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Role of quantum coherence in the thermodynamics of energy transfer
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Recent research on the thermodynamic arrow of time, at the microscopic scale, has questioned the universality
of its direction. Theoretical studies showed that quantum correlations can be used to revert the natural heat
flow (from the hot body to the cold one), posing an apparent challenge to the second law of thermodynamics.
Such an “anomalous” heat current was observed in a recent experiment (K. Micadei et al., arXiv:1711.03323),
by employing two spin systems initially quantum correlated. Nevertheless, the precise relationship between this
intriguing phenomenon and the initial conditions that allow it is not fully evident. Here, we address energy transfer
in a wider perspective, identifying a nonclassical contribution that applies to the reversion of the heat flow as well
as to more general forms of energy exchange. We derive three theorems that describe the energy transfer between
two microscopic systems, for arbitrary initial bipartite states. Using these theorems, we obtain an analytical bound
showing that certain type of quantum coherence can optimize such a process, outperforming incoherent states.
This genuine quantum advantage is corroborated through a characterization of the energy transfer between two
qubits. For this system, it is shown that a large enough amount of coherence is necessary and sufficient to revert
the thermodynamic arrow of time. As a second crucial consequence of the presented theorems, we introduce a
class of nonequilibrium states that only allow unidirectional energy flow. In this way, we broaden the set where
the standard Clausius statement of the second law applies.
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I. INTRODUCTION

Since Carnot discovered the fundamental limit that governs
the efficiency of heat engines, the second law of thermody-
namics has been discussed and explored in different ways. One
of them refers to the celebrated Clausius statement that heat
must flow from a hot system to a cold one, when the whole
system is isolated. This preferred direction of the heat flux may
be interpreted as a “thermodynamic arrow” that characterizes
the time ordering of physical events [1–3]. More recently,
developments on quantum thermodynamics have allowed the
thermodynamic description of microscopic quantum systems.
Fluctuation relations [4,5] and information-theory inspired
approaches [6–9] represent powerful tools to carry out this
task. These new paradigms, which refer to systems that start
in a nonequilibrium state or that undergo a nonequilibrium
dynamics, have led to some generalizations of the second
law beyond the scope of standard thermodynamics [10–13].
They also establish new connections between thermodynamics
and information theory [14,15], enabling a formal treatment
of Maxwell’s demon and related subjects [16–19]. On the
experimental side, crucial advances have been achieved to
access and characterize energy fluctuations in microscopic
systems [20–30].

Among the plethora of results obtained on quantum ther-
modynamics, many of them center on the concept of work
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[31,32], and its interplay with other thermodynamic variables
such as entropy production [33]. The process of heat exchange
between two finite-size systems is a less studied phenomenon.
While for two quantum systems in an initially uncorrelated
state the Clausius statement holds [34], the same may not
be true for initially correlated bodies [34,35]. This assertion
has been corroborated in a recent experiment using a two-spin
system embedded in a nuclear magnetic resonance setup [36].
However, a comprehensive description of such a behavior is
lacking. Of particular interest is to unveil the role played by
quantum properties, e.g., coherence or entanglement, in the
reversion of the thermodynamic arrow of time. In this respect,
a fluctuation relation for heat exchange in the presence of
classical correlations was derived and discussed in Ref. [37].
The performance of quantum coherence has been analyzed in
the context of work extraction [38–42], entropy production
[43,44], and Landauer’s erasure [45]. Other investigations
focus on how coherence transforms under thermodynamic
operations [46–48], without intending to assign it some op-
erational meaning.

In this paper, we investigate the physical process of en-
ergy exchange between two microscopic systems, consistently
with the first law of thermodynamics [49]. To this aim, we
present in Sec. II three theorems that describe the transfer
of average energy induced by unitary and energy-conserving
evolutions. These theorems are valid for arbitrary bipartite
states, allowing to incorporate heat exchange (i.e., when each
system starts at thermal equilibrium) as a particular case. Two
fundamental consequences are derived from such theorems.
First, we establish in Sec. III that quantum coherence (in the
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eigenbasis of the free joint Hamiltonian) potentially enhances
the energy transfer, under an optimal evolution. Specifically, it
is shown that the maximum energy transfer for an incoherent
initial state is upper bounded by the obtained one when
coherence of certain type is included. In Sec. IV we deduce
a class of states for which the energy flow occurs in a single
direction. This set contains all the tensor products between
thermal states, according to the Clausius statement of the
second law, but is not restricted to them. To illustrate our
findings, Sec. V provides a characterization of the energy
exchange between two qubits. We verify that, for an optimal
dynamics, the energy transfer is maximized only if enough
initial “useful” coherence is available. This quantum feature
is further responsible for reverting the heat flow between
thermal qubits, which constitutes a comprehensive framework
for the experimental results reported in [36]. We also obtain
a linear relation between the maximum energy transfer and
the concurrence, for entangled Bell-diagonal states [50,51]. It
is shown that a quantum enhancement results from a subset
of separable states within this class. Section VI presents the
conclusions and some possible paths for future research.

II. ENERGY EXCHANGE UNDER STRONG
ENERGY-CONSERVING (SEC) UNITARIES

Let us consider two quantum systems A and B, with nonde-
generate and discrete Hamiltonians HA and HB , respectively.
We adopt “energy conservation” according to the condition
[U,H ] = 0, where H = HA + HB is the total free Hamiltonian
and U is a unitary map generated by some interaction Hamilto-
nian HI . This is equivalent to demand that U preserves the sum
of the local energies for any initial joint state ρ: Tr(HUρU †) =
Tr(Hρ). Hence, we say that U is “strong energy conserving”
(SEC). For small systems, the strength of the interaction energy
may be of the same order of the local energies. Therefore, it
is not evident how to physically implement U , as even for HI

constant we can only guarantee that the total energy (including
the contribution from HI ) is preserved. A sufficient condition
for U to be SEC comes from the relation [H,HI ] = 0 [52].
The resonant Jaynes-Cummings model [53] exemplifies a well
known system that fulfills this requirement. If, in addition, we
assume that the total Hamiltonian at the beginning and at the
end of the energy exchange process is H , the local energies
become well defined quantities. It is worth remarking that the
adopted definition constitutes a paradigmatic approach to the
first law of thermodynamics in microscopic systems (see, e.g.,
[15,31] and references therein).

Without loss of generality, the state ρ can be written as

ρ = ρDiag + χ, (1)

where ρDiag and χ are the diagonal part and the coherent
(off-diagonal) part of ρ in the eigenbasis of H , respectively.
Each eigenstate of H with eigenvalue E has the form
|iE〉A|jE〉B , where |iE〉A and |jE〉B are local energy eigen-
states satisfying HA|iE〉A = εiE |iE〉A, HB |jE〉B = ε̄jE

|jE〉B ,
and εiE + ε̄jE

= E. For E fixed, the relation εiE + ε̄jE
= E

and the nondegeneracy of the local Hamiltonians imply a
one-to-one correspondence between iE and jE . This means
that for each iE there is only one jE that fulfills this equation
and vice versa. In this way, we can completely characterize

the spectrum of H by using the total energy index (E) and a
single local energy index. Choosing by convention the index iE ,
the resulting set is denoted as {|iE,E〉}iE,E , where H |iE,E〉 =
E|iE,E〉 and HA|iE,E〉 = εiE |iE,E〉. This notation provides a
natural decomposition into subspaces of fixed energy E, very
suitable for the analysis of SEC unitaries.

Now, we explicitly write ρDiag and χ in the eigenbasis
{|iE,E〉}. For ρDiag we have

ρDiag =
∑

E

pEρDiag(E), (2)

where ρDiag(E) ≡ ∑
iE

p(εiE
,E)

pE
�

(E)
iE

and �
(E)
iE

≡ |iE,E〉
〈iE,E|. The joint probability to measure energy εiE for system
A and total energy E is given by p(εiE ,E). Accordingly,
pE = ∑

iE
p(εiE ,E) is the total probability to measure joint

energy equal to E. On the other hand,

χ =
∑

E,E′
χ (E,E′), (3)

where χ (E,E′) ≡ ∑
iE,jE′ : iE �=jE′ or E �=E′ α

(E,E′)
iE,jE′ �

(E,E′)
iE,jE′ and

�
(E,E′)
iE,jE′ ≡ |iE,E〉〈jE′ ,E′| [54].
The energy transfer to the system γ (γ = A,B) is denoted as

�〈Hγ 〉 and represents the average energy variation undergone
by this system, through the application of a SEC unitary U .
If the initial joint state is ρ, then �〈Hγ 〉 = Tr(Hγ UρU †) −
Tr(Hγ ρ). Taking into account Eq. (1), this quantity is given by

�
〈
Hγ 〉 = �Diag〈Hγ 〉 + �Coh〈Hγ 〉, (4)

where �Diag〈Hγ 〉 ≡ Tr(Hγ UρDiagU
†) − Tr(Hγ ρDiag) and

�Coh〈Hγ 〉 ≡ Tr(Hγ UχU †) − Tr(Hγ χ ) are the “diagonal
energy transfer” and the “coherent energy transfer,”
respectively.

Definitions 1–3 set the framework for the presentation of
Theorems 1–3. These theorems characterize the energy transfer
for arbitrary initial states and are pivotal in the derivation
of subsequent results. The corresponding proofs are given
Appendix A, in order to focus on their physical aspect.

Definition 1. From the eigenspace HE ≡ span{|iE,E〉}iE ,
spanned by all the joint eigenstates with eigenenergy E, we in-
troduce the E-local subspace of system A,HA

E ≡ span{|iE〉A}.
A state 	A(E) with eigenvectors |ϕE

i 〉
A

∈ HA
E is called an

E-local state of system A. In addition, an E-local unitary
UA

E is a unitary that maps the subspace HA
E into itself, and

is exclusively defined on this subspace.
Definition 2. The requirement that a SEC U preserves the

total energy for any state ρ is equivalent to demand that it
does so for any joint energy eigenstate |iE,E〉. That is, U must
transform |iE,E〉 into a superposition of eigenstates having
equal total energies: U |iE,E〉 ≡ ∑

jE
c

(E)
iE,jE

|jE,E〉. Taking into
account that the action of U is arbitrary within each eigenspace
HE , for any E the coefficients {c(E)

iE,jE
} allow to construct an

arbitrary E-local unitary: UA
E |iE〉A ≡ ∑

jE
c

(E)
iE,jE

|jE〉A.
Definition 3. (Restricted passivity). Any E-local state

	A(E) = ∑
i qi |ϕE

i 〉
A
〈ϕE

i | can be transformed by an E-local
unitary in the state 	A

P (E) = ∑
iE

qiE |iE〉A〈iE|, where qiE �
qi ′E implies that εiE < εi ′E , for any iE,i ′E . We say that 	A

P (E) is
E passive, or passive within HA

E . Physically, this means that
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	A
P (E) is the state of minimum energy, that can be attained from

	A(E) through an E-local unitary. Analogously, the maximum
energy state that results from applying an E-local unitary
on 	A(E) is 	A

M (E) = ∑
iE

qiE |iE〉A〈iE|, such that qiE � qi ′E
implies εiE > εi ′E , for any iE,i ′E [55].

Theorem 1. Let ρA
Diag(E) ≡ TrBρDiag(E) be an E-local

state defined through Eq. (2). Under the effect of a
SEC unitary U , the diagonal energy transfer to system A

is given by �Diag〈HA〉 = ∑
E pETrA(HAUA

E ρA
Diag(E)UA†

E −
HAρA

Diag(E)).
Physical relevance. This theorem allows us to straight-

forwardly establish the possible values for the diagonal en-
ergy transfer. Since any E-local unitary UA

E is arbitrary on
HA

E , according to Definition 2, the minimum (maximum) of
�Diag〈HA〉 is determined by separately minimizing (maximiz-
ing) each term TrA(HAUA

E ρA
Diag(E)UA†

E ) with respect to UA
E .

From Definition 3, these extremal values are attained when
UA

E ρA
Diag(E)UA†

E is an E-passive state (minimum), or a max-
imum energy E-local state (maximum). The corresponding
optimal SEC U is readily obtained by means of Definition 2.
Theorem 1 is also fundamental for the proof of Theorem 3 (see
Appendix A).

Theorem 2. Under the effect of a SEC unitary U , the
coherent energy transfer to system A is given by �Coh〈HA〉 =∑

k ηkεk , where {εk} are the eigenvalues of HA and ηk ≡
2

∑′
E

∑
iE<jE

Re(α(E,E)
iE,jE

c
(E)
iE,kc

(E)∗
jE,k ). For k fixed, the sum

∑′
E

is restricted to values of E satisfying E = εk + ε̄lE , where ε̄lE

is an eigenvalue of HB (this implies k ∈ {kE}).
Physical relevance. The coefficients ηk embody an interplay

between the coefficients of coherence α
(E,E)
iE,jE

and the c
(E)
iE,kE

,
which describe the action of U . In particular, they are indepen-
dent of α

(E,E′)
iE,jE′ , for E �= E′. In this way, this theorem singles

out the kind of coherence that may contribute to the energy
transfer, corresponding to those terms χ (E,E′) with E = E′
in Eq. (3). The corollary below states a necessary condition on
U to get a non-null coherent energy transfer.

Corollary 2.1. Any SEC unitary with the potential
to yield �Coh〈HA〉 �= 0 must belong to the following
set: {U} ≡ {U : there exists c

(E)
iE,kE

c
(E)∗
jE,kE

�= 0, for iE �= jE}. If

c
(E)
iE,kE

c
(E)∗
jE,kE

�= 0, Definition 2 implies that U must transform
|iE,E〉 and |jE,E〉 in superpositions of energy eigenstates
(there also exist c

(E)
iE,lE

�= 0 and c
(E)
jE,lE

�= 0, for lE �= kE). Oth-

erwise, 〈jE,E|U†U |iE,E〉 = c
(E)
iE,kE

c
(E)∗
jE,kE

�= 0 and U would not
be unitary.

Theorem 3. For ρ arbitrary, the SEC unitary Ũ that maxi-
mizes �Diag〈Hγ 〉 is such that �Coh〈Hγ 〉 = 0 [56].

III. ROLE OF QUANTUM COHERENCE
IN THE ENERGY-TRANSFER OPTIMIZATION

The physical impact of Theorem 3 will now become
apparent. We start by pointing out that the coherences in ρ do
not contribute to the initial local energies, namely, Tr(Hγ χ ) =
Trγ (Hγ Trγ ′χ ) = 0 for any ρ, where γ ′ = B if γ = A and vice
versa (the reason for this equality being that Trγ ′χ can not
yield diagonal elements in the eigenbasis of Hγ ). Therefore,
the same amount of energy, Tr(Hγ ρDiag), is initially available
in the states ρ and ρDiag to be exchanged. Such a property

allows us to perform an unbiased comparison between these
states, in order to assess the role that coherence plays in this
task. We find that indeed coherence is a potential resource to
optimize the energy transfer. This is expressed by means of the
inequality

max
{U}

�〈Hγ 〉 � max
{U}

�Diag〈Hγ 〉, (5)

where {U} is the full set of SEC unitaries.
From Eq. (4) and Theorem 3 it follows that, for U =

Ũ ,�〈Hγ 〉 = max{U}�Diag〈Hγ 〉, which immediately implies
Eq. (5). It is worth remarking that the right hand side
of this inequality can be readily computed by means of
Theorem 1. To apply it, we just need to decompose the
local state ρ

γ

Diag = Trγ ′(ρDiag) into E-local states: ρ
γ

Diag =∑
E pEρ

γ

Diag(E) = ∑
E pETrγ ′ρDiag(E). Theorem 2 provides

a necessary condition on the initial coherence, to obtain an
enhancement in the energy transfer [corresponding to the strict
inequality in Eq. (5)]. Moreover, Corollary 2.1 tells us that such
a resource can only be exploited by some unitary in the set
{U}. We shall later corroborate this quantum thermodynamic
signature in the special case of two interacting qubits.

IV. STATES THAT ONLY ALLOW ENERGY
FLOW IN ONE DIRECTION

Let us introduce the following set of states:

{σ (A←B)} = {
ρ: ρA

Diag(E) is passive within

HA
E and χ (E,E) = 0, for all E

}
. (6)

If ρ ∈ {σ (A←B)}, the energy flow for any SEC unitary occurs
from system B to system A (hence the notation A ← B). The
condition of E passivity for any ρA

Diag(E) is necessary and
sufficient to have a unidirectional diagonal energy transfer. In
this case, Theorem 1 implies that the energy associated to each
term in the sum for �Diag〈HA〉 can never decrease. Conversely,
if ρA

Diag(E′) is not E′ passive on the E-local subspace HA
E′ ,

we can choose a set of E-local unitaries {UA
E } such that UA

E′
reduces the energy of ρA

Diag(E′) while the remaining unitaries
are the identity in the corresponding subspaces (for E �= E′).
Theorem 2 guarantees that, for a state ρ containing only
coherences of the form χ (E,E′), with E �= E′,�〈HA〉 =
�Diag〈HA〉. Therefore, the total energy transfer to system A

is always positive for the states defined in Eq. (6). On the other
hand, we can not assert that this equation encompasses all the
states manifesting unidirectional energy flow. If coherences
χ (E,E) �= 0 are present in ρ, answering this question requires
the more involved task of determining the sign of �〈HA〉.

The Clausius statement of the second law of thermody-
namics applies to uncorrelated states ρA

βA
⊗ ρB

βB
, where ρ

γ

βγ

is a thermal equilibrium state at inverse temperature βγ [34].
For the sake of consistency, we prove in Appendix B that, for
βA > βB , any such state belongs to {σ (A←B)}. However, Eq. (6)
evidently extends the scope of this statement, as it includes
states with coherences of the type χ (E,E′). To further support
this generality, we show in the aforementioned appendix that
any tensor product between a passive state [57,58] of system
A and a maximally active state [59] of system B also belongs
to {σ (A←B)}.
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V. CHARACTERIZATION OF THE ENERGY EXCHANGE
BETWEEN TWO QUBITS

We consider here two qubits with identical Hamiltonians
Hγ = h̄ω|1〉γ 〈1| = |1〉γ 〈1|, where we set h̄ω = 1 for simplic-
ity and |1〉γ (|0〉γ ) represents the excited (ground) state of qubit
γ . This condition ensures that a SEC unitary acts nontrivially
on the energy eigenspace HE=1. From Theorem 2, only the
coherences χ (1,1) may contribute to the energy transfer.
Therefore, a potential quantum advantage results from states
ρ = ρDiag + χ (1,1), where |α(1)

0,1|2 ≡ |α(1,1)
0,1 |2 � p0,1p1,0 [54]

and pi,j = Tr(|i〉A〈i| ⊗ |j 〉B〈j |ρ) [cf. Eqs. (2) and (3)]. The
description of �Diag〈Hγ 〉 and �Coh〈Hγ 〉 is embodied by two
real parameters, 0 � r � 1 and 0 � φ � 2π , associated to an
arbitrary SEC unitary. These quantities are obtained (without
loss of generality) for system A in Appendix C, yielding

�Diag〈HA〉 = (p0,1 − p1,0)r2 = (
pB

1 − pA
1

)
r2, (7)

�Coh〈HA〉 = 2 Re
(
α

(1)
0,1e

iφ
)
r
√

1 − r2, (8)

where p
γ

1 =Tr(|1〉γ 〈1|ρ) is the excited population for qubit γ .
The optimization of �〈Hγ 〉 is carried out in Appendix D.

We find that

�〈Hγ 〉max = max{U ;α(1)
0,1}�〈Hγ 〉 = μγ , (9)

where μA = p0,1, μB = p1,0, and the maximum corresponds
to a state of maximum coherence, given by |α(1)

0,1| =√
p0,1p1,0. In particular, Eq. (9) shows that �〈HA〉max >

max{U}�Diag〈HA〉 = p0,1 − p1,0 [for r = 1 in Eq. (7)]. This
represents an enhancement of the energy transfer to system A,
due to coherence, and corroborates for two qubits the quantum
advantage suggested by Eq. (5). The exclusive dependence on
the local populations p

γ

i , expressed by Eq. (7), also means
that �Diag〈HA〉 is not affected by classical correlations in
ρDiag. Therefore, for locally thermal qubits the reversion of
the thermodynamic arrow of time is only possible through
the coherent contribution to the energy transfer. If the qubit
A has the larger temperature, such a reversion is implied
by the positive value of �〈HA〉max in Eq. (9). We can also
interpret this “anomalous” heat flow as necessarily owed to
quantum correlations. A classically correlated state ρ, with
both marginals ργ = Trγ ′ρ being diagonal in Hγ (as is the
case for local thermality), is a state without coherence in
the eigenbasis of HA + HB [60]. Hence, the absence of local
coherence implies that ρ must have quantum correlations to
produce �Coh〈HA〉 �= 0.

We complement the discussion about the role of quan-
tum correlations for energy transfer, analyzing this process
for Bell-diagonal states [50,51]. The condition of maxi-
mally mixed marginals implies that p0,1 = p1,0. Therefore,
�〈HA〉 = �Coh〈HA〉 [cf. Eq. (7)] and �〈Hγ 〉max = p0,1, ac-
cording to Eq. (9). If we specialize to a subset of entan-
gled states [red line in Fig. 1(b)], Eq. (9) simplifies to (see
Appendix E)

�〈Hγ 〉max = 1 + C(ρ)

4
, (10)

where C(ρ) = max(0,4p0,1 − 1) is the concurrence. We note
a linear increase of �〈Hγ 〉max with respect to C(ρ), which

FIG. 1. (a) Energy transfer between two qubits, for initial Bell-
diagonal states. This class can be depicted in terms of the parameters
ci = Tr(σA

i ⊗ σB
i ρ), where {σ γ

i }i=x,y,z are the Pauli matrices for
the qubit γ . Separable states lie in the inner yellow octahedron,
while entangled ones lie inside the blue region and outside the
yellow octahedron. The dark red triangle (see Appendix E) inside
the tetrahedron represents a subset of states that produce a non-
null energy transfer �〈Hγ 〉 under a suitable SEC U . (b) Frontal
view of the aforementioned subset. On this plane, the maximum
energy transfer max{U}�〈Hγ 〉 is zero only for classically corre-
lated states (yellow dashed line), and its gradient has constant
projection with direction τ̂ = 1/

√
2(1,1,0). Within the entangled

triangle max{U}�〈Hγ 〉 increases monotonically with the concurrence
C (i.e., ∂max{U}�〈Hγ 〉/∂C > 0), whose projected gradient possesses
constant direction Ĉ = 1/

√
3(1,1,−1). The left side (continuous red

line) contains maximum coherence states that satisfy Eq. (10) in the
main text.

is monotonically associated to the entanglement of forma-
tion [61]. Figure 1 also depicts separable states that yield
|�〈Hγ 〉| = |�Coh〈Hγ 〉| > 0, thereby outperforming classi-
cally correlated states.

VI. CONCLUSIONS AND PERSPECTIVES

We have derived three theorems that constitute a theoretical
framework to characterize the energy transfer in bipartite quan-
tum systems. Theorem 1 describes this process for “classical”
(incoherent) states, allowing to obtain the corresponding values
for the energy transfer. Theorem 2 singles out the class of
coherence that may have a non-null contribution, as well as
the subset of SEC unitaries that could exploit its potential.
Employing Theorem 3 (which follows from Theorems 1 and 2),
we showed that the maximum energy transfer (optimized over
the set of SEC unitaries) for a general state is bounded from
below by that of the state dephased in the joint eigenenergy
basis. This implies in particular that, for optimal evolutions,
coherence never worsens the energy exchange. The type of
coherence that does have an impact on this task is also useful
for extracting work in a multipartite scenario, under “thermal
processes” [62]. Further investigations on such connection are
pertinent. On the other hand, we employed Theorems 1 and 2
to deduce a class of states that only allow unidirectional energy
flow. An open question is whether this set includes all bipartite
states satisfying the mentioned constraint.

We illustrated our results describing the energy transfer
between two qubits. In this case, coherence provides a genuine
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quantum advantage over incoherent states. It is also the
fundamental resource for reverting the thermodynamic arrow
of time, in connection with the experimental findings reported
in [36]. For Bell-diagonal states, we found that entanglement
is not necessary to outperform classically correlated states.
Moreover, both entangled and separable states provide a
quantum enhancement only if the state contains “useful”
coherence, characterized by Theorem 2. For a suitable subset
of entangled states, the maximum energy transfer increases
monotonically with the concurrence. In particular, Eq. (10)
exemplifies this behavior for entangled states of maximum
coherence. Searching for a similar relation in systems of higher
dimension could be an interesting extension to this analysis.

Note added. Recently, we noticed two related (but fun-
damentally different) works about the role of coherence and
correlations in energy transfer [49].
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APPENDIX A: PROOFS OF THEOREMS 1–3

Proof of Theorem 1. Replacing Eq. (2) in the expression for
�Diag〈HA〉 [cf. Eq. (4)] we obtain the equation �Diag〈HA〉 =∑

E pETrA(HATrB(UρDiag(E)U †) − HAρA
Diag(E)), where

ρA
Diag(E) = TrBρDiag(E). From Definition 2 and Eq. (2),

UρDiag(E)U † = ∑
iE ;jE,kE

c
(E)
iE,jE

c
(E)∗
iE,kE

p(εiE
,E)

pE
�

(E)
jE,kE

, where

�
(E)
jE,kE

= �
(E,E)
jE,kE

is defined through Eq. (3). Using Definition

2 we find a similar expression for UA
E ρA

Diag(E)UA†
E :

UA
E ρA

Diag(E)UA†
E = ∑

iE ;jE,kE
c

(E)
iE,jE

c
(E)∗
iE,kE

p(εiE
,E)

pE
|jE〉A〈kE|.

The expressions for UρDiag(E)U † and UA
E ρA

Diag(E)UA†
E

are further related by the identity TrB(UρDiag(E)U †) =
DHA

(UA
E ρA

Diag(E)UA†
E ), where DHA

(·) is the map that elimi-
nates all coherences in the eigenbasis of HA, while leaving
unmodified the populations (dephasing with respect to HA). To
derive this equality we must compute the operators TrB�

(E)
jE,kE

,
appearing in TrB(UρDiag(E)U †). Instead of using the notation
of the main text, �

(E)
jE,kE

= |jE,E〉A〈kE,E|, it is convenient to

write �
(E)
jE,kE

as �
(E)
jE,kE

= |jE〉A〈kE| ⊗ |j ′
E〉B〈k′

E| [recall that
for any jE (kE) the corresponding j ′

E (k′
E) has a unique value

due to the nondegeneracy of HB]. In this way, TrB�
(E)
jE,kE

=
|jE〉A〈kE|δj ′

E,k′
E
. Now, we show that, under the constraint of

nondegeneracy for HA and HB , δj ′
E,k′

E
= δjE,kE

. By definition,
the eigenenergies of |jE〉A and |kE〉A are related to those of
|j ′

E〉A and |k′
E〉A through the equations εjE

= E − ε̄j ′
E

and
εkE

= E − ε̄k′
E
. Hence, if j ′

E = k′
E , the nondegeneracy of HA

implies that jE = kE . Conversely, for jE = kE , the nondegen-
eracy of HB implies that j ′

E = k′
E . Therefore, δj ′

E,k′
E

= δjE,kE

and TrB�
(E)
jE,kE

= |jE〉A〈kE|δjE,kE
, which, after substitution in

TrB(UρDiag(E)U †), yields

TrB(UρDiag(E)U †) =
∑

iE,jE

∣∣c(E)
iE,jE

∣∣2 p(εiE ,E)

pE

|jE〉A〈jE |

= DHA

(
UA

E ρA
Diag(E)UA†

E

)
.

The proof is concluded by noticing thatDHA
(·) does not modify

the average energy of system A. �
Proof of Theorem 2. According to Eq. (4), �Coh〈HA〉 =

Tr(HAUχU †) − Tr(HAχ ). Employing again the notation
�

(E,E′)
iE,jE′ = |iE〉A〈jE′ | ⊗ |kE〉B〈lE′ |, used in the previous proof,

it is easily shown that Tr(HAχ ) = 0: For any �
(E,E′)
iE,jE′ we have

that TrA(HATrB�
(E,E′)
iE,jE′ ) = TrA(HA|iE〉A〈jE′ |δkE,lE′ ). This ex-

pression equals zero if either iE �= jE′ or kE �= lE′ . Therefore,
Tr(HAχ ) = 0.

On the other hand,

U�
(E,E′)
iE,jE′ U

† =
∑

kE,lE′

c
(E)
iE,kE

c
(E′)∗
jE′ ,lE′ �

(E,E′)
kE,lE′ ,

applying Definition 2. Since for E �= E′ all the �
(E,E′)
kE,lE′ are

global coherent elements,
∑

E,E′: E �=E′ Tr(HAUχ (E,E′)U †) =
0. For coherences of the type χ (E,E) =∑

iE,jE : iE �=jE
α

(E,E)
iE,jE

�
(E,E)
iE,jE

, given in Eq. (3), we obtain

TrB
∑

E

Uχ (E,E)U † =
∑

E

∑

iE �=jE

α
(E,E)
iE,jE

TrBU�
(E,E)
iE,jE

U †.

From the relation TrB�
(E,E)
kE,lE

= |kE〉A〈lE|δkE,lE , derived in the
previous proof,

TrBU�
(E,E)
iE,jE

U † =
∑

kE

c
(E)
iE,kE

c
(E)∗
jE,kE

|kE〉A〈kE|.

Therefore, TrB
∑

E Uχ (E,E)U † equals∑
E

∑
kE

∑
iE<jE

2 Re(α(E,E)
iE,jE

c
(E)
iE,kE

c
(E)∗
jE,kE

)|kE〉A〈kE|, after
inverting the order of the sums

∑
iE �=jE

and
∑

kE
. In this

expression, the index E runs freely over the eigenvalues
of H and the sum

∑
kE

runs over values of kE such
that the state |kE,E〉 (with eigenenergies εkE

and E)
exists. We can also invert the order for the sums

∑
E

and
∑

kE
keeping in mind this constraint. The resulting

expression is TrB
∑

E Uχ (E,E)U † = ∑
k ηk|k〉A〈k|, where

ηk ≡ ∑′
E

∑
iE<jE

2 Re(α(E,E)
iE,jE

c
(E)
iE,kc

(E)∗
jE,k ). Now, the index k

runs freely over the eigenvalues of HA and the aforementioned
constraint results from restricting the sum over E: for
any k,

∑′
E is restricted to values of E such that the state

|k,E〉 (with eigenenergies εk and E) exists. In this way,
we ensure that the sums

∑
E

∑
kE

and
∑

k

∑′
E cover

exactly the same terms. Therefore, it is concluded that
�Coh〈HA〉 = TrAHA(TrB

∑
E Uχ (E,E)U †) = ∑

k ηkεk . �
Proof of Theorem 3. From Theorem 1 and Definitions 1 and

2, �Diag〈HA〉 can be maximized by independently maximiz-
ing each term TrA(HAUA

E ρA
Diag(E)UA†

E ), with respect to UA
E .

The solution corresponds to ŨA
E such that ŨA

E ρA
Diag(E)ŨA†

E

is the E-local state of maximum energy, obtained from
ρA

Diag(E) through an E-local unitary (Definition 3). Since both

ρA
Diag(E) = TrBρDiag(E) and ŨA

E ρA
Diag(E)ŨA†

E are diagonal in
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the eigenbasis of HA, ŨA
E |iE〉A = |k̃E〉A. The corresponding

coefficients c̃
(E)
iE,kE

(see Definition 2) satisfy the simple relation

c̃
(E)
iE,kE

= δkE,k̃E
. This implies that c̃

(E)
iE,kE

c̃
(E)∗
i ′E,kE

= δkE,k̃E
δkE,k̃′

E
=

δk̃E,k̃′
E

= 0 for any pair (c̃(E)
iE,kE

,c̃
(E)
i ′E,kE

), given the unitary charac-

ter of ŨA
E (otherwise, ŨA

E |iE〉A = ŨA
E |i ′E〉

A
= |k̃E〉A, resulting

in a nonunitary map). Therefore, Ũ /∈ {U} and according to
Corollary 2.1, �Coh〈HA〉 = 0. �

APPENDIX B: DIRECTION OF ENERGY FLOW FOR
TENSOR PRODUCTS BETWEEN THERMAL STATES

AND BETWEEN A PASSIVE STATE AND A
MAXIMALLY ACTIVE ONE

Let us consider a tensor product of the form ρ = ρA
βA

⊗ ρB
βB

,
with

ρA
βA

= exp(−βAHA)

ZA
βA

, ρB
βB

= exp(−βBHB)

ZB
βB

, (B1)

thermal equilibrium states at inverse temperatures βA and βB ,
respectively, where Z

γ

βγ
= Tr[exp(−βγ Hγ )] is the partition

function. Owing to the nondegeneracy condition of the local
Hamiltonians (HA and HB), the eigenvalues of the joint state
restricted to the eigenspace of energy E (HE), ρDiag(E), and
the eigenvalues of the corresponding E-local state, ρA

Diag(E) =
TrBρDiag(E), are identical [cf. Eq. (2)]. These eigenvalues are
explicitly given by

λiE = exp(−βBE)

pE

exp
[−(βA − βB)εiE

]

ZA
βA

ZB
βB

. (B2)

If the system A has lower temperature than system B, then
βA > βB and λiE < λi ′E for εiE > εi ′E . Therefore, for any value
of E the state ρA

Diag(E) is passive within HA
E . Since ρA

βA
⊗ ρB

βB

is diagonal, we conclude from Theorem 1 and Eq. (6) that
�〈HA〉 = �Diag〈HA〉 > 0 for any SEC unitary, meaning that
heat can only flow from the hotter system (B) to the colder
one (A).

On the other hand, consider now the product ρ = ρA
P ⊗ ρB

M ,
where

ρA
P =

∑

i

λi |εi〉A〈εi | (B3)

is a passive (P ) state for system A and

ρB
M =

∑

j

ηj |ε̄j 〉B〈ε̄j | (B4)

is a maximally active (M) state for system B. This for-
mally means that λi+1 � λi and ηj+1 � ηj for all i,j , for
eigenenergies put in increasing order: εi+1 > εi and εj+1 > εj .
We immediately note that ρ = ρDiag and therefore �〈HA〉 =
�Diag〈HA〉.

Keeping in mind the constraint of nondegeneracy of the
local Hamiltonians, we can express the state ρDiag(E) as

ρDiag(E) =
∑

iE

λiEη′
iE

pE

∣∣εiE

〉
A

〈
εiE

∣∣ ⊗ ∣∣E − εiE

〉
B

〈
E − εiE

∣∣,

(B5)
where η′

iE
is the eigenvalue of ρB

M corresponding to the
eigenstate |E − εiE 〉B , with eigenenergy E − εiE , and pE =

∑
iE

λiEη′
iE

. The property of passivity implies in particular that
λiE+1 � λiE . Likewise, E − εiE > E − εiE+1, by definition,
and therefore η̃iE � η̃iE+1, given that ρB

M is maximally active.
In this way, the eigenvalues of ρDiag(E), {λiEη′

iE
/pE}, are

monotonically decreasing. This implies that for any E the
state ρA

Diag(E) = TrBρDiag(E) = 1
pE

∑
iE

λiEη′
iE

|εiE 〉A〈εiE | is E

passive (cf. Definition 3). From Theorem 1 and Eq. (6) of the
main text it follows that for this class of states, energy can only
be transferred from system A to system B.

APPENDIX C: ENERGY TRANSFER
FOR TWO-QUBIT STATES

A general SEC unitary acting on two-qubit states can be
parametrized as the nontrivial transformation

U |0,0〉 = eiθ0,0 |0,0〉, (C1)

U |1,1〉 = eiθ1,1 |1,1〉, (C2)

U |0,1〉 = eiθ0,1
(√

1 − r2|0,1〉 + reiϕ|1,0〉), (C3)

U |1,0〉 = eiθ1,0
(√

1 − r2|1,0〉 − re−iϕ|0,1〉), (C4)

where 0 � r � 1 and {θi,j ,ϕ}0�i,j�1 are phases in the interval
(0,2π ). Notice that aside from fulfilling Eqs. (C1)–(C4), the
energy gaps of both qubits must coincide for U to be SEC.

By applying Eqs. (C1)–(C4) to the diagonal part of a two-
qubit state, a bit of algebra leads to the following expression
for the transformed local state TrB(UρDiagU

†):

TrB(UρDiagU
†) = [p0,0 + p0,1(1 − r2) + p1,0r

2]|0〉A〈0|
+ [p1,1 + p0,1r

2 + p1,0(1 − r2)]|1〉A〈1|,
(C5)

where pi,j = Tr(|i〉A〈i| ⊗ |j 〉B〈j |ρDiag). On the other hand,
TrB(ρDiag) = (p0,0 + p0,1)|0〉A〈0| + (p1,1 + p1,0)|1〉A〈1|.
Therefore, using the definition of �Diag〈HA〉, �Diag〈HA〉 ≡
Tr(HAUρDiagU

†) − Tr(HAρDiag), we get

�Diag〈HA〉 = (p0,1 − p1,0)r2h̄ω = (
pB

1 − pA
1

)
r2h̄ω, (C6)

where p
γ

1 = Tr(|1〉γ 〈1|ρDiag) is the population of the excited
state for qubit γ .

The energy contribution from the “useful” coherences of the
joint state, χ (h̄ω,h̄ω), is obtained by means of the transforma-
tions U (|0〉A〈1| ⊗ |1〉B〈0|)U † and U (|1〉A〈0| ⊗ |0〉B〈1|)U †.
Employing again Eqs. (C1)–(C4) we find that

TrB(Uχ (h̄ω,h̄ω)U †) = 2 Re
(
α

(1)
0,1e

iφ
)
r
√

1 − r2σA
Z , (C7)

where φ ≡ θ0,1 − θ1,0 + ϕ. In this way,

�Coh〈HA〉= Tr(HAUχ (h̄ω,h̄ω)U †)

=2 Re
(
α

(1)
0,1e

iφ
)
r
√

1 − r2h̄ω.
(C8)

APPENDIX D: ILLUSTRATIVE EXAMPLE: MAXIMUM
ENERGY TRANSFER BETWEEN TWO QUBITS

To obtain Eq. (9), we first maximize �〈Hγ 〉 with respect
to α

(1)
0,1 and φ, for r fixed. From the condition of energy

conservation, �〈HA〉 = −�〈HB〉, and we can maximize
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�〈HB〉 by minimizing �〈HA〉. The optimization with
respect to α

(1)
0,1 and φ only encompasses the coherent

energy transfer. For r fixed, the maximum and minimum
of �Coh〈HA〉 are given by 2r

√
p0,1p1,0(1 − r2)h̄ω and

−2r
√

p0,1p1,0(1 − r2)h̄ω, respectively. These values are
obtained from Eq. (C8), by choosing φ = 0 and α

(1)
0,1 =

±√
p0,1p1,0. Therefore, max{r,φ;α(1)

0,1}�〈HA〉 = maxr�〈HA〉+,

where �〈HA〉+/h̄ω ≡ (p0,1 − p1,0)r2+2r
√

p0,1p1,0(1 − r2).
Similarly, max{r,φ;α(1)

0,1}�〈HB〉 = minr�〈HA〉−, with

�〈HA〉−/h̄ω ≡ (p0,1 − p1,0)r2−2r
√

p0,1p1,0(1 − r2).
By employing the chain rule, we find that ∂

∂r
�〈HA〉± =

2r ∂
∂x

�〈HA〉±, being x ≡ r2. Since for r = 0 we get
�〈HA〉± = 0, according to Eqs. (C6) and (C8), the values of
r that yield the optimization are the solutions of the equation

1

h̄ω

∂

∂x
�〈HA〉± = (p0,1 − p1,0)

±
√

p0,1p1,0√
x(1 − x)

(1 − 2x) = 0. (D1)

This expression can be rewritten as

(p0,1 + p1,0)2x2 − (p0,1 + p1,0)2x + p0,1p1,0 = 0. (D2)

The solutions of Eq. (D2) are

x+ = p0,1

p0,1 + p1,0
, (D3)

x− = p1,0

p0,1 + p1,0
, (D4)

where x+ satisfies ∂
∂x

�〈HA〉+ = 0 and ∂
∂x

�〈HA〉− = 0 for x−.
Now, we verify that �〈HA〉+(x+) is a maximum and

that �〈HA〉−(x−) corresponds to a minimum. The second
derivative with respect to r yields

∂2

∂r2
�〈HA〉± = 2

∂�〈HA〉±
∂x

+ 4x
∂2�〈HA〉±

∂x2
, (D5)

where 1
h̄ω

∂2�〈HA〉±
∂x2 = ∓ 1

2

√
p0,1p1,0

[x(1−x)]3/2 . Therefore,
∂2�〈HA〉+

∂r2 |
x+

<

0 and
∂2�〈HA〉−

∂x2 |
x−

> 0, as expected. By replacing the expres-

sions (D3) and (D4) into �〈HA〉+(x+) and �〈HA〉−(x−), we
arrive at Eq. (9).

APPENDIX E: ENERGY TRANSFER
FOR BELL-DIAGONAL STATES

We analyze here Bell-diagonal states that satisfy the equa-
tion ρ = ρDiag + χ (h̄ω,h̄ω) since for these states �Coh〈HA〉 >

0 [cf. Eq. (C8)]. For the considered class the marginals of
both qubits are maximally mixed states. If we denote as p

γ

i ,
i = 0,1, the local populations for qubit γ , then p

γ

0 = p
γ

1 =
1/2. Therefore, the diagonal energy transfer is equal to zero,
according to Eq. (C6), and any value �〈HA〉 �= 0 is associated
to a quantum advantage. On the other hand,

pA
0 = p0,0 + p0,1, pA

1 = p1,1 + p1,0,

pB
0 = p0,0 + p1,0, pB

1 = p1,1 + p0,1,

where pi,j = Tr(|i〉A〈i| ⊗ |j 〉B〈j |ρ). In this way, the condition
of maximally mixed marginals implies that

p0,1 = p1,0, p0,0 = p1,1. (E1)

Bell-diagonal states have a Bloch representation through
the expression ρ = 1

4 (I + ∑
i=x,y,z ciσ

A
i ⊗ σB

i ), where ci =
Tr(σA

i ⊗ σB
i ρ) and {σγ

i }i=x,y,z are the Pauli matrices for the
qubit γ . For the states of interest we obtain

cx = cy = Tr
(
σA

x ⊗ σB
x χ

) = 2 Re
(
α

(1)
0,1

)
, (E2)

cz = Tr
(
σA

z ⊗ σB
z ρDiag

) = 1 − 4p0,1. (E3)

In addition, to demand that such states be Bell diagonal, we
require that Tr(σA

i ⊗ σB
j χ ) = 0, for i �= j . By performing a

direct computation we verify that this imposes the condition
Im(α(1)

0,1) = 0.
Figure 1(a) of the main text shows a graphical depiction

of Bell-diagonal states, which is constructed by means of a
Cartesian coordinate system with axes ci . In this parameter
space, Eqs. (E2) and (E3) describe a plane that intersects
the tetrahedron and passes through the points (cx,cy,cz) =
(0,0,1), (1,1,−1), and (−1,−1,−1). This whole region con-
tains all the two-qubit states that satisfy the relation ρ =
ρDiag + χ (h̄ω,h̄ω), while simultaneously being Bell diagonal.
On the other hand, it is sufficient to focus on half of such
a region to describe the associated energy transfer, as we
explain next. First, notice that if we choose α

(1)
0,1 not only

real but also positive, it is still possible to obtain any value
of �〈HA〉 = �Coh〈HA〉 (and thus of �〈HB〉) as predicted by
Eq. (C8). In particular, the maximization over the set of SEC
unitaries yields

max{U}�〈Hγ 〉 = max{r,φ}�〈Hγ 〉

= h̄ωcx

2
= h̄ωcy

2
, (E4)

where Eqs. (C8) and (E2) have been used. To characterize the
behavior of max{U}�〈Hγ 〉 with respect to the entanglement
of Bell-diagonal states, we shall obtain the lines of constant
concurrence on the region of interest.

The concurrence C(ρ) is an entanglement measure
(monotonically related to the entanglement of forma-
tion) defined as C(ρ) ≡ max(0,η4 − η3 − η2 − η1), where
{ηi} are the eigenvalues of the Hermitian matrix R =√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√

ρ, set in increasing order:
ηi+1 � ηi . σy = −i|0〉〈1| + i|1〉〈0| is a Pauli matrix and ρ∗
is the state defined through complex conjugation of ρ in the
standard (computational) basis:ρ∗

i,j = (ρi,j )∗. Since we choose

α
(1)
0,1 real, ρ∗ = ρ. Moreover, Bell-diagonal states are invariant

under the application of σy ⊗ σy . This implies that R =√√
ρρ

√
ρ = ρ, which allows us to compute the concurrence

in terms of the eigenvalues of ρ. These eigenvalues are related
to the parameters ci by the equation

λab = 1
4 [1 + (−1)acx − (−1)a+bcy + (−1)bcz], (E5)

where λab is the eigenvalue associated to the Bell state |ψab〉 =
1√
2
[|0,b〉 + (−1)a|1,1 ⊕ b〉], a,b = 0,1. Taking into account
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Eqs. (E2) and (E3), we obtain

λ00 = λ10 = 1
4 (1 + cz) = 1

2 − p0,1, (E6)

λ11 = 1
4 (1 − 2cx − cz) = −Re

(
α

(1)
0,1

) + p0,1, (E7)

λ01 = 1
4 (1 + 2cx − cz) = Re

(
α

(1)
0,1

) + p0,1. (E8)

For the states we are interested in (cx � 0), Eqs. (E7)
and (E8) imply that λ01 � λ11. This leaves us with the three
possible chains of inequalities λ00 = λ10 � λ01 � λ11, λ01 �
λ00 = λ10 � λ11, and λ01 � λ11 � λ00 = λ10. In the first case,
max{λab} = λ00 = λ10 and C(ρ) = max(0,−λ01 − λ11) = 0.
For the remaining possibilities, the concurrence yields C(ρ) =
max(0,λ01 − λ11 − 2λ00) = max(0,cx − (1 + cz)/2). Accord-
ingly, C(ρ) is non-null for states such that cx − (1 + cz)/2 > 0.
The lines where C(ρ) = C is constant correspond to equations
of the form C = cx − (1 + cz)/2. In this way, we obtain the
following expression for cz in terms of cx :

cz = 2(cx − C) − 1. (E9)

This equation represents straight lines that vary in their in-
tersection with the cz axis, and have constant slope equal to
2. For C = 0, cz = 2cx − 1 determines the boundary between
entangled and separable states in Fig. 1(b) of the main text.
As C increases, the lines move towards the bottom left vertex
of the entangled triangle, along the constant direction Ĉ [see
Fig. 1(b)].

The behavior of max{U}�〈Hγ 〉 with respect to C can now
be deduced by using the definition of directional derivative.
Employing Eq. (E4), we can calculate the projection of the gra-
dient of max{U}�〈Hγ 〉 onto the plane determined by Eqs. (E2)
and (E3). To this end, we just have to compute the components
of the gradient on such a plane. Denoting this projection as
∇(max{U}�〈Hγ 〉), we obtain

∇(max{U}�〈Hγ 〉) = h̄ω

2
(1,1,0) = h̄ω√

2
τ̂ , (E10)

where τ̂ is the unit vector with coordinates (cx,cy,cz) =
1/

√
2(1,1,0). The partial derivative of max{U}�〈Hγ 〉 with

respect to the concurrence ∂
∂C

max{U}�〈Hγ 〉 is proportional to
the directional derivate of max{U}�〈Hγ 〉 along the direction
Ĉ, Ĉ · ∇(max{U}�〈Hγ 〉). The proportionality factor is the
inverse of the derivative of C along such a direction and is
positive by definition. Therefore, the sign of ∂

∂C
max{U}�〈Hγ 〉

is the same of the scalar product Ĉ · τ̂ . Keeping in mind the
geometry of the “level surfaces” (within the plane of interest)
for the concurrence, expressed by Eq. (E9), the direction of
the corresponding projected gradient is Ĉ = 1/

√
3(1,1,−1).

In this way, Ĉ · τ̂ = √
2/3, and we have a monotonic in-

crement of the maximum energy transfer with respect to C:
∂

∂C
max{U}�〈Hγ 〉 > 0.
Finally, we explicitly compute the value of max{U}�〈Hγ 〉

for states of maximum coherence α
(1)
0,1 = √

p0,1p1,0 = p0,1

[cf. Eq. (E1)]. According to Eqs. (E2) and (E3), cx =
2p0,1 and cz = 1 − 4p0,1 for these states. In this way,
Eq. (E9) yields C = cx − (1 + cz)/2 = 4p0,1 − 1. Moreover,
max{U}�〈Hγ 〉 = h̄ωp0,1, using Eq. (E4). This result coincides
with Eq. (9) of the main text, obtained for two-qubit states that
are not necessarily Bell diagonal, by also optimizing �〈Hγ 〉
with respect to α

(1)
0,1. Therefore, we arrive at the expression

max{U ;α(1)
0,1}�〈Hγ 〉
h̄ω

= �〈Hγ 〉max

h̄ω
= 1 + C

4
, (E11)

which constitutes a simple relation between �〈Hγ 〉max and
the concurrence. It is worth remarking that Eq. (E11) does
not mean that the optimal energy transfer only depends on the
concurrence. Since it has been computed over a unidimensional
region [see the red line in Fig. 1(b) of the main text], a
dependence with a single variable is expected. However,
we can at least be sure that ∂

∂C
max{U}�〈Hγ 〉 > 0, as was

concluded by the previous analysis.
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