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Diffusion with resetting inside a circle
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We study the Brownian motion of a particle in a bounded circular two-dimensional domain in search for a
stationary target on the boundary of the domain. The process switches between two modes: one where it performs
a two-dimensional diffusion inside the circle and one where it diffuses along the one-dimensional boundary.
During the process, the Brownian particle resets to its initial position with a constant rate r. The Fokker-Planck
formalism allows us to calculate the mean time to absorption (MTA) as well as the optimal resetting rate for
which the MTA is minimized. From the derived analytical results the parameter regions where resetting reduces
the search time can be specified. We also provide a numerical method for the verification of our results.
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I. INTRODUCTION

A large range of phenomena are characterized by the
properties of first passage time of different stochastic processes
[1]. A special case of them are related to search processes
that take place in confinement and have long been an object
of scientific research [2]. They find applications among a
large range of distinct fields such as microbiological systems,
network theory, and computer science [3—5]. Over the past few
years, the mean time to absorption (MTA) for many target pro-
cesses inside different bounded domains have been evaluated.
For most stochastic processes, an analytical expression in an
arbitrary domain is rather difficult to establish [6]. Nevertheless
progress can be made by the study of general concepts like the
reduction of dimensionality [7-10] in well-defined domains.
Here we consider such a simple confining geometry inside of
which a stochastic search process combining two-dimensional
diffusion inside a circle with one-dimensional diffusion on
the periodic boundary takes place. We ask ourselves how the
implementation of a resetting mechanism, which forces the
diffusive searcher to return to its initial position, will influence
the MTA if we assume that the target on the boundary is
perfectly absorbing.

A resetting mechanism like the one introduced in the
previous paragraph may seem purely artificial but it is strongly
inspired by patterns often encountered in nature. For example,
animals may relocate to previously visited positions in order to
improve their searching strategy [11,12]. Furthermore this sur-
vival strategy may be improved by reducing the dimensionality
of the searcher. A realistic example therefore is hunting along
the shore of a lake and returning to the roost. At the same time
reduction of dimensionality can be considered as fulfillment of
a constraint in terms of a randomized search algorithm which
in general profit from a restart mechanism [13,14]. The search
properties of the process discussed here might also be relevant
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in the prominent field of machine learning for which stochastic
processes play an important role.

Our study builds on an increasing amount of works dis-
cussing stochastic processes with resetting [15-17] which
became only recently a subject of study in the physics literature
[18,19]. The interest on this field was strongly boosted by the
work of Evans and Majumdar, who first analyzed the case of
a one-dimensional Brownian motion modified by a resetting
mechanism [20]. The search properties of this process have
been studied by considering an absorbing target at the origin
and calculating the mean first passage time 7' to the origin as
a function of the resetting rate r. It is clear that T diverges
as T ~ r~Y2forr — 0, which recovers the well-known result
that the mean first passage time for a purely diffusive particle is
infinite. Alsoasr — o0, the particle hardly gets an opportunity
to diffuse away from its starting position and remains localized
for an indefinite time. As aresult, T diverges. Itis evident that a
minimum exists for 7 since T diverges in the two limits » — 0
and r — oo.

This setting has shown the drastic effect of a resetting
mechanism on the distribution of search times and has lead
to several questions with regard to the dynamics of similar
processes. So the generalization of this problem for the
special cases of space-depending rates, resetting to a random
position with a given distribution and to a spatial distribution
of the target were presented in Ref. [21]. It has also been
shown that the presented formalism can easily be expanded
for the higher-dimensional cases [22]. At the same time
the properties of the nonequilibrium steady state have been
evaluated for the special case of a diffusion inside a potential
landscape [23].

Next to the archetype of diffusion processes with resetting
several other stochastic processes have been analyzed in a
resetting context. As an example, for the first-order transition
observed for a Levy flight process with resetting, the mean
first passage time and the optimal search time have been
evaluated in Ref. [24]. This very interesting property of phase
transitions was treated extensive in Ref. [25,26] while even
the thermodynamics of this process could be analyzed [27].
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Furthermore, resetting is not only relevant for stochastic search
processes as the work of Gupta et al. [28,29] shows, where the
effect of a persistent resetting mechanism on the time evolution
of fluctuating surfaces has been studied.

In the recent past the important influence of memory in the
foraging behavior of macrobiological organisms was analyzed
by Boyer et al. in Ref. [30] where the properties of a stochastic
process resetting to a previously visited site has been evaluated.
Next to the evaluation of the resetting rate in the last years the
optimal resetting time distribution could also been determined
[13]. Last, we have to note that in most of the presented models
the resetting mechanism could be considered as an external
mechanism. A variation of this property was presented in the
work of Falcao and Evans [31], where the possibility of a
resetting relies on the internal dynamics.

In the following we imagine that we have a stochastic
searcher starting from a position inside of a circle with radius R.
At the same time we have a stationary target on the boundary of
the circle. The stochastic searcher performs a two-dimensional
Brownian motion with the diffusion constant D, until it arrives
at the boundary of the circle. The searcher then sticks to
the boundary and undergoes a one-dimensional diffusion with
diffusion constant D; along the boundary. During this whole
process the particle reset with a rate r to the initial position
inside the circle (in the following we will consider different
conditions under which resetting is possible). Then again, the
particle performs a two-dimensional diffusion until it arrives
at the boundary and so on. The process terminates when
the searcher finds the target. We assume here that the target
has no dimension which ensures that such a termination is
possible only during the one-dimensional diffusion phase. This
assumption allows to calculate the MTA exactly by using
the results derived in a large number of works on stochastic
processes with resetting in the last few years.

This paper is structured as follows: We will first remind
the readers about the properties of the diffusion processes
with stochastic resetting. In Sec. II we will consider the case
where the initial position of the particle is on the boundary
of the circle and analyze the corresponding MTA. In Sec. III
we focus on the case with an initial position at the center of
the circle and compare our results to previous works in an
intermittent setting [32]. In Sec. IV we analyze the properties
for general initial conditions. We will first derive an expression
for the gain potential. This provides the master equation of
the process which can then be solved in order to give us the
desired MTA. Furthermore, we will characterize the different
areas for which a resetting proves beneficial, depending on the
parameters D,, Dy, and r. In Sec. V we will follow the same
approach as in Sec. IV in order to analyze the properties of the
generalized process where resetting may even occur during the
two-dimensional diffusion. In the last section we will focus on
open questions and possible extensions of the present work.

A. General approach

All of the following sections correspond to different varia-
tions of the initial conditions or resetting dynamics. Regardless
of the specific features introduced at the beginning of each
section, the general approach will remain the same. One has
to consider hereby that in order to calculate the MTA we

only need to calculate the mean time for each of the two
different modes consisting purely of one- and two-dimensional
diffusion. Let also 77 be the mean time the particle spends
during its one-dimensional diffusion and 7, the mean time
of the two-dimensional path and then the total mean time to
absorption is given by

T=T+T. (1)

The quantity 7, can now be expressed in terms of the quantities
T and 1. 17, is hereby the mean time of the first two-
dimensional excursion. We use now the stationarity of the
diffusion process in order to claim that each two-dimensional
excursion starting after a reset from the boundary to the
intital position has the same mean duration as the first two-
dimensional excursion. This allows us to characterize the
quantity 7, in general as the mean time to boundary (MTB).
The mean time 75 is then given by the formula

I = (¢r + Do, @

where ¢, describes the mean number of resets from the
boundary.

Since the mean time between two resets is given by the
timescale 7, = r~', the mean number of resets from the
boundary has the value

T

¢ =t =rTy, 3)
T

leading to the simple formula for the MTA,
T=rTino+T + 1. 4)

Our only task in the following is now the determination of
the two quantities 7} and 7.

I1. DIFFUSION WITH RESETTING IN
ONE-DIMENSIONAL PERIODIC DOMAIN

We start with the simpler problem of an initial position
on the boundary of the circle. In this case we do not need to
consider the two-dimensional diffusion as this case boils down
to just a one-dimensional diffusion process with resetting in a
periodic domain of length L = 2w R.

Let us first recapitulate some basic properties of the one-
dimensional diffusion with resetting. In order to fully describe
aresetting process by a Fokker-Planck equation formalism we
need to define different potentials describing the dynamics of
the resetting process. One needs to define a resetting potential
Ps(x) responsible for the particle removal associated to the
relocation of the particles. This potential is in turn comple-
mented by the gain potential P¢(x), which is responsible for
the reappearance of the particles at a different position derived
from the corresponding distribution function. Finally, as we are
dealing with a target process, we need to insert an annihilation
potential P4 (x).

This allows us to describe the evolution of the probability
density function ¥r(x,f;xp) for a process starting from the
position xy at the time point r = 0 by solving the master
equation

OV (x,t;x0) 32y (x,1; x0)
=D
ot dx2
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+Pox) / dx' P Y (X' 15 x0)
— Ps(x)¥(x,t;x0) — Pax)(x,t; x0). (5)

This Fokker-Planck equation above can be generally used in
order to describe the dynamics for a large range of search
processes. The insertion of the potential P4 allows us to study
even processes with partial absorbing conditions [33-35].
Since in the presented problems perfect absorbing boundary
conditions are implied, the annihilation potential P4 can be
replaced by the boundary conditions

¥ (0,2;x0) = Y (L,15x0) = 0. (6)

From the Fokker-Planck equation one can easily derive the
backward master equation fulfilled by the survival probability

O(xo,1),
O(xo,1) = /dx V(x,15X0), )

describing the probability for a process to have survived up
to the time point ¢ if it started from the position xg. It is
indeed possible to derive Q(xy,?) for a large range of potentials
describing complex dynamics, as we shall encounterin Sec. IV.
The first process which we deal with is the one-dimensional
process returning to its initial position after each reset with a
uniform resetting field and two perfect absorbing boundaries.
In order to solve this problem we are assuming now that x, is
the position of the particle after the reset. So we set Pg(x) =
8(x — x,) and Ps(x) = r with ¥ (0,x¢;¢) = ¥ (L,xp;¢) = 0.
It is not hard to see that in this case the backward master
equation (5) can be replaced by following expression:

100 _ 320(x.1)
ar ' ax2

—rQ@x,1) +rQ(xo,t)  (8)
with
00,1) = Q(L,1) =0. 9

In order to solve this differential equation we can use the
Laplace transform

o0
f?(x,S)=/ dt Q(x,t)e™" (10)
0
leading to

32G(x,s)
Py

which yields [22]

D — (T +s5)gx,s)+1+rgx.,s)=0, (11)

Sy — /3 1 q(x,
GGrs) = AV 5 4 Be VB +w. (12)

Now by setting s = 0 we are in the position to calculate the
mean time to absorption,

o 0 ,t
T(x) = —f ar 1 225D _ao), (13)
0 ot
for which the expression
. I Y,
TG = Aet ™ 4 et x4 LT (14)
r
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FIG. 1. Inverse of the optimal mean free path length vs. the
starting position of the searcher for a system of length L = 1. We
can see that for 0.276L < xo < 0.724L the optimal mean free path
length is equal to co. This fact changes if we consider a starting
position which is closer to the boundaries and thus a finite value for
the mean free path length tends to be optimal.

with 7(0) = T (L) = 0 holds. We used hereby the notation

D,
L= — (15)

r

for the mean free path length between two resets.
Now due to the symmetry of the system we know that

d
—T v=r,2 =0, 16
™ (X)|x=L,2 (16)

which together with the two boundary conditions leads to the
solution

T(x)=

1+rT(x) [1 _cosh¢~!(x — L/2)

cosh¢~1L/2 :| a7

For the special case of x, = x, namely the case where the
particle resets to its initial position, we can derive the formula

22 |: sinh ¢~ 'L

Tx)=——|1-—+ -
sinh £~1x + sinh £~ 1(L — x)

b ] (18)

This result allows us to address the question with regard to the
dependence of the mean time on the starting position.

We define therefore the optimal free path length, £*, as the
value of ¢ for which

d
ﬁT(x)V:l* =0 (19)

holds. In Fig. 1 we can see that by decreasing the distance
between the starting position and one of the boundaries a
crossover for the optimal mean free path length from an infinite
value to a finite one takes place. This is particularly interesting
from a physical point of view. For initial positions near the
boundaries, a finite traveling distance between two resets and
hence r > 0 is efficient. As soon as the particle starts at a
position between the crossover points (0.276L,0.724L), an
infinite time interval between resets and thus pure diffusive
motion is preferred.
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III. HARD RESETTING

Let us now consider the case where the initial position is at
the center of the circle. We will characterize this process from
now on as a hard reset process. It can be treated as a special case
of the general process presented in the next section. We treat
this special case here first since the presented results confirm
previous discoveries which were derived for processes that
exhibit intermittent dynamics [36,37]. Furthermore, this first
problem is actually rather simple and thus a good introduction
to our general approach.

Since the particle finds itself in the center of the circle after
each reset the subsequent one-dimensional excursion will start
from an arbitrary point on the circle due to the radial symmetry.
This allows us to use the uniform probability distribution
function Pg(x) = L' = 2n R)_l for x € [0,27r R] for the
gain potential in Eq. (5).

The MTB for a Brownian particle starting at the center of a
circle with radius R is given by [1]

R2
(R) = D, (20)

In order to determine also the MTA of the one-dimensional
diffusion, we just need to find 77 by solving the differential
equation

32 r r
—1 =D1@T1(X)— zT](X)"‘Z dz T(Z) (21)
with the boundary conditions
r)y=1(L) =0, (22)

which, as shown in the previous section, takes the form

cosh 1 (x — L/2)y L

T(x)=—-A r cosh L(20) ! + - + F@O,L), (23)

where we used the notation F(0,L) = fOL dz T(z). From the
boundary conditions we can determine the constant A as

A=rF0O,L)+L. 24)

Reinserting the above expression in the general form described
in (23) and evaluating F(0,L) gives us

F(0,L) = [é + F(O,L):|(1 —2¢tanh L(20)™)
from which we obtain
F(0,L) = %[(22)*‘ coth L(2¢)~!' — 1]. (25)

Finally, we have

L coth L(2¢)~! | cosh¢~'(x — L/2)
20r cosh L(20)™!

From (26) one can see that the mean time to absorption
is vanishing for £ — 0. This behaviour is shown in Fig. 2.
This result is quite surprising since a vanishing mean free path
length leads to a restriction of the stochastic searcher in a very
small region and, consequently, leads to an increase of the mean
search time. At the same time, in the present context a vanishing
mean free path length leads to the visit of infinitely many
different positions on the circle. This infinite-speed sampling

T(x)=

] . (26)
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FIG. 2. Numerical evaluation of the formula (26) for xy = 0.5
with L = 1. We have chosen here, as before, D; =5 x 107".

outweighs the restriction effect and leads to an optimization of
the search process.

In order to appreciate this result we use the following vari-
ation of the original problem. We consider the gain potential

fe<x<l-—c¢

1
Pex) = { — , 27)

0 else
which restores the original uniform potential in the limit ¢ —
0. For the potential described by Eq. (27) and L = 1 we get
the mean time

(1 — 2¢)[cosh(2¢)~! — cosh £~ (x — 1/2)]

T(x) = . (28
(x) 2rCsinh 0-1(1/2 —¢) 28)
For small values of £ and x € [0,1] we have
he'(x —1/2
[1-003 x 1/ )} ~1. (29)
cosh (20)~
This allows us to replace Eq. (28) above with the expression
o722(1 — 2¢)¢
T(x)= ; - .
tanh (2¢)~' — cosh£~lg¢ —sinh £~ l¢
Now by using
671
tanh | — ) >~ 1, 30
an ( 5 ) 30)
for small values of ¢ we can simplify our formula to
eé"e
-2
T(x)=¢e0 (1 —2¢) . 3D
-lg

We also see that for high values of the resetting rate, the mean
time becomes independent of the initial position since due to
the resetting, the information with regard to the initial position
gets lost for increasing times.

Now we need to consider that the function x~'e* has a
minimum for x = 1. Correspondingly, the optimal resetting
rate for this one-dimensional problem is achieved when £~! =
e~!. By sending now & to zero, in order to regain the original
problem, we notice that the optimal resetting rate goes to
infinity.

Although there is no finite optimal resetting rate for the
one-dimensional case, the situation changes when we consider
the two-dimensional excursion of the particle. We evaluate
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FIG. 3. MTA for the hard resetting problem in the special case of
D,/D; =2forR=Q2n) ' and D, =5 x 1077,

therefore Eq. (4) by implementing Eq. (20) and Eq. (26) and
integrating over the interval [0, L] leading to

R?  LcothL(20)™' —2¢ <rR2

- —4+1). (32
4D2 2re 4D2 + ) ( )

This expression is in perfect agreement with Eq. (2.23) of
Ref. [37]. We can see this by using the series expansion of
the hyperbolic cotangent and Eq. (15) in order to rewrite this
expression as

r- R 2, i L 33)
- 4D, Dy D, (24?4 2

k=0 L Dy

T =

It follows from this result that an optimal resetting rate can
be found only if D,/D; > 0.38. This result is easily obtained
by anumerical evaluation of the formula above. In Figs. 3 and 4
we can see the diverse behavior of the mean time to absorption
for different values of ¢ for values above and below the critical
value of D, = 0.38D, respectively.

IV. PARTIAL RESETTING

Now we consider the general case where the initial position
lies inside the circle and is not the center. We start with the
problem where resetting can only take place from the boundary
of the domain. We will characterize this strategy from now on

3 x 106

Numerical
9.5 % 109 Analytical |

2 x 108 R

1.5 x 109 H E

(T'(0))

1x 100 F g

500000 g

0 010203040506070809 1
l

0

FIG. 4. MTA for the hard resetting problem in the special case of
D,/D; =0.25for R=(2n)"'and D, =5 x 107",

as partial reset process. In the next section we will consider
the problem of a persistent resetting field, where resetting can
take place from anywhere during the Brownian motion of the
particle, including from anywhere inside the circle, irrespective
of whether the particle is undergoing one-dimensional or two-
dimensional diffusion.

Let us first imagine that our particle starts from the position,
given by the polar coordinates X = (Ry,0y), where Ry is the
distance from the center and 6y is the angle it makes with the
vertical. After a two-dimensional excursion the particle arrives
at the circle. The mean time for this arrival at the boundary is
given by
R*— R}

4D,

Depending on the parameters R, and 6, the likelihood of cross-
ing the boundary at a specific angle has to be calculated. This
allows us to determine the probability distribution function
of the starting position for the subsequent one-dimensional
diffusion phase. In order to compute the probability distribu-
tion function of the hitting angle we can use an electrostatics
analogy [1] which leads to

(R, Ry) = (34)

i

P(0; 60, Ro) = k2 . (35)
an[l _ 2Roco;(9700) + ﬁ_é]

Let xo be the point on the boundary of the circle that lies
on the line connecting the initial position Ry = (6y, Ry) to
the center of the circle and is closest to the initial position.
Then Pg(z) = P(6, Rp) holds if we assume that R(6 — 6)) =
(z — x0). Inserting this expression into Eq. (5), we can get
following backward equation for the mean time to absorption
for a process starting on the boundary at the position x:

2

0= DI%T()C) —rT(x)+1 +rfdz Pc(2)T(z). (36)

Using the boundary condition 7°(0) = T (2w R) = 0 together
with Eq. (16), we can easily solve this nonhomogeneous
differential equation of second order to deliver

cosh ¢~ '(x — nR)]

1

(37)

If we multiply now both sides of this formula with Pg(x) and
integrate over the interval [0,27 R], then we can see that

cosh \/%% — cosh \/%(x —L/2)

T(x) = (38)
r [ dzPg(z)cosh \/5(z — L/2)
holds.
The MTA is thus given by the expression
T, = / dzPg(2)T(2). (39)

Implementing all of these results in Eq. (4), we get

ro Bk (1 FoR /dP()
o 4D2 r 4D2 reix

cosh /--mR —cosh_ /2 (x —7R)
VD VD
x : : . (40)

[ dzPg(z) cosh \/DI,(Z —7R)
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FIG. 5. Mean time to absorption for a Brownian process starting
inside a two-dimensional circle for different initial conditions (Ry,0).
The points were determined by a Monte Carlo simulation with
D, =107% 2D; = D5, and R = 1/2n. The lines correspond to our
theoretical values for these parameters.

In Fig. 5 we can observe a very good agreement between this
formula and the results of Monte Carlo simulations.

The derived equation gives us the opportunity to character-
ize the different regimes inside the circle for which an optimal
resetting rate can be found. In Fig. 6 we represent the respective
areas for the ratios of D, = 0.25D, and D, = D; which are
below and above the characteristic value of D, = 0.38D;
that was determined in the last section. In both figures the
Ro/R =1 axis is crossed at the value of & = 0.567, which is
in perfect agreement with the results of Sec. II.

V. PERSISTENT RESETTING

In the previous section we could determine for specific
values of the ratio D,/D; the different regimes for which a
resetting from the boundary could be beneficial. In this section
we analyze the dynamics for a process for which resetting
takes place not only from the boundary but also from inside
of the circle. We consider also a permanent resetting field and

A A

FIG. 6. Different regimes with regard to the existence of an
optimal resetting rate for different initial position for a Brownian
particle in search for a target located at A. The left figure corresponds
to the choice of parameters with D,/D; = 0.25 and on the right to
D, = D,. The shaded area (red) describes initial positions for which
no positive optimal resetting rate can be found. We can see that for
D,/D; =1 a particle starting from the center of the circle can be
optimized through a positive resetting rate.

characterize in the following the process as persistent reset
process.

While the formalism and approach of the previous sections
proves useful, special care with regard to two characteristics of
the present problem has to be taken into account. The first is the
modification of the MTB, 1,, due to the resetting mechanism.
The second is the effect of the resetting mechanism on the
hitting angle distribution.

We start with the first point, the goal being to determine the
conditions under which an optimal resetting rate with regard
to T, can be found. Let X, be the position of resetting and then
the two-dimensional excursions of the particle are described
by the backward equation

DyV2G(X,s) — (r +$)§(X,s) = =1 —r§(X,,s)  (41)
with the boundary condition
G(x,9)|z=r = 0. (42)

We start by providing the solution to the homogeneous
equation

D,V2G(X,s) — (r +5)§(X,5) =0 (43)

which is radially symmetric about the origin and has a vanish-
ing derivative at |xX| =0

V§(x,s)l;—5 = 0. (44)
These conditions are fulfilled by the equation
U r+s .
Ghom(X,8) = Iy x| (45)
D,

where [, is the modified Bessel function of the first type.
Now we can use this expression in order to solve the
differential equation (41) by considering, as before, the ansatz

G(%,s) = AIO( jrts |z|) +B. (46)
D,

By taking into account the boundary condition we can derive
the solution

Io(€;'R) — Io(€;'1X])
rlo(65'1%:1) + sIo(6'R)
with E;l = /(r +s)/D,. For the problems studied in this

paper, where the resetting position X, is equal to the starting
position, we have

G(x,s) = (47)

Io(€;'R) — Io(€;1)%
GGy = e R) = b6 )
rlo(¢511X1) + slo(¢5 ' R)

Now we can determine the MTB for this process provided
by the formula

e 1 W(6'R)
7(Roy) = G(Ry,s =0) = N ATETRY (Z’IR) 1 (49)
0\t 0

with €, = /D, /r.InFig. 7 we can see a very good agreement
between the derived analytical solution and the Monte Carlo
simulation. Furthermore, in Fig. 8§ we determine the optimal
resetting rate for a large range of values of the ratio Ry/R. As
we can see, an optimal resetting rate can be found only for
Ry > 0.578R.

(48)
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FIG. 7. MTB for two-dimensional Brownian motion in a circle of
radius R = 1 starting from the radius Ry = 0.9 for different inverse
mean path lengths. We can clearly see that there exists an optimal
resetting rate for which this time is minimized.

We can even calculate the ratio D,/ D, for which the effect
of resetting is beneficial when starting from the center of the
circle. We can use the same formula as before to show that the
mean time to absorption in this case is given by

L(6'R Io(t;'R
! 0(+) —1|+ 0(,;1)
r IO(EZ RO) IO(EZ RO)
1
M[L —2¢;tanh L(2¢,)"']  (50)
27‘61

with £; = /D1 /r. In Fig. 9 we compare this formula to the
numerical simulation for the special case of ¢~' = ¢! =
12y ! By evaluating this formula we can see that a necessary
condition for the existence of an optimal resetting rate is
D, > 0.4D;. As expected, this value is slightly larger than
the value (D, > 0.38D;) calculated in the last section for the
special case where the resetting field acts only on the boundary
of the system.

Now we focus on the effect of the resetting on the hitting
angle. As discussed in Ref. [38] a resetting mechanism has

500 —
450 |
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350 |
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250 |
200 | 10
150 b
100 b 0.5

(é*)Al

0 I L L L L L L 1
0 010203040506 070809 1

Ry/R

FIG. 8. Inverse of the optimal mean free path length for different
ratios of the initial radius to the total radius of the circle. We can see
that for Ry > 0.578R the optimal resetting rate is greater than zero.
We have used here a circle of radius R = (27)~!.

280000

Monte Carlo ©
Analytical |
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o
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FIG. 9. MTA for a particle starting from the center of the circle
of radius R = (27)~! for different inverse mean path lengths. We can
clearly see that there exists an optimal resetting rate for which this
time is minimized. The results of the Monte Carlo simulation show a
very good agreement to the analytical expectations derived from the
formula (50).

a significant effect on the outcome of an absorption process.
This can be understood by considering the stochastic paths of
the particle influenced by resetting as the paths of a renewal
process. The mean length of these paths is proportional to .
Successfully approaching the boundary is only possible for the
direct paths between initial position and boundary.

We use the method introduced in Ref. [38] in order to
calculate the effect. Let P(6,7) describe the probability density
function of the absorption time for a path that crosses the
boundary at the point corresponding to the angle 6, and then
the probability for the same outcome with a positive resetting
rate r is given by

P@,r)
r

(
P.(0) = —
©) 50

, 61V

where P(6,r) and P(r) denote the Laplace transforms of
P(@,t)and P(t) = f do P(0,t) evaluated at r, respectively. In
order to calculate the probability distribution functions P(0,t),
the image method proves cumbersome. We therefore suggest a
Monte Carlo simulation for the calculation of this probability
distribution function.

The calculation of the Laplace transform P(r) is easier on
the other side, since

P(r)=— /OO dt 90(Ro,1) Q(Ro’t)e_”
A ot

O / dt " Q(Ro.1)
0

_ 216(¢;" Ro) 52)
Io(¢='R) + Io(€5' Ro)

As in Sec. IV we can use this formula in order to determine
the probability distribution function of the starting point on the
circle Pg(z) = P,(0) by setting R(6 — 6y) = (z — xp).
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This way we can summarize all results of the present section
in the following formula:
Io(6;'R)

1| I(¢'R
r IO(EZ R()) Io(gz Ro)
cosh€;'mR — cosh¢;'(x — 7 R)
[dzPg(z)cosh €)' (z — R)

This expression is in good agreement with our previous results.
For example, it is not hard to see that in the limit D, — oo the
present formula is equivalent to Eq. (40).

x / dx Po(x) . (53)

VI. CONCLUSION

In this work we studied the dynamics of a diffusive searcher
which combines two different behaviors. In one mode the
searcher undergoes a two-dimensional diffusion and in the
second mode a one-dimensional diffusion process along the
boundary is performed. We also assumed that the evolution of
the process is accompanied by restarts allowing the searcher
to return to its initial position.

We started by a Fokker-Planck formalism and used the
Laplace transform to calculate the mean time to absorption for
several variations of the process. This allowed us to get a better
understanding of the properties of random search processes
with restarts in two-dimensional bounded domains. In the past
we could show that resetting can be beneficial for the case of an
one-dimensional diffusion process in a bounded domain [35].
The work presented here allows us to claim that this statement
holds also for a diffusion process inside a two-dimensional
domain.

Specifically, we could see that for the case of a one-
dimensional process taking place in a periodic domain of
length L an optimal resetting rate exists as long as the distance
between the initial position and the target is smaller than
0.276L. In the next section we found that if the resetting
distribution applies on the whole interval [0,L], then the
optimal resetting rate is equal to co.

These results were especially useful when analyzing the
process switching from two-dimensional diffusion to one-
dimensional excursion on the boundary where a resetting field
applies. For this problem we could determine several regions
for which an optimal resetting rate that was bigger than zero for
different values of the ratio D,/ D; between the two diffusion
constants. It was also possible to show that when the process
starts from the center of the circle an optimal resetting rate
can be found as long as D, > 0.38D;. This is in perfect
agreement with the past findings of similar works concerned
with processes exhibiting intermittent behavior [36]. In the last
section we considered the possibility of a reset from also inside
the circle and have shown that when starting from the center
of the circle a resetting rate that is bigger than zero can only
be preferential when D, > 0.4D;.

Another generalization of the present formalism could
consist in the replacement of the pointlike target by an extended
area on the boundary. The presented methods can easily be
implemented to solve the problem of a Brownian particle trying
to escape from a bounded domain through a small window
while under the effect of a resetting potential. This can be
considered as a variation of the narrow escape problem [39].

It would be interesting to see if a positive resetting rate can
accelerate this process.

In several works in the past discussing diffusion with
resetting, the case of many searchers has also been considered
[20,22,34]. We think that such a consideration would also be
interesting in the present setting. One could go even further and
implement an interaction mechanism between these searchers
by adopting a single-file diffusion process on the boundary of
the circle.
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APPENDIX: MONTE CARLO SIMULATION

In order to compare our analytical findings with numerical
results, we relied on Monte Carlo simulations. An easy way to
simulate a Brownian-like motion consists hereby of observing
the evolution of a discrete time random walk x; with t € N,
defined by

(AD)

t
X =x0+25k,

k=0

whereas the random variables &, are drawn from a normal
distribution with mean 0 and variance o .

The mean variance of the random walk is given by the
formula

IE[xtz — x§] = ]E|:Z(x,~ — xi_1)2] = ot (A2)
i=1

By comparing this expression to the Green’s function we
see that 02 = 2D;. This relation between these two scales
(analytical and numerical) allows us to directly compare our
numerical results to the derived analytical expressions.

We have to note here that one has to be careful with
regard to the choice of standard deviation, since higher val-
ues of volatility may lead to discrepancies between the two
approaches since the nature of the continuum (analytical) and
the discrete (numerical) time-step processes is fundamentally
different. This is shown in Fig. 10 where the expected time to
absorption for a process with no resetting and two perfectly
absorbing boundary conditions is plotted for both numerical
and analytical methods. An efficient way to overcome this
difficulty is presented in Ref. [40]. The presented methods of
this work were not put in use here since we decided to restrict
ourselves to processes with small volatility for which the
potential gain in computational speed would be insignificant.

In Secs. IV and V the implementation and understanding
of the dynamics of two-dimensional Brownian motions be-
came necessary. In order to achieve that, we considered a
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FIG. 10. Numerical and analytical evaluation of the targeting
problem with no resetting. We calculate the mean time to absorption
for a Brownian particle starting from xo = 1/2 with two absorbing
boundary conditions 7'(0) = 7 (1) = 0. We can see that a comparison
between our analytical and numerical results is only possible for low
values of o.

two-dimensional random walk described by the equation

%= (xo + Z&)e} + (yo + ZSk)e_;’ (A3)
k=0 k=0

whereas &, is a white noise process derived from the Gaussian
distribution A (0,0). For the presented two-dimensional pro-
cess we have a standard deviation given by 2D, = o%. This

allows us to determine numerically the stopping time
n=inf{r e N:x} +y] > R*}. (A4)

For two-dimensional systems the offset is extremely hard to
reduce in comparison to the one-dimensional processes. For-
tunately, we can rely hereby on two methods: using processes
with a smaller volatility and/or introduce a finer timescale. The
first method is nonoptimal since it leads to an increase of the
mean time to absorption and correspondingly to higher running
times.

We decided therefore to use the second method. We consid-
ered hereby that each time step consists of §~2 smaller steps
during which jumps of length §¢ are performed. It is easy to
see that by sending § to zero the desired Wiener process can
be approximated, but even for § > 0 this method leads to a
great improvement of the derived results. For Sec. IV we have
chosen § = 0.25 and for Sec. V§ = 0.1.

In order to simulate the resetting mechanism we introduced
the resetting probability r,, € [0,1]. After each jump the walker
is reset to a new position with a probability r,, according to the
gain distribution Pg. The mean time between two resets t, for
this process is consequently given by the formula

= . l—r, 1
r,=1+Zkrn(1—rn)=1+ = (A5)

k=0 n rn

In our analytical calculations we know that the times intervals
between two resets have an exponential distribution
Pit)y=re ™ (A6)
for which then the mean time is given by 7, = %
A comparison between our analytical findings and the
Monte Carlo approach is made possible by adjusting the two
parameters, r, and r, so that these two timescales are equal.
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