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Thermodynamics of non-Markovian reservoirs and heat engines
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We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto
cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely
an isothermal process using a Markovian reservoir followed by an adiabatic process. From second law of
thermodynamics, we show that the maximum amount of extractable work from the state prepared under the
non-Markovian dynamics quantifies a lower bound of non-Markovianity. We illustrate our ideas with an explicit

example of non-Markovian evolution.
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I. INTRODUCTION

The second law of thermodynamics is one of the unshaken
pillars of modern physics. The Kelvin-Planck statement of the
second law of thermodynamics states that the work cannot
be extracted from a single bath (or different baths with same
temperature) in a cyclic manner. Maxwell introduced the idea
of a demon which can create a nonequilibrium state from
an equilibrium state to extract work [1,2]. The extraction of
work from a single bath with the help of the demon can also
be modeled using single molecule Szilard engine [3]. This
long-term puzzle of extracting work from a single bath in a
cyclic manner was solved by Landauer by showing that true
cyclicity is achieved only when the demon’s memory is also
erased. Landauer’s erasure principle showed that the erasure
of one bit of memory increases the entropy of the universe by
at least kg In 2, where kp is the Boltzmann constant [1,4-6].
This remarkable statement brings out an intriguing connection
between information and thermodynamics in both classical and
quantum regimes.

Another direction of attempts had been made to understand
the validity of the second law in the quantum regime. It has
been shown that there can be an apparent violation of second
law in different heat cycles if we use quantum features such
as negentropy [7], quantum correlations such as entanglement
[7-10], coherences [11], and squeezed thermal bath [12].
But once the preparation costs for these quantum features
are included, then these apparent violations vanish [13,14].
However, a more general framework of second law of thermo-
dynamics may be needed while working in the quantum regime
[15] or involving frictional effects [16,17].

At this point, it is interesting to study the extension of
thermodynamics to quantum systems where the environmental
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effects are important [18]. When the system is in contact
with an environment, the dynamics of the system may not be
unitary and one needs the approach of open quantum systems.
The interaction between the system and bath can affect each
other and in many cases, the Markov approximation is valid,
which states that the environment recovers instantaneously as
compared to the large timescale associated with the dynamics
of the system, resulting in continuous flow of information
from the system to the environment [19]. However, there are
many scenarios where the Markov approximation is not valid
[20-22] and a back flow of information from the environment
to the system can take place. These are the typical signatures
of non-Markovian evolution [18,19,23,24].

This work is focused on the properties of quantum heat
engines mainly under non-Markovian baths. Properties of
heat engines under Markovian environment have been well
studied in the past [25]. The thermodynamic perspective of
non-Markovian effects has attracted wide interest in recent
years [26-36]. Non-Markovian effects can be used to extract
work from a single bath [26] or can be used to exceed
classical Carnot bound [27], showing an apparent violation
of the second law. These apparent violations are due to
the memory present in the bath. There are also connections
among emergence of non-Markovianity, system-environment
interaction, and violation of Landauer’s bound [30]. Moreover,
even if a non-Markovian evolution relaxes the system to an
equilibrium state, the equilibrium state may not be invariant
under time evolution [19,35,37]. Negative entropy production
rate due to non-Markovian dynamics drives the system away
from equilibrium [34]. The system-environment correlations
can take a part of the environment out of equilibrium [28]. The
memory associated with a non-Markovian bath can have an
information theoretic interpretation and it can drive the system
away from equilibrium. But the second law of thermodynamics
suggests that there is always a cost to create a nonequilibrium
state from an equilibrium state.

In this work, we use non-Markovian effects which drive
the system away from equilibrium, as a resource to extract
work from an Otto cycle. Understanding the thermodynamics
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of non-Markovian evolution for which the equilibrium state is
not an invariant state is a nontrivial task since the integrated
entropy production can also be negative [35]. For such an
evolution, we estimate the minimum thermodynamic cost for
the non-Markovianity. By accounting the minimum cost for
non-Markovian effects, the Otto cycle becomes equivalent
to a Carnot cycle. Different models of quantum Otto cycle
have been studied widely in recent years [12,27,38—44]. Otto
cycle is generally an irreversible cycle with efficiency less
than the Carnot value. The main source of irreversibility is
due to the temperature difference between the system and the
bath during the thermalization processes. If the temperature
gradient approaches zero in the starting of a thermalization
process, then the efficiency approaches Carnot value while the
work output goes to zero. On the other hand, we show that using
specific non-Markovian dynamics, one can extract nonzero
work without irreversible entropy production in thermalization
process. In this case, the maximum achievable efficiency is
Carnot efficiency. Moreover, this work extraction is a finite-
time process and hence it has a finite power output. But the
bath correlations may not vanish in a finite time, even though
the system comes back to its initial state after each cycle.

The paper is organized as follows: In Sec. II, we introduce
the four-staged Otto cycle. In Sec. I1I, we discuss heat and work
in terms of relative entropies and further show that work can be
extracted even when the temperatures of the non-Markovian
baths are equal. We solve this apparent contradiction (with
Kelvin-Planck statement of second law) by redefining the heat
exchanged between the system and the baths. We illustrate
these ideas with an example of a non-Markovian dynamics
in Sec. IV. Section V is devoted to conclusions and future
directions.

II. MODEL

The conventional classical Otto cycle consists of two
isochoric (constant volume) processes and two adiabatic pro-
cesses and the working medium is taken to be an ideal gas. Heat
is exchanged with the baths during the isochoric processes and
work is done during the adiabatic processes. In the quantum
model of an Otto cycle, the working medium is a quantum
system, say, a spin-1/2 system [38,39]. Analogously to con-
stant volume process in a classical Otto engine, for a two-level
system, the energy-level spacing is fixed during the quantum
isochoric process. During the isochoric process, the system is
connected to a reservoir and hence we need the approach of
open quantum system to study the evolution of the system.
Depending on the nature of the reservoir, the evolution can
be Markovian or non-Markovian. In this section, we discuss a
general framework of a four-staged Otto cycle irrespective of
Markovian or non-Markovian reservoirs. Further, in Sec. 111,
we study the implications of using non-Markovian reservoirs
in a four-staged Otto cycle and illustrate these ideas with
an explicit example of non-Markovian evolution in Sec. IV.
Figure 1 pictorially represents four stages of an Otto cycle,
with a spin-1/2 system as the working medium.

Let us consider a two-level system with energy eigenvalues
w/2 and —w/2. If the density matrix of the system is a
thermal state corresponding to a temperature 7', then the
canonical probability for the system being in excited state is
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FIG. 1. A schematic representation of the quantum Otto cycle.
In Stages 1 and 3, the system is in contact with the hot and the
cold reservoir, respectively. The reservoirs can be Markovian or
non-Markovian. See the main text for details about the symbols used.

P = 1/[1 + exp (w/T)] with ground-state probability 1 — P,
where we set Boltzmann constant k3 = 1. The mean energy of
the systemis 2P — 1)w/2 = —(w/2) tanh (w/2T). In general,
for a two-level system, when the density matrix is diagonal in
the eigenbasis of the Hamiltonian, an effective temperature can
be defined such that the probability distributions are canonical.

Let us briefly review a four staged quantum Otto cycle
[38—40,42].

Stage I: Consider a spin-1/2 system, prepared in a density
matrix p., diagonal in the eigenbasis of the Hamiltonian H| =
(wn/2)o,, where wy, = yp B and o, is the Pauli matrix. Here y
is a constant and B is the constant magnetic field applied in the
z direction on the system. In this stage, the system is attached
to a hot bath of temperature 7}, for a time 7,. The final state of
the system is p;, which is diagonal in the eigenbasis of H;. The
effective temperature of the system at the end of the process
is T) = —wy,/(2tanh~'(0,);), where (0,), = Tr[o,pp], i.e.,
on =exp(—H,/T,)/Trlexp(—H,/T;)]. The heat absorbed
from the hot bath is Q; = Tr[H(pr, — pc)]-

Stage 2: The system is then decoupled from the bath. The
magnetic field is varied from wj, to w. adiabatically such that
the final Hamiltonian at the end of Stage 2 is H, = (w./2)o;,
while the initial Hamiltonian was H; = (w;,/2)o; (0. < wp).
The density matrix (o) of the system remains unchanged
throughout this process. The work done in this process is equal
to the change in mean energy W; = Tr[p,(H; — H)]. Due
to work done by the system, the temperature of the system
changes; at the end of this process it becomes 7" = T, w./wy.

Stage 3: The system is then attached to the cold bath at
temperature 7, for a time 7. The Hamiltonian is fixed at H,
during the process. After a time 1, the system attains a state
P characterized by a temperature 7, = —w./(2 tanh (o)),
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where (0.). = Tr[o,p.], in other words, p. = exp (—Ha/T))/
Trlexp (—H»/T/)]. The heat rejected to the cold bath in this
caseis Q. = Tr[Ha(pc — pi)l-

Stage 4: The system is detached from the cold bath and
Hamiltonian is changed adiabatically from H, to H}, keeping
the density matrix (po.) unchanged. The work done in this
process is W, = Tr[p.(H, — H)]. The temperature of the
system at the end of the adiabatic process is given by 7} =
T wy/we.

In principle, the Stages 2 and 4 can be achieved instanta-
neously since (o,), and (o). are constants of motion in the
respective stages [45]. In Stage 1 and Stage 3, the respective
asymptotic state is an equilibrium state, i.e., lim; o T, = Tj,
and lim;,_,o 7/ = T,. The amount of heat that the system
absorbed from the hot bath after a finite time 7, is given by

= Le | _ On
On =~ (tanh[ZTJ tanh |:2Th/i|) (D

Similarly, the amount of heat rejected to the cold bath in a finite
time 7 is given as

= — 2 (tanh| 2 | — tanh | 2 2
0 == (w55 |~ [ ]). @

The work done by the systemis W = W, + W, = Oy, + Q..
Hence, we have

W = M(tanh[ De :| — tanh |:w—h,:|> 3)
2 271! 2T

The eigenvalues of the Hamiltonian H; and H, are
(wp/2,—wy, /2) and (w./2,—w./2), respectively. Therefore, the
canonical probabilities for the system being in excited state at
the end of Stage 1 and Stage 3 are P, = 1/(1 +exp [wi/T}])
and P, = 1/(1 + exp[w./T/]), respectively. The Eq. (3) can
be rewritten in terms of the excited state probabilities as

1 1
W= (@~ w")<1 Tl 1+ ewc/TJ>' @)
For a machine to work as an engine, the working medium
has to absorb heat from the hot reservoir, and a part of it has to
be converted to useful work by the system, and the remaining
heat has to be rejected to the cold reservoir. Hence, we should
have W > 0, Q;, > 0, and Q, < 0. This implies

We wp

— > —. 5
2T 5)
Therefore, the efficiency of the system is
w B T!
n=——=1-2Xg1-£ (©6)
O wp T,

When we use Markovian dynamics in Stage 1 and Stage 3,
to satisfy Eq. (5), we should have Tj, > T,.. Let us try to
explain it. In order to absorb heat from the hot bath, the
initial temperature of the system 7, in Stage 1 must satisfy
T,/ < T,. Similarly, to reject heat to the cold bath we should
have T > T/. Depending on Markovian and non-Markovian
reservoirs, the effective temperatures of the system at a given
time of the evolution may differ. For a Markovian reservoir, the
temperature of the system monotonically approaches the bath
temperature, therefore wehave 7)) < T, < T, and T > T >

T.. In other words, with Markovian reservoirs, the maximum
and minimum effective temperature attainable for the system
are T, and T, respectively. Hence, we have T, < T, < Tj <
Tj,. Therefore, we have n < 1 —T//T, < 1 — T,/ T} (Carnot
efficiency), establishing the consistency with the second law
of thermodynamics. On the other hand, with non-Markovian
effects, the temperature of the system can attain higher values
than 7}, during the hot bath contact and, similarly, during the
cold bath contact, the temperature of the system can fall below
T.. This is because the temperature of the system may not
approach the temperature of the bath monotonically, and we
canhaveascenario 7, < T, < T;, < T,. Hence, the ratio of the
effective temperatures decreases, giving the possibility for the
system to attain an efficiency more than Carnot value. Next, we
show that Eq. (5) is satisfied using non-Markovian reservoirs
even when 7), = T,.

III. HEAT ENGINE WITH NON-MARKOVIAN
RESERVOIRS

Let us consider an example where the system in state p(0) at
time ¢t = 0 is attached to a bath of temperature 7. After a time
t, let the state of the system be p(¢). The Hamiltonian H of the
system remains unchanged during the evolution. We consider
the dynamics in such a way that the system asymptotically (in
time) reaches the equilibrium state p°l, corresponding to the
bath temperature T: p® =exp(—H/T)/Trlexp(—H/T)].
The heat flow between the system and the bath is equal to
the change in mean energy of the system. Therefore, the heat
exchanged between the system and the bath after a finite-time
tis

Q =Tr[p(t)H] — Tr[p(0)H]
= —T Tr[p(t)In p*] + T Tr[p(0) In p*]
T[S(e® D =S o DI+T (S, [o(®)]—S,[p(0)]),
@)

where the relative entropy is S(A||B) = —Tr[AIn B] — S,[A]
and the von Neumann entropy is S,[A] = —Tr[Aln A]. In
general, in an isochoric process, the system may not be in
equilibrium with the bath during the evolution, i.e., p(0) and
p(t) are nonequilibrium states in Eq. (7). If the final state is the
equilibrium state (o(¢) = p°9), then the quantity S(o(¢)|| %) +
SuLp(t)] becomes S, [p°?]. Suppose the dynamics of the system
corresponds to a completely positive, trace preserving (CPTP)
map &, then for any two density matrices p; and p,, we have
[46,47]

S(®:p1]|Prp2) < S(p1llp2)- ®)

For a Markovian dynamics ®,, we have (as &, 0% = p®, for
all 1)

S(@:p(0)[[ %) = S(p)I1p*) < S(eO)IP™), (9

a result that also follows from Spohn’s theorem [48]. So we
have S(p(1)]p?) — S(p(0)||p*Y) = AD < 0 for any Marko-
vian dynamics. But for a non-Markovian dynamics, for which
@, 0% £ p®, we can have AD > (. Now let us consider the
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cycle described in Sec. II. The heat exchanged between the
system and the hot and cold baths (Stages 1 and 3), respectively,
are

On = Tu[S(onlloy®) — S(ecllop)] + ThAS,,  (10)

Qc = T[S(pcllpc?) — S(pnll pg)] = T.ASs,  (1D)
where AS, = S,(or) — Sy(p.). Therefore, the work done is
W =T,[S(onllny") = S(eclloy)]
+ Te[S(pcll ) = S(onllof?)]
+ (T — TOLSo (o) — Su(pe)]- 12)
When 7, = T, = T, we have

W =T[S(pnllop) — S(pclliog’) + S(pcll ) — S(pnllng?)].
(13)

For Markovian dynamics, from Eq. (9), wehave W < 0,i.e.,no
work can be extracted when the temperatures of the baths are
equal. Thisis because ®, 0, = p,?and @, p;* = p?, where @,
and @/ are the maps corresponds to the evolution of the system
during Stage 1 and Stage 3, respectively. Therefore, from the
properties of CPTP map, we have S(o; 1 o, ) — S(pcllp,") < 0.
Similarly, we also have S(p.||pc?) — S(onllpe?) < 0 and hence
the total work given in Eq. (13) becomes negative, or the sole
effect of the cycle is that the net work is done on the system. On
the other hand, considering a class of non-Markovian dynam-
ics, for which the equilibrium state is not an invariant state,
we have &, qu * qu and @] ped £ pod. Hence we can have
SConlloy") = S(ocllpy) > 0 and S(ocllpe®) = S(oullpe?) > 0.
Therefore, for non-Markovian dynamics, we may get a positive
work, implying an apparent violation of the second law. Below,
we will argue that there is no violation of the second law
of thermodynamics in our set up, once we define the actual
amount of heat exchanged by non-Markovian heat baths by
considering the cost for non-Markovianity.

To characterize non-Markovian effects, we further simplify
this problem by attaching the system, which is in a thermal
state at temperature 7 (7T, ), to the hot (cold) bath at temperature
T, (T,) at the beginning of the thermalization process. In this
case, the states do not evolve under Markovian dynamics as
they are already in equilibrium with the baths. On the other
hand, the system may evolve when coupled to a non-Markovian
bath. Therefore, the heat exchanged between the system and the
bath is solely due to the non-Markovian dynamics. In our model
of the heat cycle, we can prepare the system in the equilibrium
state before attaching with the baths if we have p. = qu (for
attaching with the hot bath) and p, = pc? (for attaching with
the cold bath). Then we can rewrite Eqs. (10)—(12) as

0n = TiS(pllo5") + Tu[$u (08) = Su(of")]. - (14)
Q. = TS (03" 168%) = T.[Su(p%%) = Su(ep')]. (15)

W =0+ Qe (16)

since S(pclpe?) = S(p, lp,") = 0. At the end of Stage 1
(after a finite time ), the canonical probability of the system
being in an excited state is P, = 1/(1 + exp [wy,/ T}]) while at

equilibrium P;? = 1/(1 + exp [wy,/ T;]). Similarly, at the end
of Stage 3, the probability of the system to occupy the excited
state is P, = 1/(1 + exp [w,/T/]) while the equilibrium value
is PY=1/1+ exp [w./T.]). The density matrix p; and qu
are diagonal and the diagonal elements are (P, 1 — P;,) and
(P4, 1 — P;"), respectively. Similarly, the diagonal elements
for p. and ,of.q are(P,,1 — P)and (PS4, 1 — P5Y), respectively.
Now p. = p,* and p, = pc” implies P. = P;* and P, = P.*
and therefore we have

De _Ln, Dh_ L 17)

T! T, T, T.
Equation (17) satisfies the condition for engine, given in Eq. (5)
whenw, /Ty, > o./T,.Inthat case, the efficiency of the engine

1S
W, T.T!
n=1l-—=1-_[—. (18)
wy, ThTh

Under non-Markovian dynamics, the effective temperature of
the system can oscillate around its equilibrium value and hence
it is possible to choose the values of effective temperatures 7},
and T/ suchthat T/ /T, < T./T;.Inthat case, the efficiency (1)
can exceed the Carnot bound (1 — T,/ T}). This apparent vio-
lation is due to non-Markovian effects which can be ascribed
to the memory of the bath. To analyze it, let us assume that the
system is decoupled from the reservoir after a finite time. We
also assume that the decoupling process is sudden [49] and the
decoupling energy is negligible, since the system is weakly
coupled to the bath. At any instant of time, the state of the
total system can be represented as the product of time-evolved
state of the system and the state of the bath (which is assumed
to be unchanged), to the second order in the strength of the
interaction Hamiltonian [50]. The total entropy change after
decoupling the system from the hot bath is

ASir = —%” + [S0 (0% = S ()] (19)

The first and the second term on the right-hand side corre-
sponds to entropy change in the reservoir and the system,
respectively. Here Q) = T;[S(pc" o) 4 Su(pe?) — Su(o, )]
One can see that A Sy for the non-Markovian dynamics is less
than zero if we do not subtract at least 7;,S(pc || ;') amount
of energy from Q). Subtracting ThS(pququ), from Qj, we
see that the total entropy production at any instant of time
is zero, similarly to the case of Markovian dynamics for the
equilibrium initial state. Therefore, the actual quantity for heat
has to be defined as Q;, = Q) — ThS(pf-quZq).

For further understanding of the definition of actual heat, let
us consider again the firstisochoric process (Stage 1), where the
Hamiltonian is fixed, but the state of the system is changed from
qu to p" [see the discussion above Eq. (17)]. The initial-to-
final-state transition can be achieved as follows with a two-step
protocol involving a Markovian reservoir, as given in Fig. 2.

To transform the state of the system from qu =
exp (—Hy/Ty)/Trlexp (=H/T)] to p = exp (—H"/Ty)/
Trlexp (—H;"/T,)], an isothermal process is carried out
by changing the Hamiltonian from H; to Hlin and at-
taching the system with a Markovian bath of tempera-
ture Tj,. The change in the mean energy is AU = AF +
Ty[Su(pe?) — Su(p; D). Here the work done is equal to the
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FIG. 2. A schematic representation of the state transformation
under non-Markovian reservoir is achieved by a two-step protocol
involving an isothermal process using a Markovian reservoir followed
by an adiabatic process. Here HI" is the intermediate Hamiltonian.

difference in free energies of two equilibrium states AF =
Ty In (Tr[exp (—H, / Ty)]/ Tr[exp (—Hlin/ T;)]) and the amount
of heat exchanged is 7;,[S,(poc") — Sv(qu)].

The system is then decoupled from the heat bath and thereby
undergoes an adiabatic process where the Hamiltonian of the
system is changed to the initial Hamiltonian by keeping the
density matrix fixed at p.!. The work done in this process is
equal to the change in mean energy as there is no action of heat
bath and therefore the work is given by Tr[p:(H; — H{")] =
TiS(pt o) — AF.

Therefore, the total work done on the system to transform its
state from o, to pctis T, S(pc || p,*) and the heat contribution
is T[Sy (pch) — S, (,qu)] [51]. The heat exchanged between the
system and the bath is obtained by subtracting the amount of
work done from the total change in the internal energy. Now,
coming back to the non-Markovian case, by subtracting the
worklike term [7}, S(pc" ||,o;q)] from Qj, [given in Eq. (14)], we
get the actual heat exchanged as Q; = Qy — T, S(pS [ o).
With a similar argument, the actualﬁbeat exchanged with the
cold reservoir [given in Eq. (15)]is Q. = Q. — TCS(,quprq).
Therefore, the work done by the engine after subtracting the
minimum cost for non-Markovianity is

W =04+ 0. = (Th — T[S (p%) = Su(ps)].  (20)

and the efficiency is n = VT//QV;, =1— T,/ T,. As can be seen,
when T, = T,, the work goes to zero, which is consistent
with the second law of thermodynamics. By accounting for
the minimum costs of creating the nonequilibrium states from
the thermal equilibrium states, the Otto cycle constructed with
non-Markovian reservoirs becomes equivalent to a Carnot
cycle with Markovian reservoirs, as shown in Fig. 3. The
description of the Carnot cycle in this context is provided
in the Appendix. The temperature-entropy diagram for the
cycle in shown in Fig. 4, where the equivalence of the Carnot
and Otto cycles, after considering the minimum cost for non-
Markovianity, is depicted.

At any finite-temperature difference of the baths, the effi-
ciency of the engine is the Carnot value. This can be explained
in terms of entropy production. Before attaching the system
to the cold or hot baths, its temperature is same as the bath
temperature. Thus, there is no irreversible entropy production
due to the temperature gradient, unlike the usual Otto cycle.

w
A
ThS(p Py
IB/
D Carnot cycle
Wl TR e T Te—
c _D C

FIG. 3. Carnot cycle is embedded inside an Otto cycle. The cycle
ABC D A represents the Otto cycle while the cycle AB’C D’ A shows
the Carnot cycle. w and P are the energy level spacing and excited state
population of the two-level system, respectively. The efficiency of the
Otto cycle can be greater than the Carnot efficiency. The minimum
work cost to create pg from p;q is 7, (p§q||p,fq) and the work cost
to create p,, from p% is 7.S(p0; || p29). By accounting for these costs,
the Otto cycle becomes equivalent to a Carnot cycle and the engine
efficiency falls down to Carnot value. P and P,* are the excited
state populations at the end of Stage 1 and Stage 3 of the Otto cycle,
respectively.

Therefore, one expects to obtain Carnot efficiency for this
engine.

Another question at this point is the validity of the idea
of quantifying non-Markovianity in terms of minimum cost
of work T, S(pc"|| qu) or TCS(,o;qH oeh). To understand this,
let us consider an evolution of the system which is weakly
coupled to a non-Markovian bath of temperature 7', such

‘,"/7/ eq || eq 3
A T3S (pe ||Ph o/

Carnot cycle

T, D' ~C
TS
T D

Sy(pp)

FIG. 4. Temperature-entropy diagram. Carnot cycle is embedded
inside an Otto cycle. The cycle ABC DA represents the Otto cycle
while the cycle AB'C D’ A shows the Carnot cycle. The state of the
system at point B is a nonequilibrium state for the bath at temperature
T),. Similarly, the state of the system at D is nonequilibrium state for
the bath at temperature 7,.. By accounting for the minimum costs
for creating these nonequilibrium states, the Otto cycle becomes
equivalent to a Carnot cycle.
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that the system can evolve from an equilibrium state p®1
to o’ with a constant system Hamiltonian H. Subsequently,
after decoupling from the non-Markovian bath, work can be
extracted by transforming p’ back to p® using a Markovian
bath and external driving. The maximum extractable work
in this case is T S(p’||p) [51-53]. Therefore, the minimum
energy cost to create the nonequilibrium state p’ using a non-
Markovian dynamics is 7 S(p’|| p°9). Now, coming back to the
case of engine, when the actual cost is more than 7}, S(pc || qu)
in Stage 1 or T.8(p,%||pc?) in Stage 3, the efficiency of the
engine constructed with non-Markovian reservoirs goes below
the Carnot value. The aforesaid discussion holds good for any
non-Markovian reservoir for which the asymptotic state of the
system is the thermal equilibrium state associated with the bath
temperature but not an invariant state.

IV. NON-MARKOVIAN DYNAMICS

In this section, we study a specific example of non-
Markovian dynamics of a two-level quantum system [50] to
bolster the discussion in Sec. III. Let us consider a two-
level system with energy level spacing w, interacting with
a reservoir of harmonic oscillators of frequencies {w;}. The
Hamiltonian of the system plus bath can be written as

H= %az + Zg[(a,aj tora)+ Za),-aja[, Q1)

where aj and g; are the raising and lowering operators for the
ith oscillator and g; represents the interaction strength of the
two level system with the ith oscillator. Here o and o_ are
the raising and lowering operators for the spin-1/2 system,
respectively. The evolution of (o), under weak coupling non-
Markovian dynamics, is [50]

d{o:(1))

o = [T1(®) + 7)) 4+ T5(1) + Do) o2 (1))

— [T + I'T(@) — T3(0) — T2 ()], (22)

while the off-diagonal terms evolves as

% = —iwp{o_ (1)) — [T1() + D3O (o-(1)), (23)

LD~ fiy o) + 50 + Do) 0), 24
where we have

I(1) = /O t drt ay(t — 1)e' =), (25)

(7)) = /O t dt ap(t — v)e et (26)

The environment correlations functions «; and o, are
defined as

al(z—r)z/oodw(n(wH1)J(w)e—fw<’—f>, 27)
0

ar(t —1) = /‘00 do n(w)J (w)e' ", (28)
0

FIG. 5. The plot shows behavior of the ratio of energy level
spacing () and effective temperature (7.5 ) versus time. The effective
temperatures (7, and 7)) of the system is a function of time. If we
choose the time allocated for the thermalization branches such that
wy /T, = w./T. and w./T, = w,/T,, then the system works as an
engine solely due to non-Markovian effects. One such pair of points
are marked with dots (d; and d»). Here we use w. = 2.5, w, = 5.2,
A =4wi(k =h,c),and T, = 1,7, = 2,and y = 0.1. Ata given time,
/T, = -2 tanh~![(o, )], where (g, ), is obtained from Eq. (22) of
the corresponding bath. Such oscillations can be observed for a wide
range of parameters, y and A.

where J(w) = Y, |gi1*8(w — @;) = ywexp (—w?/A?) is the
spectral density and X is the cut-off frequency. Also, n(w) =
[exp (Bw) — 117! is the average number of photons emitted
with frequency w from the reservoir at inverse temperature .
Here y is a constant, characterizing the interaction strength to
the environment. In this dynamics, if we start with an initial
state of the system which is diagonal in the energy eigenbasis,
the off-diagonal elements of the system remain zero during the
evolution. We have d(o*(¢))/dt = P(t){oc*(t)), where P(t)
does not depend on (o, (?)), cf. Egs. (23) and (24). Thus, we can
always associate an effective temperature with the two-level
system.

Quantum heat engine

With the above-mentioned example of non-Markovian
reservoirs, we can construct a quantum heat cycle. In the
thermalization branches, we attach the system to the heat
baths at temperature 73(7,). Because of the non-Markovian
dynamics, the effective temperature oscillates around 7;(7).
For w, > w., we choose the time intervals with which the
system is attached to each bath such that the condition for
engine [Eq. (5)] is satisfied. Figure 5 depicts the curves
corresponding to w; /7T, and w./T/. The thick solid curve
represents the evolution of w;, / T, when the system is in contact
with the hot bath (Stage 1). The initial value of this quantity
is the equilibrium value (i.e., w,/T;) shown by the thin solid
horizontal line. Due to non-Markovian dynamics, the effective
temperature (7)) oscillates. When the value w, /T, = w./T,
(shown by the dot d;), then the system is decoupled from the
hot bath. In a similar way, the thick dashed curve depicts the
evolution of w./T, when the system is coupled to the cold
bath (Stage 3). The thin dashed line represents the equilibrium
value w./T,. When w./T, = w;/ T, (denoted by the dot d»),
the system is decoupled from the cold bath. The resources for
the work extraction are solely due to non-Markovian effects
when the time allocated for the thermalization branches are
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such that wy, /T, = w./ T, and w./T, = wu/ T}, [Egs. (5) and
(17)]. Tt is interesting to note that, since the initial temperatures
of the system and bath are the same, there is no dissipation
due to thermal gradients in the beginning of the thermalization
process. The efficiency of the engine in this caseis 1 — T,/ Tj,.
The amount of extractable work, after deducting the minimum
cost for non-Markovianity, is given in Eq. (20). This work
depends on ,qu and pg?. For given wy,, ., Ty, and T, changing
y or A can vary the characteristics of the oscillations (such as
amplitude and frequency in Fig. 5), but the amount of work
given in Eq. (20) does not change. But different values of y
and A can change the time needed to achieve the condition
wp/ T, = we/T, and w./ T, = wy/ T,. Hence, the total time of
cycle can also vary. It should be noted that the present model
operates in the weak-coupling limit and thereby value of y is
small.

V. CONCLUSION AND FUTURE DIRECTIONS

We considered a four-staged Otto cycle with non-
Markovian reservoirs. The state of the system is the thermal
state at the beginning of the isochoric process. Hence, the
heat exchanged during the process is solely due to the non-
Markovian dynamics. The system can extract work even when
the temperatures of the baths are equal, showing an apparent
violation of second law of thermodynamics. To resolve this
apparent violation, the total energy difference in the system
due to non-Markovian bath is decomposed into worklike and
heatlike terms. Further, redefining the work and heat, the effi-
ciency of the engine takes the Carnot value and thus establishes
consistency with the second law. We also show that the four-
staged Otto cycle can be mapped to a four-staged Carnot cycle.
As a future direction, this work can be extended to coupled
spins and coupled oscillators as working media for which
nonclassical features such as entanglement are also present
[42]. Our work can have a number of practical implications
in modeling engines working at finite power. The possibility
of providing operational quantifiers of non-Markovianity in
terms of thermodynamic quantities can open up new avenues
for the thermodynamics of open quantum systems.
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APPENDIX: CARNOT CYCLE

Quantum Carnot cycle consists of two isothermal processes
and two adiabatic processes, as shown in Fig. 6 [39]. The four
stages are as follows.

Stage 1: In this isothermal process, the Hamiltonian
of the system is changed from H; = (w;/2)o; to Hlin =
(w),/2)o, by changing the energy level spacing of the
two-level system from w;, to w, while the system is in
contact with the hot reservoir. The temperature (7}) of
the system remains unchanged throughout Stage 1. The
initial and the final density matrices of the system are

“ @)

D'(pf4, Hr, T.) C(pe, Hy, Te)

*\(3)/

FIG. 6. A schematic representation of the quantum Carnot cycle.

given as p,! = exp(—H,/T;)/Trlexp (—H,/Ty)] and p;' =
exp (—H "/ T,)/Tr[exp (—H|"/ T;)], respectively. The heat ab-
sorbed from the hot bath contact is

0f = B[S () - SN = Br. (AD

In terms of the energy level spacing and occupational proba-
bilities, we can express the heat as

Q,f:ﬂ PeqlnkC—Peqlnkh+lnﬁ . (A2
Ink, \ € g 1— P

where k;, = In[(1 — P;q)/P;q] and k. = In[(1 — P/ P2
Here P, and P are probabilities of the excited state corre-
sponds to the density matrices ;' and p. %, respectively.

Stage 2: The system is decoupled from the hot bath
and the Hamiltonian is changed from Hlin to Hy = (w./2)o.
adiabatically. The density matrix (pc) remains unchanged
throughout the process. In Stage 1, the energy level spacing w,
is chosen such that w), / T, = w./T,. Therefore, pe can also be
written as p.' = exp (—H,/T,.)/Tr[exp (—H,/T.)]. Thus the
temperature of the system at the end of Stage 2 is 7.

Stage 3: The system is then attached to the cold bath.
The Hamiltonian is changed isothermally from H, to Hi" =
(w./2)0; (@, = w T,/ Ty). The initial and final density matri-
ces in this stage, are given as p." and p, ", respectively. Hence,
the heat rejected to the cold bath during this isothermal process
is

0f = ~T.[8.(p%%) = 8u(p3")] = Q. (A3)
eq

1-P
(Pfﬁnkc—lfquh+dnf——#L>. (A4)

cq
c

o8

~ T lnk,

Stage 4: The system is decoupled from the system and the
Hamiltonian of the system is adiabatically changed from H."
to H; without altering the density matrix (o, ). The total work
done by the system in the cycle is W€ = Qf + Q¢ = W and
the efficiency is n. = 1 — T,/ Tj.
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