

In a recent study, Gasparotto and coworkers [38] used atom-
istic molecular dynamics simulations to probe the structural
correlations between water molecules in the hydrogen-bond
network. In particular, they found that at ambient temperatures,
about two thirds of water molecules donate and accept two
hydrogen bonds (HB). Besides these, there is also a sizable con-
centration of defects in the network, such as water molecules
that accept two HB and donate only one or three HB, as
well as those that accept one HB and donate one to three
HB. By examining the pair correlation between the different
types of water molecules, these authors showed that there are
specific structural correlations between defects manifested in
their tendency to cluster with each other. Interestingly, the
qualitative features were found to be independent of the choice
of water model.

As indicated earlier, most lattice models of water neglect
the directionality of the hydrogen bonds that form the network,
and furthermore do not account for the existence of different
types of defects such as nontetrahedral, undercoordinated, and
overcoordinated water molecules. In addition, most lattice
models of water have not examined the role of directed network
correlations, which are deemed to be important for problems
involving proton transfer in water [43], the reorganization
of water networks around solutes like proteins [48,49], and
understanding water around ions and osmolytes [50]. Our
goal is to develop a model of a network which lives on a
lattice substrate, but which encodes information on the local

062113-2



HIERARCHICAL LATTICE MODELS OF HYDROGEN-BOND … PHYSICAL REVIEW E 97, 062113 (2018)

directionality of hydrogen bonds as well as the concentration
of defects. In particular, we use the concentration of some of
the important defects elucidated from the atomistic simulations
as empirical parameters in our model.

We note here that the Bethe and Husimi lattice solutions
of the model correspond to well-known approximations used
to study models on finite-dimensional graphs. Our vertex
model can be seen as a model for an ensemble of directed
graphs with a given distribution of node in-out degrees and
the solutions presented in this paper would be the mean-field
solutions of the graph model. Thus one need not see the
model as restricted to live on a regular lattice or in infinite
dimensions. The only spatial information incorporated into
this graph model is the separate accounting of tetrahedral
and nontetrahedral two-in–two-outs, which as we shall see is
essential to producing the anomalous behavior of water. The
Bethe and Husimi solutions are then the tree-level mean field
and the three-node level (Bethe-Peierls) mean-field solutions
[41], respectively, for the directed graph ensemble described by
our vertex weights. This allows for the determination of mul-
tisite correlations self-consistently on the infinite-dimensional
lattice [51].

A. Definition of the vertex weights

Our network models are constructed on a six-coordinated
lattice with triangular faces. Although the particular details
of the lattice are not important, the triangular structure is
convenient as it allows for all the important defects such
as over- and undercoordinated water molecules to be easily
included. The frustration caused by the triangular structure also
destabilizes crystal ordering. The sites of the lattice correspond
to water molecules. Bonds on the lattice may be occupied
or empty; occupied bonds correspond to H bonds between
the sites they connect, while empty bonds correspond to the
interstitial molecules within the bonding shell but not actually
bonded. Besides the presence of hydrogen bonds, liquid water
is also characterized by regions of empty space (cavities or
voids) [52,53]. Cavities within the liquid in our lattice model
are represented by empty sites, the concentration of which can
also be controlled via a separate fugacity, as has been done in
previous studies with lattice models [30].

We denote the type of water molecule by the notation xy,
where x is the number of incoming hydrogen bonds and y is
the number of outgoing hydrogen bonds. The most common
type at room temperature are molecules with two incoming
and two outgoing H bonds, denoted “22s” as observed in
ab initio simulations. The other types may be considered as
defects in the network. In our model, we include the following
types of molecules: 22, 12, 21, 32, 23, and 11, these being the
most common types of defects in room-temperature water as
observed in ab initio simulations. We also allow for cavities
(empty sites) on the lattice with a small weight. As in some
of the lattice models discussed in the previous section, one
also distinguishes between tetrahedral and nontetrahedral 22
molecules. Tetrahedral 22 molecules on our lattice are defined
to be the ones where the empty sites lie opposite each other
and are denoted “22a,” whereas in the nontetrahedral 22 waters,
denoted “22b,” the empty sites lie on the same side. The six
different types of vertices are depicted in Fig. 1. Each vertex is

FIG. 1. A sketch of the different defects that are treated in our
lattice model. Labels for the defects are also shown in red (see text
for more details).

assigned a particular weight which is defined in the following
manner:

w‘22a′ ≡ wtetra
22 = ae, (1)

w‘22b′ ≡ wdistor
22 = a, (2)

w12 = w21 = b, (3)

w32 = w23 = c, (4)

w11 = d, (5)

wvacancy = f. (6)

Note that there are no explicit interactions between neighbor-
ing lattice sites in our model. However, entropic constraints of
sharing H bonds make it more likely, for example, that a pair
of neighboring sites is 23-32 rather than 23-23.

For simplicity, we take the weights to be symmetric between
incoming and outgoing bonds, although this is not the case in
real water. Thus, our model would not capture the asymmetric
properties of the directed network. As we will see later, this
assumption is very accurate for the correlations of the most
abundant water molecule in the network, namely, the 22
molecules. Furthermore, other network properties like the
statistics of closed loops also seem to be insensitive to this
assumption. The weight of a particular configuration C on the
lattice is given by

W (C) =
∏

i

w(i), (7)

where i runs over the vertices of the lattice.
There are five independent parameters in the model setting

a = 1. These parameters depend on pressure and temperature.
At normal temperature and pressure, the values of three of
these parameters, b,c,d [relative to the weights of the 22-
type molecules, (1 + e)], such as to get the correct relative
proportions of 2-, 3-, 4-, and 5-coordinated molecules in the
liquid. This method does not allow one to determine the
tetrahedrality factor e, but we observe that the statistics of
6 rings (studied in Sec. III C below) depend on the relative
weights of tetrahedral and nontetrahedral 22s. Based on this,
we have set e = 1.5 on the Bethe lattice and e = 2.5 on the
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FIG. 2. The (a) Bethe and (b) Husimi networks.

Husimi lattice for normal temperature and pressure. Other
results do not seem to depend sensitively on the precise relative
weights of tetrahedral and nontetrahedral molecules.

B. Recursion relations on hierarchical lattices

In this paper, we calculate the properties of our model on
two infinite-dimensional hierarchical lattices, the Bethe and
Husimi lattice generalizations of the triangular lattice, shown
in Figs. 2(a) and 2(b) respectively. We now begin our analysis
by explaining the procedure of solving the network properties
on the Bethe lattice [Fig. 2(a)]. We begin by writing recursion
relations for the restricted partition functions at level (n + 1)
in terms of the parameters at level n [54]. One needs to find
the set of conditional partition functions which are sufficient
to calculate all properties on the lattice at level n. For the
Bethe lattice in Fig. 2(a), it suffices to condition on the three
orientations of the bond and the three states of the bond (namely
outgoing bond, incoming bond, and empty). Let us call the
restricted partition function at level (n + 1) conditioned for the
bond with the orientation j (= 1, 2, 3) in state B as Zn+1

j (B).
This can then be expanded as a function of the set of {Zn

i (b)}

at level n,

Zn+1
j (B) =

∑
C ′

W (C ′) = f
({

Zn
i (b)

})
, (8)

where the sum over C ′ includes only the configurations where
the bond at level (n + 1) of orientation i is in state B. An
explicit example of the function f for the Bethe lattice is given
in Eq. (10) below.

An observable at level (n + 1) can then be calculated from
the knowledge of {Zn

i (b)}. Deep inside the lattice when n

is large, the values for the observables converge to constant
values, which are then the mean-field equilibrium predictions
for the observables. On the Bethe lattice, to know the weight
of a given set of local observables on a finite set of sites, it
suffices to know the probabilities of the bonds connecting the
set of sites to the rest of the lattice. For this reason, the set
of nine parameters {P n

i (b)}, where P n
i (b) is the probability of

finding a bond at level n of orientation i in the state b, suffices
to calculate all correlation functions. Deep inside the lattice,
the fixed point of the recursions governing these parameters is
enough to calculate all correlation functions.

In fact, the simple structure of the Bethe lattice allows
one to calculate these properties explicitly, by counting. For
example, in the normal liquid phase, knowing the probability of
finding an empty bond, r , for a given temperature and pressure,
the probability of finding a site of type 32 is 6

(5
2

)
r(1 − 2r)5,

which is the probability of finding one bond empty, three bonds
pointing out [probability (1 − 2r)], and two bonds pointing in
[probability (1 − 2r)], multiplied by the number of ways of
choosing the empty bond (6), and then choosing two out of the
five remaining bonds to be outgoing. Similarly, the probability
for a pair of neighbors connected by an empty bond to be types
ab and cd is given by (following similar reasoning)

P (ab,cd) =
(

5

a

)(
5 − a

b

)(
5

c

)(
5 − c

d

)

× (1 − 2r)a+b+c+dr10−a−b−c−d . (9)

For this reason, we refer to the Bethe network model as the
“simplest entropic network” for our model.

In terms of the restricted partition functions defined earlier,
P n

i (B) = Zn
i (B)/

∑
b Zn

i (b). At high temperatures, there is no
symmetry breaking in the network, and thus, in the high-
temperature phase, only three parameters suffice to describe
the state of the system, P n(b) ≡ P n

1 (b) = P n
2 (b) = P n

3 (b). Be-
cause of the symmetry between incoming and outgoing bonds,
P n(+) = P n(−) = pn, and P n(φ) = rn = 1 − 2pn (where φ

denotes an empty bond). In the symmetric phase, the recursion
equation for rn is (where pn = (1 − rn)/2):

rn+1 = 6aep4
nrn + 24ap4

nrn + 30bp3
nr

2
n

+ 10cp5
n + 20dp2

nr
3
n + f r5

n. (10)

For the symmetry-broken low-temperature phase, one needs to
analyze three interdependent recursion equations, one for each
bond orientation.

The fixed point of the full recursion relations shown in
Eq. (8) gives the bulk behavior of the network. At low
temperatures, the fixed point of r given by the recursion
Eq. (10) becomes unstable to orientation perturbations, and the
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symmetric phase becomes metastable. Three new stable fixed
points develop, each breaking the orientational symmetry in
one of three ways. In the Landau free energy, this corresponds
to the new minima developing in the free energy surface. The
phase transition occurs when the free energy of these minima is
lower than the free energy of the symmetric phase. This phase
transition will be explored in Sec. V.

The regular six coordinated Husimi network is shown in
Fig. 2(b). In contrast to the Bethe lattice, which includes no
loops, the Husimi lattice is a better local approximation to the
network structure in water because it takes into consideration
three loops, which correspond to clusters of three molecules
within bonding distances of each other. We shall see that
the inclusion of three loops improves the statistics of certain
quantities, such as loops, especially on the Husimi network.
The Husimi network can be solved in a similar way to the
Bethe lattice, by solving for the fixed point of the minimal
set of parameters. On the Husimi lattice, the minimal set of
parameters is the probabilities of all states of each of the three
kinds of elementary triangle, and thus is a set of 3×33 = 81
parameters. The set of 81 recursion relations can then be solved
and the calculation of various network properties proceeds in
a fashion similar to the Bethe lattice.

C. Temperature and pressure dependence of the vertex weights

In order to construct the phase diagram for the lattice model
and to explore the changes in network properties as a function
of temperature and pressure, the weights of the lattice sites
need to be modified accordingly. We choose the simplest
interpolation of the dependence of the parameters of our model
on temperature and pressure:

wi(T ,P ) = wo
i exp [−(εi + P ′vi)/T ] (11)

= wo
i exp [−(hi + Pvi)/T ], (12)

where the prefactor wo
i , the vertex enthalpies at atmospheric

pressure hi (= εi + P0vi , where εi are the vertex energies
and P0 is atmospheric pressure), and the local volumes vi

are chosen to be independent of temperature and pressure.
P ≡ P ′ − P0 denotes the difference of the actual pressure P ′
from atmospheric pressure. hi are chosen such as to emulate
the simulation data on the variation of the fractions of i-
coordinated molecules with temperature [38]. The simulations
find that four- and five-coordinated molecules decrease in the
same proportion with increasing temperature, while two- and
three-coordinated molecules proportionately increase. For the
rest of the paper, we work in the variable P . The units of
temperature and pressure are arbitrary, and we have chosen to
set T = 1 for room-temperature ambient pressure to be P = 0.

The local volumes vi were assigned using a strategy adopted
from a previous study by Sastry et al. [31]. These local volumes
have the following functional form:

vi = 1.0 + 0.1nH
i + 0.5δi,‘22a′ + 5δi,void , (13)

where nH is the total number of hydrogen bonds of the
molecule, and the Kronecker δi,‘22a′ and δi,void terms account
for the fact that locally tetrahedral configurations and voids
in the fluid (considered as units) have larger volumes. The
rationale behind the functional form of the local volumes is

that, first, tetrahedral molecules occupy higher volume than
nontetrahedral molecules; second, the volume increases with
increasing nH ; and last, the void volume should reproduce the
physical observation that the density of water decreases with
T at high temperature. The prefactors are arbitrary and do not
have any qualitative effect on the results that we report later.

III. NETWORK PROPERTIES AT ROOM TEMPERATURE

In the next two sections, we present results for properties
of the liquid phase in our model. In this section, we study
the properties at room temperature and pressure, and in the
next section, we discuss how they vary with temperature and
pressure.

In this section, we illustrate the correlations on the network,
those between different bonds and well as those between the
different network sites, emphasizing the consistency between
what we observe for the 22 molecules and the atomistic AIMD
(ab initio molecular dynamics) simulations. We begin by
discussing our results on the structural correlations between the
water molecules and defects and then also show our analysis on
the orientational correlations that exist on the lattice. We also
discuss the properties of different types of loops formed in our
model and compare them with data from atomistic simulations.

A. Structural correlations on the lattice

The correlations between different molecule types are de-
termined by constructing radial distribution functions between
different types of water molecules. The radial distribution
function g(r) is defined by the following equation:∫ r2

r1

g(r)r2dr = 1

4πρ

〈∑
i

Ni
r1,r2

〉
, (14)

where Ni
r1,r2

is the number of water molecules between the
distances r1 and r2 from the molecule i, and the sum is over all
the water molecules in the system. Similar radial distribution
functions can be defined for specific pairs of molecule types.
For example, g22,11(r) measures the correlations between a
water molecule of type 11 at a distance r from a molecule of
type 22. An average over all types will be denoted by ∗, and
thus g22,∗(r) counts the molecules of any type at a distance r

from a molecule of type 22, while g∗,∗(r) is the same as g(r)
defined above. Gasparotto et al. [38] determined the radial
distribution functions for the most common type of defects in
order to study the structural correlations in the network. One
of the interesting and important findings of that study was that
different types of defects have varying propensities to cluster
with each other in the hydrogen-bond network.

It is interesting to examine to what extent our mean-field
network models are able to predict such features. A comparison
between the atomistic and lattice models is also useful because
it clarifies the nontrivial features in the former that are not
captured by the latter, such as intermolecular interactions that
are not included in the simple lattice models. In order to com-
pare the atomistic results with our network models, we convert
the atomistic radial distribution functions to information on the
local network connectivity on the lattice.

The comparison between the atomistic data and the lattice
model is achieved by finding a mapping between shells in the
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FIG. 3. The water-water glatt (r) used to define the bonding and
interstitial regions.

atomistic g(r) to connectivity on the lattice. We thus integrate
the atomistic g(r) to get the average densities in three regions:
The bonding shell, the first interstitial, and the second shell.
The bonding shell is defined as the first interval [r1,r2], starting
out from the origin where g(r) > 1. See Fig. 3 for more
details. The bonding shell represents neighboring molecules
which are directly hydrogen bonded to the central molecule.
Thus, on the lattice, these pairs of molecules correspond to
neighboring nodes connected by a single hydrogen bond. The
first interstitial is the first interval [r2,r3] where g(r) < 1.
On the lattice, this corresponds to neighboring molecules
which are connected to the central molecule by an empty
bond. Finally, the second shell is the interval [r3,r4] where
g(r) > 1, and these are molecules connected to the central
molecule by two hydrogen bonds except those connected by
two interstitials.

The normalized discrete ga,b(ri) in an interval [ri,ri+1] is
given by

ga,b(ri) =
∫ ri+1

ri
ga,b(r)r2dr∫ ri+1

ri
r2dr

. (15)

On the lattice, we obtain ga,b(ri) at various regimes by counting
the average number of b lattice sites at various states of
connection to an a site. On the lattice for a given state of

connection, we can calculate the correlation Ca,b(r) which
measures the probability of finding a and b lattices at a distance
r away from each other. On the lattice, r of course is not a
Euclidean distance but corresponds to a state of connection.
This correlation is computed from knowledge of the restricted
partition functions deep inside the lattice. The total number
of sites at distance r from an a-type site is denoted as Na(r).
Note that this number can vary for different sites: For example,
a 11 site has four interstitial neighbors while a 22 site has only
two. We also define N (r) ≡ ∑

a ρaNa(r). The pair correlation
function on the lattice is then given by

glatt
a,b(ri) = Na(r)Ca,b(r)∑

b Ca,b(r)N (r)ρb

. (16)

Figure 4(a) shows the reconstructed discrete radial distribu-
tion functions extracted from the atomistic simulations using
Eq. (15). In particular, we focus the discussion on g22,X

since, as mentioned earlier, atomistic simulations indicate that
the 22 sites are the most populated in the hydrogen bond
network. These radial distribution functions show the tendency
of different types of defects to cluster with each other. It can
be seen, for example, that unlike all the other types of defects,
molecules of type 11 are most common in the interstitial region,
in a state where they are not bonded with the central molecule.
Interestingly, 23 and 32 sites have the largest propensity to
cluster around 22 sites, followed by 22, and then finally 12
and 21, in the bonding shell region. The right panel of Fig. 4
shows the pair correlation functions obtained from the Bethe
lattice again for g22,X. We see that the correlation functions
constructed on the Bethe lattice reproduce essentially all the
features that are observed from the atomistic simulations such
as the enhanced population of 11 sites in the interstitial regions
and the clustering of different types of defects. Thus, at least
for the 22 molecules, no intermolecular interactions with other
kinds of molecules need to be included in our model to
reproduce the qualitative trends observed in the g(r). This is an
important result since it shows that the correlations observed
in the atomistic simulations emerges from entropic effects.

Besides the g22,X pair correlation functions, we also ex-
amined distributions associated with other types of defects.
In Fig. 5, the RDFs for the 21 and 12 water molecules are
shown (g21,X and g12,X). While there are some trends that are

FIG. 4. The glatt (r) of various types of molecules around a generic molecule (a) from ab initio data (b) on the Bethe lattice. The r axis has
been scaled such that the position of the first peak is at unit distance.
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FIG. 5. The glatt (r) for various types of molecules around a 21 molecule in panels (a) and (b), and a 12 molecule in panels (c) and (d).
Panels (a) and (c) are plotted from ab initio data, while panels (b) and (d) are results for a Bethe lattice. The r axis has been scaled such that
the position of the first peak is at unit distance.

reproduced by our models, the agreement in the correlations are
not as favorable as those observed for g22,X. More specifically,
we see that for the 21 defects, the ordering of the 23, 12, and
11 defects in the first shell, and that for the 12 defects, the
ordering of the 32, 22, and 12, are reproduced by the lattice
model. However, the main systematic features not reproduced
are the difference between the curves for the 12 and 21 and also
that between the curves for 23 and 32 in the interstitial region.
This feature is also not reproduced in the Husimi lattice g(r)s;
refer to the Supplemental Material [55] for details. Perhaps a
part of the reason for these discrepancies is that the weights
of our model are symmetric between 21 and 12 and between
23 and 32. It might also be that these asymmetrical differences
are a nontrivial chemical effect which cannot be captured by
a simple mean-field vertex model and that one would have
to include intermolecular interactions among the pairs 21-12,
21-21, 21-32, and 21-23.

Despite the differences between the atomistic simulations
and our lattice models, we note the concentration of 12, 21,
23, and 32 water molecules in room temperature water is much
smaller compared to the canonical two-in–two-out molecules.
Furthermore, as we will see shortly, the directional correlations
within short loops that we discuss in the next section are not so
sensitive to the presence of defects. In addition, the variation
of macroscopic properties across the phase diagram are mostly

dominated by the correlations between the 22 and other types
of defects, which are well captured by our model.

Besides the correlations between water molecules, it is also
interesting to examine the behavior of the empty sites with
each other as well as with water molecules. In particular, we
can construct the radial distribution function between these
empty sites which are essentially cavities or voids in a real
network with other sites in the lattice. Figure 6 shows the pair
correlation function associated with these cavities. Perhaps not
surprisingly, we see some manifestation of the hydrophobic
effect in the simple lattice model since the empty sites have a
tendency to cluster with each other to form larger cavities. We
also observe that there is a preference for undercoordinated 12
and 11 water molecules to cluster closer to the cavities.

B. Orientational correlations on the lattice

Besides the structural correlations, it is well known that
orientational correlations in water can be quite long range, on
the order of 1–2 nm. In fact, recent atomistic simulations by
Galli and coworkers examined the orientational correlations
in water (such as dipolar correlations) and showed that these
are longer ranged than the density-density correlations [56].
We can examine the directional correlations of the H-bonds on
the Bethe and Husimi lattices using a transfer matrix approach
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FIG. 6. The glatt (r) of various water molecules around a void
or cavity (represented on the lattice as an empty site), at normal
temperature and pressure. The r axis has been scaled such that the
position of the first peak is at unit distance.

[51]. A transfer matrix M is defined through the formula

M(xn,xn+1) = P (xn+1|xn) (17)

That is, the matrix element M(x,y) gives the probability that
a hanging bond at level n + 1 is in state y given that the bond
at level n is constrained to be in state x. P (x|y) is calculated
by constraining the two bonds to be in the required states and
averaging over the other hanging bonds, which can be done
through the knowledge of the restricted partition functions.

Higher powers of M then give

Mk(a,b) = P (xn+k = b|xn = a). (18)

That is, they give the probability of finding a bond in state b

at a distance k away from a bond in state a. For large k, the
probability P (xn+k = b|xn = a) approaches the value P (b),
since the dependence on the state at level n dies off.

We study the correlations between bonds separated by
straight lines on the Bethe and Husimi lattice, since these show
the strongest correlations. The bond-bond correlations are of
two kinds: orientational and nonorientational. Orientational
correlations manifest as correlations between the direction-

alities of two H bonds separated by a distance k, that is,
their propensity to be parallel or antiparallel. Nonorientational
correlations (related to density-density correlations) neglect
the directionality of the hydrogen bonds and show up as the
correlations between the occupation states of two bonds in the
network that could either be empty or both be occupied.

Figure 7 shows P (xk|x0)/P (xk) on both the Bethe and
Husimi lattices where the bond xo is constrained to be occu-
pied. This quantity goes to 1 as k becomes large, as explained
above. It can be seen from both the figures that the orienta-
tional correlations are longer ranged than the nonorientational
correlations. This is especially so on the Husimi lattice, which
is to be expected as a larger number of loops on the lattice
allows orientational correlations to propagate. The properties
of the loops will be discussed next.

C. Properties of loops or rings

An important feature of the topology of the H-bond network
in water is the distribution of the various types of closed rings
or loops [42,43,57]. The closed rings are also characterized
by specific directional correlations, which have important
implications on the underlying topology of the network. There
have been several studies that have examined the properties of
closed rings and wires in the context of studying the properties
of the bulk water [57], proton transfer in water [43], and also
hydrogen bond networks around biological systems [48,49].
We now examine some network properties of loops on the
Bethe and Husimi lattices.

One can calculate various properties of loops on the Bethe
and Husimi lattices despite the pure Bethe lattice not having
loops of any kind and the Husimi lattice not having loops of
size >3. One does this, as described below, by deforming the
lattice by hand. By doing this one, can study properties of loops
of a given size, but one cannot calculate, say, the distribution
of sizes of loops, as the loops are constructed by hand.

The calculation of the properties of a loop with a particular
size in the lattice models is done as follows: One deforms the
lattice locally to have the structure of the desired loop, as shown

FIG. 7. The probability of finding a bond in a state x a certain distance away from an occupied bond, relative to the equilibrium probability
of finding a bond in a state x. Panel (a) shows the results on the Bethe lattice and panel (b) shows those on the Husimi lattice. It is seen that the
occupied-empty correlation is shorter ranged than the directional correlations between occupied bonds.
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FIG. 8. Two kinds of 4-loops (of type 421) constructed from
elementary triangles on the Husimi network: (a) an open loop and
(b) a loop with one interstitial.

in Fig. 7(a). In this case, the triangle on the original Husimi
lattice shown in Fig. 4(b) is distorted to create a loop of length
4. There are various other ways a loop can be constructed on the
lattice. Figure 8(b) shows another 4-loop, where it is required
that vertices 2 and 4 should be within an interstitial distance of
each other but not bonded. This loop is thus more compressed
than the one in Fig. 8(a). Hence, adding more interstitials is
equivalent to considering a more compressed geometry of the
loop. On our lattice, open loops are those that do not contain
any interstitial interactions. Under the assumptions that these
loops are rare in the thermodynamic limit, one can calculate the
weights of various loop configurations by summing over the
configurations of the rest of the lattice consistent with the loop,
using fixed points of the recursion relations on the appropriate
mean-field network.

Bergman conducted molecular dynamics simulations of
liquid water and used them to examine some interesting
topological properties such as rings and specific hydrogen bond
patterns within them [42]. Following this work, we use the
notation ldm to classify the various types of loops. l denotes the
length of the loop, d denotes the absolute difference between
the number of anticlockwise and clockwise H bonds along the
loop, and m denotes the number of vertices on the loop where
anticlockwise and clockwise bonds meet. The loops shown in
Figs. 8(a) and 8(b) are thus of type 421. Bergman calculated
the frequencies of loops for all values of d and m for l = 4
to 9. Here we compare our results for l = 4 and l = 6 with
Bergman’s and show the analysis of some other loops in the
Supplemental Material [55].

Table I compares the proportions of the various types
of l = 4 loops calculated for open loops on the Bethe and
Husimi lattices and 1-interstitial loops on the Husimi with the
atomistic simulations of Bergman. It can be seen that the Bethe
lattice, which is the simplest entropic model, does not capture
the frequencies of the 4-loops very well. The best match is
with open loops on the Husimi lattice, which signals that the

triangular Husimi lattice captures loop structures better than a
simple entropic model. Also, the fact that open loops, for types
421 and 440, perform better than 1-interstitial loops suggests
that 4-loops of these types in room-temperature water have an
open structure.

Atomistic based simulations have shown that both ice and
liquid water are dominated by a large number of six-membered
rings [43,57]. We thus also examined the properties of the
6-loops on both the Bethe and Husimi lattice. Table II compares
the loop statistics for l = 6 loops. Again, it is seen that the
best prediction comes from the Husimi lattice, whereas the
Bethe lattice does not capture the qualitative trends in loop
populations. Comparing the open loops to those with two
interstitials, we find that the latter reproduces the properties
of the loops more consistently compared to the atomistic
simulations. Thus unlike the 4-loops, our analysis suggests
that the 6-loops with more interstitials are more likely to be in
a compressed geometry.

It is also interesting to examine whether the network
properties of the loop are sensitive to the presence of defects.
The last columns of Tables I and II show the open Husimi
lattice computed for type 22 molecules only. It is seen that
this does not affect the frequencies by much compared to the
Husimi open lattice with defects. This thus suggests that the 22
molecules are sufficient to obtain the loop frequencies and that
the other types of molecules play a smaller part in reproducing
the directional correlations within the loops.

The preceding analysis focuses on the properties of loops
at ambient temperature and pressure. Varying the weights
with the T and P as described earlier, we also examined the
variations in properties of the loops as a function of temperature
and pressure. Table III shows the fractions of various types
of 6-loops with two interstitials on the Husimi lattice at
three different values of (P,T ). Within the liquid phase, the
proportions of the loops do not seem to change significantly
with pressure and temperature. One explanation of this is that,
as described in the previous paragraph, that the proportions of
6-loops are mainly governed by 22 molecules, which do not
change significantly with temperature and pressure.

Besides the simulations of Bergman, a recent molecular dy-
namics study by Hassanali and coworkers was used to examine
the mechanisms of proton transfer in liquid water [43]. They
found that water molecules are threaded by closed rings with
specific directional correlations between them. They classified
the water molecules into three types: DD, which donates two
hydrogen bonds; AA, which accepts two hydrogen bonds; and
finally DA, which accepts and donates one hydrogen bond,
always within the ring. In these studies, it was found that most
closed loops or rings in the simulations were dominated by a
single DD-AA pair. Within the context of our analysis here
and compared with that of Bergmans, these loops correspond

TABLE I. Loop frequencies for 4-loops.

Type of loop Bergman Bethe open Husimi open Husimi 1-i Husimi open (only 22s)

401 0.17 0.20 0.081 0.10 0.08
402 0.12 0.37 0.25 0.43 0.25
421 0.50 0.40 0.5 0.37 0.5
440 0.21 0.028 0.17 0.094 0.17
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TABLE II. Loop frequencies for 6-loops.

Type of loop Bergman Bethe open Bethe 1-i Husimi open Husimi 2-i Husimi 1-i (only 22s)

601 0.12 0.217 0.219 0.102 0.130 0.129
602 0.089 0.122 0.114 0.204 0.073 0.068
603 0.005 0.005 0.005 0.023 0.003 0.002
621 0.25 0.219 0.219 0.204 0.263 0.266
622 0.13 0.0855 0.086 0.273 0.110 0.098
641 0.26 0.219 0.219 0.171 0.263 0.262
660 0.14 0.14 0.14 0.023 0.157 0.173

to those with the index m = 1. Since our lattice models are
also dominated by loops with a single DD-AA pair, this is
consistent with the simulation data. This analysis shows that
the existence of water wires in the hydrogen bond network can
easily be rationalized using simple entropic models and do not
require a sophisticated intermolecular potential.

IV. ANOMALIES OF WATER IN LATTICE MODEL

Up to this point in the paper, we have shown that at normal
temperatures there is a rich diversity of interesting network
correlations between sites on the lattice and within longer
range structures like loops. These features are also present in
atomistic simulations. We now move on to exploring the water
anomalies that occur by varying temperature and pressure and
also to understand the role of water defects in this regard.

We begin by first examining the variation of density as
a function of T predicted by our lattice model. In order to
compute the density, we assume that the total volume of the
liquid is given by a sum of local volumes. If the fraction of
voids is denoted by fvoid , the density is given by

ρ(T ,P ) = N (T ,P )

V (T ,P )
= 1 − fvoid∑

i vi

(19)

where the numerator results from the fact that the voids do not
count toward the total number of molecules, but they do count
toward the total volume, i.e., in the denominator. Recall that vi

are the local volumes which are given by Eq. (13).
Figure 9(a) shows the variation of density as a function of

temperature where we observe the density maximum at around
T ∼ 1.1. The right panel of Fig. 9(b) shows the variation in
the concentration of different types of water molecules in the
hydrogen bond network of our lattice model. The existence
of a density maximum can be attributed to the fact at lower
temperatures the number of tetrahedral 22 molecules which
have a higher local volume, increases, while the increase in

volume at higher temperature is attributed to the increased
number of voids and defects [31].

Our lattice model with defects allows us to examine the ori-
gin of the density maximum in terms of the local coordination
of different sites. The non-22 molecules included in our model
have a different volume from the nontetrahedral 22s, and a
different variation with temperature. Thus, the total volume of
the non-22 molecules has a different temperature dependence
from the 22s. In order to assess the importance of the inclusion
of the non-22 molecules, we also show in Fig. 9(a), in dashed
blue, the variation of density as a function of temperature
where all the non-22s were assigned the same volume as that of
nontetrahedral 22 molecules (the local volumes of tetrahedral
22s and the voids are still different from these, and hence we
still see a density maximum). We see here that there while
there is still a density maximum, the curve has shifted quite
significantly. Thus the location of the density maximum is
sensitive to the specific assignment of the volume of different
defects.

One of the other interesting anomalies of water is the
existence of a compressibility minimum as a function of
temperature [58]. The compressibility for water shows an
anomalous behavior as compared to a regular liquid since it
rises at low temperatures. The compressibility is the suscepti-
bility with respect to pressure and is defined as the following
derivative:

κ = 1

V

(
dP

dV

)
T ,N

. (20)

Figure 10 shows the compressibility against temperature.
The compressibility in our lattice model shows anomalous
behavior, rising at low temperatures. Unlike the density max-
imum, the position of the compressibility minimum is less
sensitive to the volume assigned to the defects - see dashed
blue line in Fig. 10. The physical origin of the compressibility
minimum of water has been discussed in the literature with

TABLE III. Loop frequencies for 6-loops at different temperatures and pressures.

Type of loop T = 1, P ′ = 0 T = 0.6, P ′ = 0 T = 1, P ′ = 0.5

601 0.130 0.130 0.130
602 0.073 0.074 0.073
603 0.003 0.003 0.003
621 0.263 0.264 0.262
622 0.110 0.109 0.110
641 0.263 0.262 0.264
660 0.157 0.156 0.157
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FIG. 9. (a) Density vs temperature (solid line) and density vs temperature when the defects are assigned the same value as the nontetrahedral
22s (dashed line). (b) The variation of the concentrations of various molecule types with temperature.

several interpretations. In the two-critical-point scenario, there
is a second-order phase transition at some temperature Tc < 1
and pressure Pc, between more tetrahedral and less tetrahedral
phases. Thus, the correlations between tetrahedral regions
diverge at the critical point, and the compressibility rise at
low temperatures is a result of the such increasing correlations
as the temperature is decreased. However, in our model, we
find that the correlation length between tetrahedral 22s shows
only a very weak increase as the temperature is lowered. This
is inconsistent with the prediction of formation of tetrahedral
patches as the temperature is lowered, but consistent with the
phase diagram obtained in the next section, which does not
show a second critical point in the supercooled region.

Another explanation for the compressibility anomaly was
put forward by Sastry et al. [31], who argued that a negatively
sloped temperature of maximum density (TMD) line can cause
a negatively sloped compressibility curve at low temperatures,
even in the absence of a second critical point. To test whether
our model exhibits behavior consistent with this scenario, we
show in Fig. 11 the TMD and temperature of minimum com-
pressibility (TmC) lines in the P − T plane. At atmospheric
pressures, the TMD is positively sloped. At high pressures
above P ≈ 1.4, the two lines do indeed cross and the TMD

FIG. 10. Compressibility vs temperature (solid line) and com-
pressibility vs temperature when the defects are assigned the same
value as the nontetrahedral 22s (dashed line).

becomes negatively sloped, as required by thermodynamic
consistency. As we report in the next section, we find that our
models exhibit a phase diagram without a liquid-liquid critical
point. The behavior of the TMD and TmC lines reinforces
the point that the TmC can arise even in the absence of a
liquid-liquid critical point. It should be noted here that recent
work has indicated that the increase in compressibility seen
in singularity-free models on lowering temperature does not
seem to be sharp enough to explain the experimental data on
water [59].

V. PHASE DIAGRAM OF THE NETWORK

We now discuss the phase diagram that we obtain in our
model. The phase transition lines are calculated by determining
the fixed points of the recursions discussed in Sec. II, and
finding the crossing points of the free energies associated
with the two phases. The phase diagram for our model on
the Bethe network is shown in Fig. 12. It shows two phases
with a symmetry-breaking transition between them. In keeping
with terminology in the literature and the fact that tetrahedral
molecules have higher local volumes, we call the tetrahedral

FIG. 11. The lines of the temperatures of maximum density
(TMD, blue or dark gray line) and the temperatures of minimum
compressibility (TmC, red or light gray line) in the P − T plane.
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FIG. 12. (a) The phase diagram calculated on the Bethe lattice
network. The blue line denotes the line of first-order phase transi-
tions. (b) The three different orientations of tetrahedral 22s, which
correspond to the three symmetry-broken LDL phases.

phase a “low-density liquid” (LDL) and the liquid phase the
“normal liquid” (NL), which has a higher density.

The liquid-gas transition is not present in our Bethe lattice
model because we only take into account a few kinds of defects,
which are relevant at room temperatures and below. As the
temperature is increased, defects with lower bonding become
relevant to the physics. On the Bethe lattice, molecules with
zero bonds or one bond would be important for a liquid-gas
transition, as these allow the formation of small isolated
clusters of water on this lattice. However, this is beyond the
range of our present study.

The free energy change associated with this crossing has
a first-order discontinuity and hence the LDL and NL phases
are separated by a first-order phase transition. Looking at the
densities of various molecule types across the phase transition,
we see that the density of all molecule types changes discon-
tinuously across the transition, which confirms the first-order
nature of the transition. We find that the phase transition is
everywhere first order, and there is no critical point.

The high-temperature phase breaks no symmetries and is
characterized in detail in the next section. At low temperatures
and low or moderate pressures, there is a first-order transition to
a tetrahedral liquid phase in which almost all the molecules are
of the tetrahedral 22 type. There are three possible tetrahedral
orientations of the 22s, which are shown in the bottom panel of
Fig. 12. Subsequently, there are three possible orientations of
the symmetry-broken phase. The model on the Husimi network
also shows only a first-order phase transition.

Similar models have been studied in the past, with some
reaching different conclusions about the structure of the phase
diagram. The model studied by Sastry and coworkers [31],
mentioned in the introduction, has directional hydrogen bonds
with configurations weighted by the number of hydrogen bonds

but no preference for tetrahedrality in the local geometry.
They do not observe a phase transition and furthermore do not
find a critical point. Sastry et al.’s model is similar to be our
model with e = 1, where we have distortion but no preference
for tetrahedrality. Setting e = 1 in our model, we also find a
phase diagram without an LDL phase. Thus, with distortion
but without a preference for tetrahedrality, there is no phase
transition. We can also study our model without distortion,
setting b = c = d = 0, and study the effect of tetrahedrality
alone. In this case, we find that there is a first-order phase
transition between an NL phase for low e and an LDL phase
for high e.

It is thus evident that the phase transition is caused as an
effect of cooperativity between H bonds on the same molecule
(our interaction e). This interaction has been included in two
different ways in the literature on mean-field lattice models of
water. Franzese and Stanley [32] modified the model of Sastry
discussed above to add a external field that is proportional to
the density of particles in a broken-symmetry state and whose
strength is interpreted as the cooperativity interaction. They
found a phase diagram with a liquid-liquid critical point, in the
case when the cooperative interaction is much smaller than all
the other interactions in the model, in agreement with Monte
Carlo simulations of a related model [33].

Heckmann and Drossel [60], by contrast, add the coopera-
tive term as an internal interaction in the Hamiltonian, which is
solved by the Curie-Weiss mean-field method. This results in
a first-order liquid-liquid transition without a critical endpoint.
The same result was obtained by Franzese et al. under a similar
approximation [61,62]. As our Bethe lattice treatment includes
the cooperativity effect as an internal coupling, the phase
diagram we obtain, shown in Fig. 12, is consistent with the
results of Heckmann and Drossel.

VI. CONCLUSIONS

In this work, we have made first steps in the development of
a lattice model of the hydrogen bond network in water, aimed at
making a stronger connection with information obtained from
atomistic simulations. We present two lattice models that are
analogous to graph-theoretical models used in the literature for
applications in the understanding of networks. Specifically, our
water networks are built as vertex models and studied on the
six-coordinated Bethe and Husimi lattices which have been
extensively used in the statistical physics community.

The input for our model is inspired by recent atomistic
simulations of water showing that two thirds of water have
two incoming and two outgoing hydrogen bonds, while the
rest consists of local coordination defects [38]. Tetrahedral
waters and defects have a tendency to cluster with each other
in the network. Our models include a description of not only
tetrahedral water molecules but also the important coordination
defects. Comparing the pair-correlation functions on the lattice
to those obtained from the atomistic simulations, we show that
our simple models are able to capture many of the important
physics of the correlations associated with the tetrahedral
waters. This demonstrates that the clustering with respect to
the most dominant waters in the network is driven purely by
entropic effects.
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Besides examining local coordination defects and the
correlations between them and tetrahedral waters, we also
studied longer range correlations associated with the hydro-
gen bond patterns in closed loops. These types of direc-
tional correlations play an important role in understanding
the statistical properties of water or proton wires in the
hydrogen bond network. Interestingly, we can show that the
directional correlations within closed loops predicted from
some of our models are also consistent with results from
previous atomistic simulations. Furthermore, we also show
that for our lattice models, these types of network correlations
are mostly reproduced by the presence of tetrahedral water
molecules.

The phase diagram of our lattice model reinforces the
singularity-free scenario proposed by Sastry and coworkers:
We do not find any existence of a critical point. The fact that
this emerges from a model where the microscopics have been
adequately built in gives more confidence to this observation.
In addition, our model also captures some of the anomalies
of water, although, as mentioned in the previous section, the
increase in compressibility seen in singularity-free models

might not be sharp enough to explain the observational data
on water [59].

As alluded to earlier in the introduction, part of our mo-
tivation of developing this model is to delve deeper into the
dynamics of the hydrogen-bond network of water. In particular,
our models provide a good starting point for understanding the
mechanisms associated with network reorganization at equi-
librium or approaching equilibrium after a perturbation. There
have also been various suggestions from atomistic simulations
of liquid water of long range and timescales associated with
network relaxation involving structures such as rings or loops
or wires [43–46,49,63]. Since dynamics is ultimately driven
by the rare fluctuations, the movement between different local
coordination defects is also likely to play an important role.
Our lattice model captures many of these microscopic details
and work is currently under way to describe dynamics on these
network models.
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