
PHYSICAL REVIEW E 97, 062107 (2018)

Direct test of the Gaussian auxiliary field ansatz in nonconserved order
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The assumption that the local order parameter is related to an underlying spatially smooth auxiliary field,
u(�r,t), is a common feature in theoretical approaches to non-conserved order parameter phase separation
dynamics. In particular, the ansatz that u(�r,t) is a Gaussian random field leads to predictions for the decay of the
autocorrelation function which are consistent with observations, but distinct from predictions using alternative
theoretical approaches. In this paper, the auxiliary field is obtained directly from simulations of the time-dependent
Ginzburg-Landau equation in two and three dimensions. The results show that u(�r,t) is equivalent to the distance
to the nearest interface. In two dimensions, the probability distribution, P (u), is well approximated as Gaussian
except for small values of u/L(t), where L(t) is the characteristic length-scale of the patterns. The behavior of
P (u) in three dimensions is more complicated; the non-Gaussian region for small u/L(t) is much larger than that
in two dimensions but the tails of P (u) begin to approach a Gaussian form at intermediate times. However, at
later times, the tails of the probability distribution appear to decay faster than a Gaussian distribution.
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I. INTRODUCTION

The most basic example of phase ordering dynamics oc-
curs when a ferromagnetic system is quenched from a high
temperature disordered phase into the two-phase regime. The
resulting domain growth exhibits scaling and universality; the
statistical distribution of the domains is described by a single
time dependent length-scale which typically grows as a power
law in time, L(t) ∼ tα , and many different systems have the
same growth exponent α. For ferromagnetic systems, α = 1/2
if the order parameter is not conserved and α = 1/3 if the order
parameter is conserved [1,2].

Due to its simple description yet rich behavior, phase
separation dynamics serves as a testing ground for theoretical
approaches to non-equilibrium dynamics. The growth expo-
nent α can be obtained from scaling analysis of the interfacial
dynamics for the different cases. However, there has been less
progress in our ability to calculate more quantitative features
such as the order parameter correlation function,

C(�r; t,t ′) = 〈ψ( �R,t)ψ( �R + �r,t ′)〉. (1)

Here, ψ(�r,t) is the order parameter at position �r and time t

and the average is over both �R and initial conditions. One
reason for the limited progress is that, as shown in Fig. 1,
the order parameter field is effectively spatially discontinuous
when viewed at the length-scale of the domains. Therefore it
is difficult to apply approximate methods directly to the order
parameter field. An approach that has had some success is
to assume the order parameter can be written as a nonlinear
function of a spatially smooth auxiliary field u(�r,t) [3–9]. One
can then make progress by applying approximate methods to
the dynamics of the auxiliary field.
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This approach was used to study non-conserved order
parameter phase ordering by Ohta, Jasnow, and Kawasaki
(OJK) [3]. They started with the Cahn-Allen equation de-
scribing the dynamics of the interfaces [10] and obtained an
evolution equation for the auxiliary field u(�r,t). This field
was interpreted, at least near interfaces, as the distance to
the interface. After applying some approximations, u was
found to obey the diffusion equation. From this one can obtain
both the equal time correlation function C(�r; t,t) [3] and the
autocorrelation function C(0; t,t ′) [11].

Mazenko took an alternative approach by defining u(�r,t) as
a nonlinear mapping of the local order parameter ψ(�r,t) [5].
He then makes the ansatz that u(�r,t) is a Gaussian random
field. With this ansatz, a closed equation is obtained for the
equal time correlation function [5], and for the autocorrelation
function [6]. The ansatz of an underlying smooth Gaussian
field has also been applied to other phase ordering systems
[12,13] as well as for two-dimensional turbulence [14].

The OJK and Mazenko methods both reproduce the ex-
perimentally observed result that the characteristic length-
scale grows as L(t) ∝ t1/2. The differences in the equal time
correlation functions predicted by the two methods are subtle
and both are close to simulation results [15,16]. A more
sensitive test of the two approaches is to consider how the
system at time t is related to the system at an earlier time
t ′ [6,7,11,17–31]. One way to quantify this effect is through
the autocorrelation function C(t,t ′) = C(0; t,t ′). In the scaling
regime, C(t,t ′) should be a function only of the ratio of
length-scales y = L(t)/L(t ′). Furthermore, for y � 1, the
autocorrelation function should decay as a power law in y,
i.e., C(t,t ′) ∼ y−λ [6,11,17,20].

In contrast to the equal-time correlation function, the dif-
ferences in the autocorrelation exponent λ predicted by the
OJK model and the Gaussian ansatz approaches are readily
observable. The OJK model predicts that λ = d/2, where d is
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FIG. 1. At a domain boundary, the order parameter ψ(x) (solid
line) changes rapidly over a length-scale corresponding to the in-
terfacial width. In the scaling regime, the characteristic domain
size becomes much larger than this width, so ψ(x) is effectively
discontinuous on the larger length-scale. The auxiliary field u(x)
(filled squares) can be extracted from the order parameter field using
Eq. (11) and u(x) is smooth on all length-scales making approximate
methods more applicable. The results in this figure are obtained from
the planar interface solution for the discretized evolution equation
with mesh size �x = 0.25.

the dimension [11] while Liu and Mazenko found significantly
higher values for the exponent with λ = 1.2887 for d = 2 and
λ = 1.6726 for d = 3 [6,18]. The two methods coincide as
d → ∞ [7]. Experiments [19] and simulations [6,18,27,30]
of non-conserved order parameter phase ordering give values
of λ that are consistent with Liu-Mazenko but these earlier
simulations were with smaller systems and limited ranges of
L/L′. The values ofλobtained had large uncertainties and were
susceptible to finite size and finite time effects. More recent
results by Midya et al. [27] used finite size analysis on larger
systems to decrease the uncertainty in the exponents. Their
results for λ were consistent with the predictions based on the
Gaussian ansatz and rule out the predictions of the OJK model.

Therefore the Mazenko-Liu analysis results in non-trivial
predictions for the autocorrelation exponents that agree with
simulation but are distinct from other approximate methods.
Their approach relies on the ansatz that the local order
parameter ψ(�r,t) is a nonlinear function of a Gaussian random
field u(�r,t), but this Gaussian auxiliary field ansatz has never
been tested directly. In this paper, I extract the auxiliary
field u(�r,t) directly from simulations of the time-dependent
Ginzburg-Landau equation in two and three dimensions.

In two dimensions, I find that the probability distribution,
P (u) for the auxiliary field displays excellent collapse, and
P (u), is approximately Gaussian except for a small region
around u/L(t) = 0 implying that the Mazenko-Liu analysis
is applicable in two dimensions. In three dimensions, the
non-Gaussian region of P (u) around small u/L(t) is much
larger. The tails of the probability distribution approaches a
Gaussian form at intermediate times. However, at later times
there appears to be a transition to a faster decay at the tails of
the probability distribution function.

I also show that u(�r,t) is the equivalent to the distance from
�r to the closest interface. This equivalence is significant since in
most systems, one cannot extract an auxiliary field at a point �r
from the state of the system near that point. On the other hand, it
is always possible to define the distance to the closest interface
in any model of phase ordering dynamics, therefore arguments
using an auxiliary field is applicable even for those systems
where one cannot extract the auxiliary field in a straightforward
manner.

II. MAPPING THE ORDER PARAMETER
TO THE AUXILIARY FIELD

Phase ordering dynamics following a quench to zero tem-
perature can be described by the time-dependent Ginzburg-
Landau (TDGL) equation

1

�

∂ψ

∂t
= −δF [ψ]

δψ
, (2)

where � is the mobility. The Ginzburg-Landau free energy
functional, F , has the form

F [ψ(�r,t)] =
∫

d�r
(

V (ψ) + ξ 2

2
| �∇ψ |2

)
, (3)

where V (ψ) is a symmetric double well potential with minima
at ψ = ±ψeq and ξ is the interfacial width. The TDGL
equation is assumed to have a time independent planar interface
solution, ψ(x) = f (x), where f (x) is an odd function of x with
f (x) → ±ψeq as x → ±∞. A smooth auxiliary field, u(�r,t),
is defined by inverting this relation: u(�r,t) = f −1(ψ(�r,t))
where f −1 is the inverse function of f . This implies that,
near interfaces, u(�r,t) is the displacement to the interface.
Making the ansatz that u(�r,t) is a Gaussian random field gives a
closed expression for the order parameter correlation function
C(�r; t) [5]

1

2�ξ 2

∂C

∂t
= ∇2C + 2ψ2

eq

π〈u2〉 tan

(
πC

2ψ2
eq

)
, (4)

where 〈u2〉 = 〈u(�r,t)2〉. Note that Mazenko defined the auxil-
iary field as m(�r,t) = u(�r,t)/√2 so Eq. (4) is slightly different
from the equivalent expression in Ref. [5]. A similar closed
expression can be obtained for the autocorrelation function,
C(t,t ′) [6].

Analysis of the scaling form of Eq. (4) for x = r/L(t) � 1
gives C(r; t) ∝ xd−π/2μe−μx2/2 [5]. The nonlinear eigenvalue,
μ, is defined by the relation 〈u2〉 = 4μt/π and is determined by
numerically solving the scaling form of Eq. (4). The eigenvalue
is found to be μ = 1.104 for d = 2 and μ = 0.5917 for d = 3.
A similar analysis for the two-time correlation function gives
the autocorrelation exponent as γ = d − π/4μ [6,7].

In this paper, V (ψ) is chosen to be

V (ψ) = −ψ2

2
+ ψ4

4
, (5)

so that ψeq = 1. In dimensionless form, the time-dependent
Ginzburg-Landau equation becomes

∂ψ

∂t
= ψ − ψ3 + ∇2ψ. (6)

062107-2



DIRECT TEST OF THE GAUSSIAN AUXILIARY FIELD … PHYSICAL REVIEW E 97, 062107 (2018)

This equation has a time-independent planar interface solution

ψ(x) = tanh

(
x√
2

)
, (7)

where the x is the displacement from the interface. Inverting
this relation gives the mapping from ψ to the auxiliary field as

uo(ψ) = 1√
2

ln

(
1 + ψ

1 − ψ

)
. (8)

Note that ψ(x) converges to its equilibrium values of ±1 ex-
ponentially in x with a decay length of �o = 1/

√
2. Therefore

ψ is very close to its equilibrium values except very near the
interface.

Space must be discretized in order to integrate the TDGL
equation numerically. This leads to a �x dependent mod-
ification of the mapping from ψ → u. Linearizing Eq. (6)
near ψ = ±1 shows that the decay length becomes � = α�x�o

where α�x is given by

α�x = −
√

2�x

ln(1 − �x
√

2 + (�x)2 + (�x)2)
. (9)

Notice that α�x → 1 as �x → 0 as expected. To take the finite
mesh size into account, the mapping to the auxiliary field is
modified to be u(ψ) = α�xuo(ψ). For the mesh size, �x = 1,
used for most of this work, α�x = 1.074.

There is further issue that must be taken into account in order
to extract u from ψ . The mapping uo(ψ) is very sensitive to
how close ψ is to its equilibrium values. Therefore, except for
near interfaces, it is necessary to know ψ to many digits of
precision to determine u. To avoid this, the order parameter is
stored in the simulation as the difference from its equilibrium
values; φ+ = ψ − 1 if ψ � 0, and φ− = ψ + 1 if ψ < 0. In
terms of φ+, the TDGL equation [Eq. (6)] becomes

∂φ+
∂t

= −2φ+ − 3φ2
+ − φ3

+ + ∇2φ+ (10)

with a similar expression for ∂φ−/∂t . Since φ+ and φ− both
approach zero in the bulk, one can store the order parameter
array in terms of φ± as floating point numbers with standard
precision and still extract u from φ±.

To test this mapping, I numerically solved the TDGL
[Eq. (6)] to find the time-independent planar interface solution
for �x = 0.25, �x = 0.5, and �x = 1.0. In one dimension,
u should be exactly equal to the displacement, x. I applied the
mapping u(ψ) = α�xuo(ψ) to the planar interface solution and
found that, away from the interface, u grows at the same rate
as x but is shifted from x by a constant amount. To adjust
for this, a compensating shift in the mapping from ψ to u is
introduced. This shift must vanish at u = 0 and be constant at
larger distances. The final mapping used in the simulations is

u(ψ) =

⎧⎪⎪⎨
⎪⎪⎩

α�xuo(ψ) − (�x)2

5 if uo(ψ) � 3,

α�xuo(ψ) − uo(ψ)(�x)2

15 if − 3 < uo(ψ) < 3,

α�xuo(ψ) + (�x)2

5 if uo(ψ) � −3.

(11)

Here, uo(ψ) is the continuum limit mapping given in Eq. (8).
The form of the shift and the cutoff for the constant shift at

|u| = 3 were chosen empirically. This mapping was found to
produce u ≈ x for all three values of �x used. The mapping
from ψ to u is shown in Fig. 1 for a planar interface with mesh
size �x = 0.25.

III. RESULTS

The time-dependent Ginzburg-Landau equation [Eq. (6)]
was numerically integrated in two and three dimensions start-
ing with random (spatially uncorrelated) initial conditions.
The mesh-size used was �x = 1.0 and the time-step was
�t = 0.1. However, some results were obtained for smaller
�x and �t to check for mesh-size and time-step effects. In
two dimensions, most of the simulations were performed for
systems of size 163842 up to time t = 12800. The results
were averaged over 12 initial conditions. Results using smaller
systems of size 81922 showed no finite size effects. In three
dimensions, simulations were performed for systems of size
10243 (25 initial conditions) to t = 1600. Simulations were
also performed for smaller systems of size 5123 and 2563

to check for finite size effects. The results given below are
from the largest two-dimensional (2D) and three-dimensional
(3D) systems unless otherwise noted. All uncertainties quoted
are based on run to run variations. Note that system sizes
used here are substantially larger than the largest systems
used by Midya et al. [27] for their finite size analysis of the
autocorrelation function (10242 in 2D and 4003 in 3D) or
the largest 3D integration of the TDGL (7003) by Brown and
Rikvold [32].

The auxiliary field u must be equivalent to the displacement
from the interface in one dimension but, except for very close to
interfaces, there is no a priori reason thatumust be this distance
in higher dimensions. To check if this equivalence still holds
in two and three dimensions, I determine the signed distance,
D(�r,t), from each lattice point �r to the closest interface.
D(�r,t) is defined as positive if ψ(�r,t) is positive and negative
otherwise.

Figure 2 shows the probability distributions P (D) of D, and
P (u) of u for 3D systems of size 10243 at t = 800. The two
distributions coincide except for a small region near u = D =
0, where P (D) has a dip relative to P (u). This difference is
expected since the calculation of D near interfaces will be most
affected by the finite mesh-size. Similar results were obtained
for the probability distributions of u and D at different times
and in two dimensions. This demonstrates that u(�r,t) can be
interpreted as the closest distance to the interface even in two
and three dimensions.

The equivalence between u and D is significant because it
is not possible to define an auxiliary field from the local state
of the system in most models of phase separation dynamics.
For example, in a quench of the kinetic Ising model to zero
temperature, the spins are either all up or all down except at
the domain interfaces. One cannot extract an auxiliary field
at a particular position �r just from the state of the spins
in the neighborhood of that position. This is true even for
a standard numerical integration of the TDGL equation. To
within numerical precision, the value of the order parameter
ψ(�r,t) will reach its bulk equilibrium values except for very
near interfaces and, hence, the value of u extracted from ψ will
also saturate at its bulk values except for very near interfaces.
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FIG. 2. Probability distribution for the auxiliary field u (open
circles), and for the closest distance to interface D (solid line). The
results are for three-dimensional systems of size 10243 at t = 800.
The two distributions coincide except for near interfaces where the
effect of the mesh-size is apparent. Similar agreement between P (u)
and P (D) is found in two dimensions.

The extraction of a meaningful value of u(�r,t) in this paper
was only possible by rewriting TDGL equation in terms of
the deviation of ψ(�r,t) from the bulk equilibrium values and
numerically updating this difference [Eq. (10)].

The fact that it is not possible to extract a meaningful
auxiliary field from the local state of the system in most models
of phase ordering dynamics would seem to call into question
whether an analysis based on a Gaussian auxiliary field is be
applied in general. However, the closest distance, D, from a
point to an interface is well defined in all models of phase
ordering systems with scalar order parameter. The equivalence
between the auxiliary field u and the closest distance D means
that theoretical analysis based on the existence of an auxiliary
field is applicable even to the most common case where u

cannot be obtained directly from the local order parameter.
Mazenko relates 〈u(�r,t)2〉 to a nonlinear eigenvalue μ with

〈u2〉/t = 1.405 in two dimensions and 〈u2〉/t = 0.7534 in
three dimensions [5]. Figure 3 shows that 〈u2〉 obtained from
the simulations grows linearly with time as expected. In two
dimensions, the slope of 1.081 ± 0.014 is about 20% below
the predicted value. One possibility is that this deviation is
due to effect of the finite mesh size �x in the simulations;
although universal quantities such as the growth exponent
should be independent of the fine details of the model, non-
universal quantities such as the growth amplitude may depend
on such details. To test for mesh size dependence, I performed
simulations in two dimensions with �x = 0.5 (�t = 0.025)
and �x = 0.25 (�t = 0.01). In both cases the system size was
Lx = Ly = 8192 and runs were up to t = 1600. The slope did
not exhibit any systematic dependence on �x; the slope were
1.094 ± 0.006 and 1.07 ± 0.02 for �x = 0.5 and �x = 0.25,
respectively. Note that the uncertainties for the smaller �x are
very rough estimates based on the variations over five runs
each. In three dimensions, the slope of 0.80 ± 0.01 is close
to predicted value of 0.7534. The slope of the 〈u2〉 vs. t plots
in three dimensions also did not exhibit �x dependence; the
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u2 >
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FIG. 3. 〈u2〉 vs. t in two dimensions (solid circles) and three
dimensions (open squares) for �x = 1. The solid and dashed lines
are the Gaussian ansatz predictions for 〈u2〉 in two dimensions and
three dimensions, respectively. The uncertainties are smaller than the
symbol size.

result for �x = 0.5 was 0.80 ± 0.02, essentially the same as
for �x = 1.0.

Figure 4 shows the scaled probability distribution,
L(t)P (u), vs. (u/L(t))2 from the two-dimensional simulations.
Here, the characteristic length-scale is chosen to be L(t) =√

〈u2〉. The data for the different times show an excellent
collapse onto a single master curve as expected from scaling.
The data also falls on a straight line on the graph for about five
decades in the decay of P (u) indicating that the probability
distribution is well approximated as a Gaussian. The only
deviation from the Gaussian form occurs near u/L(t) ≈ 0;
the probability distribution becomes flatter than a Gaussian as
shown in Fig. 5. This flat region occurs only for u2/L(t)2 < 0.3
but can be important for the short length and time scale
behavior, especially in calculation of the equal time correlation
function. On the other hand, the fact that the tails of P (u) are
Gaussian would explain why the Gaussian ansatz successfully
predicts the decay of the autocorrelation function at large ratio
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FIG. 4. Semi-log plot of the scaled distribution function L(t)P (u)
vs. (u/L(t))2 for four different times in two dimensions. The data
shows excellent collapses onto a single scaling curve. The plots all
fall on a straight line indicating a Gaussian decay.
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FIG. 5. The same data as in Fig. 4 focusing on small u/L(t).
The probability distribution is flatter that that for a Gaussian near
u/L(t) = 0 but this region is small. Uncertainties are smaller than the
symbol size.

of length-scales L(t)/L(t ′) since the regions of large u will
persist in the same order parameter state the longest.

The normalized fourth cumulant, κ̃4 = κ4/κ
2
2 is used to

quantify how close P (u) approaches a Gaussian. Here κ4

is the fourth cumulant, and κ2 is the second cumulant. The
value of κ̃4 showed a systematic change from κ̃4 ≈ −0.35 at
t = 50 to κ̃4 ≈ −0.25 at t = 400. After this transient, there
was no systematic change in κ̃4. Averaging over time and initial
conditions, I find κ̃4 = −0.22 ± 0.05. For comparison, κ̃4 = 0
for a Gaussian distribution while κ̃4 = +3 for an exponential
distribution, κ̃4 = −1.2 for a uniform distribution, and κ̃4 =
−2 for a symmetric two point distribution as would be expected
for P (ψ), the distribution of the order parameter. The small
value of κ̃4 confirms that the auxiliary field, u(�r,t), is close to
a Gaussian random field in two dimensions.

Figure 6 shows the scaled probability distribution,
L(t)P (u), from the three-dimensional simulations. Several

0 2 4 6 8 10
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t=100
t=200
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t=800
t=1600

FIG. 6. Semi-log plot of the scaled distribution function L(t)P (u)
vs. (u/L(t))2 for five different times for the 3D case. The non-
Gaussian region around u = 0 extends much further than for the two
dimensional case and there is curvature in the tails at late times.
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FIG. 7. Test for finite size effects. Scaled distribution function at
t = 400 and t = 800 for 3D systems of size 2563, 5123, and 10243.
No finite size effects are discernible at t = 400 but the data for the
smaller system size falls off at large u/L at t = 800.

differences from the two-dimensional case are apparent. First,
the curved, non-Gaussian, portion of the graph extends to
a much larger range of u/L(t); the curvature in the graph
is fairly obvious up to u2/L(t)2 ≈ 4. This is confirmed by
the normalized fourth cumulant κ̃4 = −0.56 ± 0.02, which
is more than double the two dimensional case. Secondly, the
collapse of the data onto a single master scaling curve is only
approximate. At first, it appears that scaling will occur: the
scaled distributions for t = 200 and t = 400 collapses well
onto a single curve. Furthermore, the tails of P (u) appears as
a straight line on the graph indicating that the distributions
at these two times decay as a Gaussian at large u/L(t).
However, this does not appear to hold at later times. Instead of
reinforcing the curves for t = 400 and t = 800, the tails of the
scaled distribution for P (u) at t = 800 and t = 1600 show an
increasing deviation from the t = 200 and t = 400 curves.

One obvious possibility for the deviation from scaling is that
it is due to finite size effects. The system size used for the 3D
simulations is only Lx = 1024 instead of Lx = 16384 used in
the two-dimensional simulations. To test for finite size effects,
I compare results for systems of size 2563, 5123, and 10243 at
t = 400 and at t = 800. The data are averaged over 260 initial
conditions for the 2563 simulations and 140 initial conditions
for the 5123 simulations. As shown in Fig. 7, at t = 400, the
scaled distribution for all three lattices size fall on the same
curve, indicating finite size effects are not important at t = 400.
However, there is discrepancy between the Lx = 256 results
and the results from the larger lattices at t = 800. Assuming
that finite size effects depend on the ratio ofL(t)/Lx , this would
imply that finite size effects are unimportant up to t = 1600
for Lx = 512 and up to t = 6400 for Lx = 1024. Therefore
the change in scaling behavior at late times is most likely not
due to finite size effects.

A possible reason for the difference observed in two and
three dimensions is that the roughening transition occurs at
non-zero temperature in three dimensions [33]. The zero noise
TDGL equation is effectively a quench to zero temperature
so the interfaces are macroscopically planar for the spatially
discretized three dimensional TDGL. This transition from a

062107-5



CHUCK YEUNG PHYSICAL REVIEW E 97, 062107 (2018)

smoothly varying to a planar interface at late times may affect
the change in scaling behavior observed. Das and Chakraborty
also speculated that this transition is also the source of very long
transients they observed in quenches of the three-dimensional
kinetic Ising model to zero temperature. In particular, they
found the characteristic length-scale initially grows as L(t) ∼
t1/2 but there is then a regime of slower growth until returning
to a t1/2 asymptotic growth [29,31]. Brown and Rikvold also
reported fairly long transients up to t = 200 for their 3D
integration of the time dependent Ginzburg Landau equation
[32]. This long time transient may be reflected in a change in
the scaling form of the probability distribution of u.

IV. SUMMARY

The assumption that the order parameter can be mapped to
a locally smooth auxiliary field is a useful approach toward a
quantitative understanding of non-conserved order parameter
phase ordering dynamics. In particular, the ansatz that the
auxiliary field is a Gaussian random field leads to predictions
of both the equal time correlation function and the decay
of the autocorrelation function which are consistent with
experiment and simulation. In this paper, I directly test the
Gaussian auxiliary field ansatz by numerically integrating the

time-dependent Ginzburg-Landau equation and extracting the
auxiliary field u(�r,t) from the local order parameter field
ψ(�r,t). I also show that the local auxiliary field is equivalent
to the distance to the nearest interface. This significant of this
equivalence is that it means that approaches using the auxiliary
field can be applied even to systems where it is not possible to
define this field from the local order parameter.

In two dimensions the probability distribution of u(�r,t) is
close to Gaussian except for a small range around u/L(t) =
0 which is flatter than a Gaussian distribution. This may
account for the small discrepancy between the measured
equal time correlation functions and that predicted by the
Gaussian ansatz at intermediate values of r/L(t). On the
other hand, the predictions using the Gaussian ansatz should
work well at large distances or large ratios of times, since
these correlations should be determined by regions of large
u. which should be dominated by regions with large values
of u. In three dimensions, the situation is more complex.
The portion of the distribution function around u/L(t) = 0,
where the distribution is non-Gaussian is much larger than in
two dimensions. The tails of the distributions trends toward
a Gaussian at intermediate times. However, at later times in
this simulation, there appears to be transition to a faster than
Gaussian decay.
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