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Enrico Gavagnin,*,† Jennifer P. Owen,†,‡ and Christian A. Yates
Centre for Mathematical Biology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom

(Received 12 January 2018; published 4 June 2018)

Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of
multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative
and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for
off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the
study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive
definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve
upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of
the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular,
and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of
spatial correlation in irregular lattices for which recognizing correlation is less intuitive.
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I. INTRODUCTION

A system of agents is considered in a state of spatial correla-
tion if, given any agent in the system, the likelihood that there
are other agents at a certain, close distance, is either increased
or decreased with respect to the situation in which the agents
are distributed uniformly at random. Spatial correlation is a
dominant feature of many biological and physical systems [1–
12]. For example, in cell biology, spatial correlation can be seen
in the form of patterns on animal fur or fish skin [1,3,13]. In
a clinical setting, cell aggregation is a characteristic feature of
melanoma and its identification is essential for early diagnosis
and effective therapy [14,15]. Resource competition in ecology
can lead to spatial correlation in the form of segregation, for
example, in ant nest displacement in a competitive environment
[16]. In epidemiology, spatial correlation can be observed
in the occurrence of disease across different geographical
regions [17].

The same spatial configuration can have different origins.
For example, spatial aggregation in cell biology can be caused
by a result of cell-to-cell adhesion [8], external signals, as in
chemotaxis [5,6], or even slime following [7]. Alternatively,
cells may form clusters during development due to a com-
bination of a high proliferation rate and a low movement
rate [9]. Given a system exhibiting spatial correlation, one
may hypothesize an underlying mechanism responsible for
these properties. These assumptions may form the basis of
a mathematical model that can be simulated for the purpose of
testing. Quantifying spatial correlation in both the simulation
and observed experimental data can be a way to connect these
studies and to validate or disprove such a theory. As a result, a
great number of statistical tools have been developed in the past
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decade to analyze and measure spatial correlation [12,18–23].
Among the most popular are pair correlation functions (PCFs)
[11,12,20–22,24–28] and the fast Fourier transform (FFT)
[29,30]. In this paper we focus our attention on the study of
spatial correlation using PCFs.

Given a system of agents, a PCF determines whether
pairs of agents are more or less likely to be found with a
given separation than in the situation in which the agents
are positioned uniformly at random in the domain. A PCF is
considered effective if it fits two main criteria. First, the PCF
distance metric should be well-defined, but most importantly
be readily interpretable in the context of the system considered.
This criteria is essential so that in the case of correlation
(aggregation or segregation), the PCF can be used to obtain
more details about the spatial configuration. For example, if
the system exhibits aggregation, the PCF should be able to
provide a measure for the average size of the clusters and
their pairwise separation. Second, the PCF should be correctly
calibrated. The PCF should be able to distinguish between three
basic types of configurations: spatial randomness, aggregation,
and segregation. For this, the PCF should be normalized
correctly; i.e., the PCF should return the value unity at all
pairwise distances (no correlation) when applied to a uniformly
distributed set of agents. If the PCF is not normalized correctly,
a spatially random set of agents may be incorrectly identified
as a correlated system. This inconsistency makes PCF profiles
hard to interpret.

Depending on the type of investigation, the mathematical
framework can either be continuous (off-lattice) or discrete
(on-lattice). The corresponding PCF has to be defined in
accordance with the given framework. Despite the abundance
of PCFs defined for off-lattice domains [11,26–28], only a few
recent studies have defined a PCF for domains partitioned with
a lattice [12,20–22]. On-lattice PCFs often assume exclusion
properties, that is, that each lattice site in a domain can be
occupied by at most one agent at any given time. This is
consistent with typical on-lattice correlation studies, such as
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those designed to quantify correlation in binary pixelated
images, or to determine spatial correlation in exclusion pro-
cesses simulated using a discrete domain.

Currently, there are two PCFs defined on-lattice. The first is
a naive approach consisting of applying the classic off-lattice
PCF to lattice-based systems. We refer to this from now on as
the annular PCF. In the annular PCF, given some small positive
δ, the number of agents at a distance m from a focal agent is
defined as the number of agents whose centres lie in the annulus
(m − δ,m], where distance is defined by the Euclidean metric.
A limitation of this method is that, while the normalization is
a good approximation for a continuous domain (see Sec. II for
more details), it is poor in the case of a discrete domain, thus the
PCF is not correctly calibrated. In more recent work, Binder
and Simpson [12,21] defined a PCF specifically designed for
a two-dimensional square on-lattice exclusion process, which
we will refer to as the rectilinear PCF (see Sec. II for more
details). While their approach correctly identifies the spatial
correlation in many examples, due to an anisotropic definition
of distance, spatial structures that are biased in either Cartesian
directions can remain unidentified by this PCF. To summarize,
to the best of our knowledge, a discrete isotropic PCF with
correct normalization does not currently exist in the literature.

In this paper, we extend the study of pairwise spatial
correlation for on-lattice exclusion processes which tackles
the flaws of previous PCFs. We define isotropic PCFs for
a square lattice on which distance is defined using two of
the most natural and intuitive metrics for a discrete domain:
the taxicab and uniform metric. We call these the square
taxicab PCF and square uniform PCF, respectively, after the
square lattice set up and metric type. We define them in
both the nonperiodic and periodic boundary cases. Using
synthetically generated data, we demonstrate that our PCF can
correctly distinguish between spatial randomness, aggregation,
and segregation. Furthermore, we show that it can also provide
quantitative information about the structure of the system, such
as approximate aggregate size or segregation distance both in
the short and long scales. Moreover, we investigate how the
choice of metric, uniform, or taxicab can affect this quantitative
information. We demonstrate that our PCFs represent a sig-
nificant improvement on previous on-lattice PCFs by showing
that, first, our method is correctly calibrated (unlike the annular
PCF) and, second, that it can identify anisotropic patterns of
the type that are routinely missed by the rectilinear PCF. As a
natural extension, we define PCFs for higher dimensions and
other types of tessellations (cubic, triangular, and hexagonal)
that have not been considered previously. We name these the
triangle PCF, the hexagon PCF, the cube taxicab PCF, and the
cube uniform PCF after the lattice set up and metric type.

Finally, we extend the concept of a PCF by introducing
the general PCF. This PCF can be defined using any metric
on any discrete domain type, with the caveat that it is more
computationally expensive. We give an example of how we
can use this PCF on a discrete irregular lattice (both tessellation
and domain shape), where we define adjacent sites to be at unit
distance from one another. We show how our PCF can identify
aggregation and segregation on an irregular domain using some
synthetic examples.

The paper is organized as follows. In Sec. II we discuss
the successes and limitations of previous on-lattice PCFs. In

Sec. III we introduce our square taxicab and square uniform
PCFs. We apply our square taxicab and square uniform PCFs to
some relevant examples and make comparisons with previous
on-lattice PCFs from the literature in Sec. IV. In Sec. V A we
define the triangle PCF, the hexagon PCF, the cube taxicab
PCF, and the cube uniform PCF. We extend our PCF to more
generic and possibly irregular lattices by defining the general
PCF in Sec. VI. For reference, in Sec. S.4 of the Supplemental
Material, we supply a table summarizing all the formulae for
the normalizations of our PCFs [31]. Finally, we conclude
in Sec. VII by summarising the relevance of our results and
discussing potential avenues for future work.

II. EXISTING ON-LATTICE PAIR CORRELATION
FUNCTIONS

In this section we provide a summary of the only two
existing PCFs defined for discrete domains: the annular PCF
and the rectilinear PCF. For each, we describe their strengths
and limitations.

First, consider a system of agents on a two-dimensional
square lattice of size Lx × Ly , with lattice step �, and with
the exclusion property that, at any given time, each lattice site
can be occupied by at most one agent. If N agents occupy the
domain, then the occupancy of the lattice can be represented
by a matrix M:

Mxy =
{

0 if lattice site (x,y) is vacant,
1 if lattice site (x,y) is occupied, (1)

where

N =
Lx∑

x=1

Ly∑
y=1

Mxy � LxLy. (2)

Let ψM be the set of all agent pairs in the lattice defined by
matrix M , i.e.,

ψM = {
(a,b) ∈ L × L|a = (xa,ya),

b = (xb,yb), a �= b, Mxa,ya
= Mxb,yb

= 1
}
, (3)

where L = {1, . . . ,Lx} × {1, . . . ,Ly} is the set of all sites in
the lattice. With agents in configuration M , let us define the
subset of agent pairs separated by distance m according to some
(as yet unspecified) definition of distance, denoted by d, as

Cd (m) = {(a,b) ∈ ψM |‖a − b‖d = m}, for m ∈ Dd , (4)

where Dd is the set of possible distances under the metric d.
We define the total number of pairs of agents for each value of
distance m ∈ Dd as

cd (m) = |Cd (m)|. (5)

Similarly, we define the set of pairs of sites (regardless of their
occupancy) which are separated by distance m according to
the metric d as

Sd (m) = {(a,b) ∈ L × L
∣∣‖a − b‖d = m}, for m ∈ Dd, (6)

hence the total number of pairs of sites at distance m is
given by

sd (m) = |Sd (m)|. (7)
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FIG. 1. Example agent pairs in the sets CA(m) with m = 1,2,3
and bandwidth δ = 1. Concentric annuli, (m − δ,m], are superposed
on top of the square lattice and the sites whose centres fall into each
annulus are colored differently. Sites in yellow, red, and green (labeled
1, 2, and 3, respectively) are defined to be distance one, two, and three
from the blue site, respectively, labeled X.

To produce a PCF, we aim to normalize the index cd (m)
with the number of pairs we would expect at distance m if
the system had no spatial correlation. That is, we consider
the case in which the same number of agents are displaced
uniformly at random on the lattice and compute the expected
number of pairs at distance m. Let U be a random matrix such
that Uxy = 0 for all sites (x,y) ∈ L, apart from N sites chosen
uniformly at random without replacement, for which Uxy = 1.
Then we define

C̄d (m) = {(a,b) ∈ ψU |‖a − b‖d = m}, for m ∈ Dd . (8)

Hence, for each value of m ∈ Dd , the PCF at distance m is
defined as

fd (m) := cd (m)

E[c̄d (m)]
, (9)

where c̄d (m) = |C̄d (m)| and E represents the expectation
operator.

A. The annular PCF

The annular PCF was originally designed for two-
dimensional off-lattice systems [19] but can be extended to
on-lattice systems with periodic boundary conditions (BC).
For the annular PCF, the set CA, where A denotes the annular
metric, is defined as follows:

CA(m) = {(a,b) ∈ ψM |
√

(xa − xb)2 + (ya − yb)2

∈ (m − δ,m]}, (10)

where m ∈ {δk | k ∈ N+} and δ is a small real number which
determines the bandwidth of the PCF. The schematics in Fig. 1
show a representation of some elements in the sets CA(1),
CA(2), and CA(3) with δ = 1.

The normalization factor is given by

E[c̄A(m)] ≈ N (N − 1)(2πmδ)

LxLy

, (11)

where 2πmδ approximates the area of the mth annulus (as-
suming small δ) from any given agent. The annular PCF, fA,
follows from definition Eq. (9).

The normalization in Eq. (11) is a good approximation
for a continuous domain with a small δ. However, when the
agents are positioned on a lattice, this approach is no longer
appropriate. The main issue is that the counts of agents in each
annulus vary in an unpredictable manner with the distance, m,
and the annular width, δ. For example, consider a square lattice
with spacing �. The only possible distances two agents can be
separated by are in the countable set

DA = {�
√

x2 + y2 | (x,y) ∈ N2\{0,0}}
= {�,

√
2�,2�,

√
5�, . . . }. (12)

Partitioning these distances into regularly spaced intervals, as
it is required by the Euclidean distance metric, we can see
that the number of agent pairs does not increase smoothly
with the distance, m. Depending on the value of δ it may
not even increase monotonically. However, the definition of
the normalization factor Eq. (11) suggests that the expected
number of pairs increases smoothly and monotonically with
both m and δ. This disparity means the on-lattice annular PCF
will not be properly normalized and will either be an over-
or under- approximation, making results hard to interpret (see
Fig. 7(b) as an example).

B. The Rectilinear PCF

In more recent work, Binder and Simpson [12,21] define the
Rectilinear PCF specifically for two-dimensional, on-lattice
exclusion processes with nonperiodic BC. Their definition is
easily extendible to periodic BC. They define two PCFs for the
two Cartesian directions. In each case the distance is defined
by the number of columns (or rows) separating two agents.

Thus, the set of pairs of agents separated by integer dis-
tance m ∈ N+ are defined in the x direction and y direction
respectively as

CRx
(m) = {(a,b) ∈ ψM ||xa − xb| = m}, (13a)

CM
Ry

(m) = {(a,b) ∈ ψM ||ya − yb| = m}, (13b)

where subscripts Rx,Ry refer to the metrics defined by the
Rectilinear PCFs. The schematics in Fig. 2 represent examples
of sites separated by distances m = 0, m = 1 and m = 2 for
metrics Rx and Ry .

The counts are then normalized by the expected number of
pairs of agents at distance m assuming N uniformly distributed
agents:

E
[
c̄Rx

(m)
] = N − 1

LxLy − 1

N

LxLy

L2
y(Lx − m), (14a)

E
[
c̄Ry

(m)
] = N − 1

LxLy − 1

N

LxLy

L2
x(Ly − m), (14b)

respectively. For details of the derivation of these factors, see
Ref. [12]. The final rectilinear PCF is defined as the arithmetic
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FIG. 2. Schematic of agent pairs using (a) the Rx metric, (b) the
Ry metric. Sites in yellow and red (labelled 1, 2 respectively) are
defined to be distance-one and -two neighbors, respectively, from the
blue site labeled X.

average of the two orthogonal PCFs, i.e.,

f M
R (m) = 1

2

[
fRx

(m) + fRy
(m)

]
,

where

f M
Rx

(m) = cRx

E
[
c̄Rx

(m)
] ,

f M
Ry

= cRy

E
[
c̄Ry

(m)
] . (15)

The rectilinear PCF correctly identifies spatial correlation in
many examples and, unlike the annular PCF, is normalized
correctly. However, one major issue that the rectilinear PCF
suffers from is that, due to the inherent anisotropy of its
definition, spatial structures that are biased in either Cartesian
direction may be missed. For such patterns, the PCF given by
the Rx and Ry metrics are approximately constant functions of
distance, because the averaged row and column densities are
constant along the axes, despite the fact that clustering can still
be present. Examples of these spatial patterns include many
biologically and chemically relevant cases, such as diagonal
stripes and chessboard patterns [32,33] (see Fig. 8). We note
that when the pattern structure is biased in only one Cartesian
direction, the preaveraging rectilinear PCFs fRx

and fRy
will

identify further information about the direction of the spatial
pattern. Another limitation of the rectilinear PCF is that it
applies only to regular square lattices and a generalisation to
other forms of tessellations would be challenging.

III. THE SQUARE TAXICAB AND
SQUARE UNIFORM PCFS

In this section we define two discrete PCFs for a square
lattice: the square taxicab and square uniform PCF, using the
taxicab and uniform metric, respectively, under both periodic
and nonperiodic BC. Using the same notation as in Sec. II, we
define the subsets of agent pairs separated by distance m under
nonperiodic BC as

Cn
1 (m) = {(a,b) ∈ ψM |‖a − b‖1 = m}, m ∈ Dn

1 , (16a)

Cn
∞(m) = {(a,b) ∈ ψM |‖a − b‖∞ = m}, m ∈ Dn

∞, (16b)

FIG. 3. Schematic of agent pairs using (a) the taxicab metric (b)
the uniform metric. Sites in yellow and red, labeled with numbers 1
and 2, respectively, are defined to be distance-one and -two neighbors
from the site marked in blue (labeled with X).

for the taxicab and uniform metric, respectively. Here, Dn
1 =

Dn
∞ = {1,2,... min{Lx,Ly} − 1} and the superscript n refers

to the fact we are considering nonperiodic BC. Using the
definitions of the uniform and taxicab metrics, we can express
these sets as

Cn
1 (m) = {(a,b) ∈ ψM ||xa − xb| + |ya − yb| = m}, (17a)

Cn
∞(m) = {(a,b) ∈ ψM | max{|xa − xb|, |ya − yb|} = m}.

(17b)

Similarly, we define the subsets of agent pairs separated by
distance m under periodic BC as

C
p

1 (m) = {(a,b) ∈ ψM | min{|xa − xb|,Lx − |xa − xb|}
+ min{(|ya − yb|,Ly − |ya − yb|} = m},

m ∈ Dp

1 , (18a)

Cp
∞(m) = {(a,b) ∈ ψM | max{min{|xa − xb|,Lx − |xa − xb|},

+ min{(|ya − yb|,Ly − |ya − yb|}} = m},
m ∈ Dp

∞, (18b)

where Dp

1 = Dp
∞ = {1,2,... min {�Lx

2 	,�Ly

2 	}}. The corre-
sponding definitions of Sn

1 , Sn
∞, S

p

1 , and S
p
∞ can be obtained

similarly by using Eq. (6). Here the superscript p refers to the
fact we are considering periodic BC. Notice that we restrict the
largest m to be min {�Lx

2 	,�Ly

2 	} to simplify the computation of
the normalization factor (see Sec. III A). However, with some
work this restriction could be relaxed. The schematics in Fig. 3
represent examples of sites separated by distance m = 1 and
m = 2 using the taxicab (a) and uniform (b) metrics.

For the normalization factors, Binder and Simpson [12] use

E[c̄d (m)] =
(

N

LxLy

)(
N − 1

LxLy − 1

)
sd (m), (19)

where sd (m) is defined as in Eq. (7) and d refers to the metric
used. In other words, the expected number of pairs of agents at
distance m on a lattice with N uniformly distributed agents can
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be written as the probability that two different sites at distance
m are simultaneously occupied, multiplied by the total number
of pairs of sites at distance m in the domain.

To complete the definitions of our square lattice PCFs we
need to provide an expression for s1 and s∞. We address this
in the next two sections, distinguishing between the cases of
periodic and nonperiodic BC.

A. Normalization of the square taxicab and square uniform
PCF under periodic boundary conditions

As the derivation for the normalization is simple under
periodic BC and more complicated under nonperiodic BC, we
first consider the system with periodic BC and determine s

p

1 ,
s
p
∞, where p denotes periodic BC. Let us define the number

of sites separated by a distance m from any given reference
site on a lattice as t1(m), t∞(m) under the taxicab and uniform
metric, respectively. These read

t1(m) = 4m, (20a)

t∞(m) = 8m. (20b)

The proofs of Eqs. (20) are omitted, but they can be obtained
easily by induction on m. Examples for m = 1,2 can be seen in
Fig. 3. Notice that for m � min {�Lx

2 	,�Ly

2 	}, given any site on
the lattice, the number of sites at distance m from this reference
site in the case of periodic BC is exactly t(m). Consider the
lattice of size Lx × Ly with Lx,Ly > 2. If we multiply the total
number of lattice sites by t(m), we count each pair of sites sep-
arated by distance m exactly twice. Hence, we conclude that

s
p

d=1,∞(m) = t(m)LxLy

2
, (21)

using the taxicab and uniform metrics. Substituting values for
t1(m) and t∞(m) from Eqs. (20) we deduce that

s
p

1 (m) = 2mLxLy, (22a)

sp
∞(m) = 4mLxLy. (22b)

Therefore, by substituting Eqs. (22) into Eq. (19), the
normalization factors under periodic BC are

E
[
c̄
p

1 (m)
] = 2mN (N − 1)

LxLy − 1
, (23a)

E
[
c̄p
∞(m)

] = 4mN (N − 1)

LxLy − 1
. (23b)

B. Normalization of the square taxicab and square uniform
PCF under nonperiodic BC

In this section we derive expressions for sn
1 (m) and sn

∞(m),
wherendenotes nonperiodic BC. Notice that, for allm ∈ D, we
have that sp(m) > sn(m) since sp(m) includes pairs that cross
the domain boundary, whereas sn(m) does not. Therefore, to
find a formula for sn(m), it is enough to determine a formula
for the remainders defined by

r1(m) = s
p

1 (m) − sn
1 (m), (24a)

r∞(m) = sp
∞(m) − sn

∞(m). (24b)

The remainders count the number of pairs of sites that cross
a boundary under the periodic BC. For simplicity, throughout
this section, we will only derive the normalization for the
taxicab metric; however, the derivation for the uniform metric
is similar and can be found in Supplemental Material Sec. S.1
for reference [31]. Let us define the set of pairs of sites
separated by distance m ∈ Dn

1 that cross the x boundary
(horizontal axis) or y boundary (vertical axis), respectively, as

P x
1 (m) = {

(a,b) ∈ S
p

1 (m)
∣∣|ya − yb| > Ly − |ya − yb|

}
,

(25a)

P
y

1 (m) = {
(a,b) ∈ S

p

1 (m)
∣∣|xa − xb| > Lx − |xa − xb|

}
.

(25b)

Of these pairs, let us consider those pairs that are at distance
k ∈ {1,...m} rows or columns from each other, respectively. We
define these subsets as

P x
1 (m,k) = {

(a,b) ∈ P x
1 (m)

∣∣Ly − |ya − yb| = k
}
, (26a)

P
y

1 (m,k) = {
(a,b) ∈ P

y

1 (m)
∣∣Lx − |xa − xb| = k

}
. (26b)

Notice that P x
1 (m) = ⋃m

k=1 P x
1 (m,k) and P

y

1 (m) =⋃m
k=1 P

y

1 (m,k). Figures 4(a) and 4(b) give visualizations of
pairs of sites within P x

1 (m,m). Figure 4(c) gives examples of
distances between pairs of sites in P x

1 (m,k), for k = 1, . . . ,m.
By definition Eqs. (16a) and (18a) we have that

S
p

1 (m)\Sn
1 (m) = P x

1 (m) ∪ P
y

1 (m). (27)

Hence, by combining Eqs. (24a) and (7), we obtain

r1(m) = ∣∣P x
1 (m) ∪ P

y

1 (m)
∣∣

=
m∑

k=1

∣∣P x
1 (m,k)

∣∣+ m∑
k=1

∣∣P y

1 (m,k)
∣∣−∣∣P x

1 (m)∩P
y

1 (m)
∣∣.

(28)

To conclude the computation we derive an expression for the
two sums in Eq. (28) and the corresponding equation for the
size of the intersection. By counting the contribution of each
type of pair (see Fig. 4 for a visualization), one can write down
the following expressions for the two sums in Eq. (28):

m∑
k=1

∣∣P x
1 (m,k)

∣∣ = 2[Lx + 2Lx + · · · + Lx(m − 1)] + Lxm,

(29a)
m∑

k=1

∣∣P y

1 (m,k)
∣∣ = 2[Ly + 2Ly + · · · + Ly(m − 1)] + Lym .

(29b)

Hence,

m∑
k=1

∣∣P x
1 (m,k)

∣∣ +
m∑

k=1

∣∣P y

1 (m,k)
∣∣

= 2[Lx + 2Lx + · · · + Lx(m − 1)] + Lxm

+ 2[Ly + 2Ly + · · · + Ly(m − 1)] + Lym
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FIG. 4. A visualization of the pairs of sites in P x
1 (m). Panels (a) and (b) show two different site pairs in P x

1 (m,m). For each of the Lx

columns, each site in the rows {Ly − m + 1,Ly − m + 2, . . . ,Ly} has a single corresponding site at distance m separated by m rows and 0
columns and reached by crossing the horizontal boundary. Therefore |P x

1 (m,m)| = mLx . Panel (c) shows all the different types of pairs in
P x

1 (m,k) for k = 1, . . . ,m with the corresponding value of |P x
1 (m,k)|.

= (Lx + Ly)

(
m + 2

m−1∑
i=1

i

)

= (Lx + Ly)

[
m + 2

(m − 1)m

2

]

= (Lx + Ly)m2. (30)

We now focus on deriving an expression for the size of inter-
section, |P x

1 (m) ∩ P
y

1 (m)|, in Eq. (28). The set P x
1 (m) ∩ P

y

1 (m)
consists of pairs of sites separated by distance m that cross both
the x and y boundaries simultaneously.

There are two regions of the domain where site pairs cross
two boundaries. These are any two consecutive corners of the
four corners of the domain. Examples of these regions and site
pairs within these regions are visualized in Fig. 5. In Fig. 6
we give an illustrative example in which we count the number
of these pairs for m = 5. All sites inside the boundaries of
the domain colored in orange, purple, green, and yellow are
distance m = 5 from other sites of the same color outside the
boundaries of the domain. Notice that the yellow site in the
corner at (Lx,Ly) is distance five from a total of four sites,
reached by crossing the x and y boundaries, denoted by a
4 in the site. Similarly, the two green sites at (Lx − 1,Ly)
and (Lx,Ly − 1) are distance m from three sites, reached by
crossing the x and y boundary, denoted by a 3 in the two sites.
|P x

1 (5) ∩ P
y

1 (5)| is the sum of all the numbers in the colored

sites multiplied by two to account for the second corner region.
Extrapolating, for any value of m, the number of pairs of sites

FIG. 5. Examples of pairs of sites separated by distance m = 5
that cross both the x and y boundaries, i.e., pairs of sites in P x

1 (m) ∩
P

y

1 (m). The gray sites outside the domain correspond to the gray sites
inside the domain in the diametrically opposite corner. As illustrations
of site pairs at a distance m which cross both boundaries, the orange
site containing a white cross is distancem from the pink site containing
a white cross. Similarly, the yellow site containing a black cross is
distance m from the green site containing a black cross.
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FIG. 6. Examples of pairs in P x
1 (5) ∩ P

y

1 (5) on a zoomed-in
corner of a larger domain. Sites with a given pattern (not plain) are
distance m = 5 away from sites with the same pattern that can be
reached by crossing the x and y boundaries. The number in each given
site corresponds to the number of sites at distance m = 5, reached by
crossing the x and y boundaries.

that cross the two boundaries is exactly∣∣P x
1 (m) ∩ P

y

1 (m)
∣∣ = 2[(m − 1) + 2(m − 2)

+ 3(m − 3) + · · · + m − 1]

= 2
m−1∑
i=1

(m − i)i = m3 − m

3
. (31)

By substituting Eqs. (31) and (30) into Eq. (28) we gain an
expression for the remainder r1(m). By rearranging Eq. (24a)
we determine sn

1 (m), which we then substitute into Eq. (19)
to obtain the exact expression for the normalization in the
nonperiodic case. This is given by

E
[
c̄n

1(m)
] =

(
N

LxLy

)(
N − 1

LxLy − 1

)
[

2mLxLy − (Lx + Ly)m2 + m3 − m

3

]
. (32)

A similar approach can be used to obtain the normalization
factor for the uniform metric under nonperiodic BC:

E
[
c̄n
∞(m)

] =
(

N

LxLy

)(
N − 1

LxLy − 1

)

[4mLxLy − 3(Lx + Ly)m2 + 2m3]. (33)

For more details on the derivation of Eq. (33), see Supplemental
Material Sec. S.1.

IV. RESULTS

In this section we use the square taxicab and square uniform
PCFs defined in Sec. III to analyze the spatial correlation
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FIG. 7. Examples of spatial structure analysis. In panels (a) and
(b) a case with no spatial correlation is considered. Panel (a) is an
example visualization of an occupancy matrix uniformly populated
with density 0.5. Occupied sites are colored in black and are white
otherwise. Panel (b) shows the four PCFs each averaged over 50
uniformly populated matrices. Panels (c) and (d) refer to a discrete
simulation of the agent-based model described in the text, at time
t = 10. Panel (c) is a visualization of the occupancy matrix and in
panel (d) our PCFs are compared with the Rectilinear PCF.

in some examples. We compare our results with previously
suggested on-lattice PCFs.

We start by computing the PCFs for a system without any
spatial correlation. We consider 50 independent occupancy
matrices, Ui , i = 1, . . . ,50, populated uniformly at random
with density 0.5 [see Fig. 7(a) for example]. For each re-
alisation, Ui , we compute the corresponding PCF, f

Ui

d , and
then we average the results over the 50 realisations which we
denote f̂d . If the normalization is correct, f̂d (m) should return
the value unity for every pair distance, m, meaning that no
spatial correlation is found. In Fig. 7(b) all four aforementioned
averaged PCFs are plotted: f̂A,f̂R,f̂1, and f̂∞. The results show
that both the averaged square uniform PCF, f̂1, and square
taxicab PCF, f̂∞, correctly predict that there is no spatial
correlation. The averaged rectilinear PCF, f̂R , also correctly
predicts no spatial correlation. However, the averaged annular
PCF, f̂A, has clear peaks, suggesting, incorrectly, the presence
of spatial correlation. Since the results are averaged over
multiple repeats, such a discrepancy can not be attributed to
stochasticity, but is due to incorrect normalization as explained
in Sec. II. Note that the annular PCF can still correctly identify
spatial correlation in many examples; however, the incorrect
normalization often makes the results hard to interpret. This
is because the annular PCF makes it difficult to distinguish
between genuine correlation and systematic error. For this
reason, for the rest of this section, we omit the results of the
annular PCF and continue to compare between our PCFs and
the rectilinear PCF using nonperiodic BC.

Next we consider examples of strong spatial correlation.
Figure 7(c) shows an example of aggregation driven by a
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proliferation mechanism. The occupancy matrix is obtained by
simulating an on-lattice agent-based model with periodic BC
as described in Binder and Simpson [12], which we summarize
as follows. The model is initialized with 16 agents, located at
coordinates given by {(x,y) | x,y ∈ {20,40,60,80}} on a regu-
lar square lattice with Lx = 100, Ly = 100. Time is discretized
with a time step τ = 1 and the number of agents at time t is
denoted by n(t). At each time step the configuration at time
t + τ is obtained from the configuration at time t , by repeating
the following steps n(t) times. (1) An agent is chosen uniformly
at random from the n(t) agents present at the end of the
previous time-step; (2) one of its four von Neumann neighbors
is selected at random with equal probability; (3) if the selected
site is empty, then a new agent is placed in this site and n(t +
τ ) = n(t) + 1; otherwise, the configuration is left unchanged.

Figure 7(c) shows a single realisation after 10 time steps and
Fig. 7(d) shows the corresponding PCFs: fR , f1, and f∞. The
results indicate that all of the PCFs correctly identify aggre-
gation. However, the quantitative information about aggregate
sizes at different length scales provide by each PCF varies. For
example, we see that all PCFs in Fig. 7(d) exhibit three peaks; at
m = 1, m ≈ 20, and m ≈ 40. The different peaks and troughs
of the PCF profiles have different qualitative meanings related
to the correlation type. Due to the local approach of the square
taxicab PCF and square uniform PCF, the first peak at m = 1
is three times higher than the peaks at larger values of distance.
These differences in amplitude highlight the different peak
origins. Specifically, the first and highest peak distinguishes
the individual cluster aggregate and the later peaks indicate
correlation between different clusters. In contrast, all three
peaks in the rectilinear PCF are the same amplitude. Note that,
in the case of aggregation, the average diameter of the aggre-
gate corresponds to the first value of distance which achieves
the minimum of the PCF. The rectilinear, square uniform, and
square taxicab PCFs estimate the aggregate diameter to be 9,
9 and 11, respectively. Importantly, the PCFs capture the fact
that this diameter depends on the metric used. In particular
the distance between two sites measured using the uniform
metric is always less than or equal to the taxicab distance. This
phenomenon is seen more clearly in later examples.

We now consider a series of examples with spatial cor-
relation constructed artificially to compare and evaluate the
different PCFs. In Fig. 8 we compare our square uniform
and square taxicab PCF with the rectilinear PCF for three
different patterns with strong spatial correlation. All three
examples (Fig. 8(a), diagonal stripes; Fig. 8(c), chessboard
pattern; and Fig. 8(e), concentric circles) are chosen so that
the column- and row-averaged densities are constant and hence
the spatial structure is not recognised by the rectilinear PCF,
as shown in Figs. 8(b), 8(d), and 8(f). This is in contrast to
the approach of our PCFs (both square uniform and square
taxicab), which successfully recognize the spatial structure in
all three examples. In addition, these examples uncover other
interesting differences between the taxicab and the uniform
approaches. Consider the PCF for the case of diagonal stripes
and the chessboard pattern [Figs. 8(b) and 8(d)]. Here the
square uniform PCF quickly converges to unity (no spatial
correlation) for large distance m, while in both cases, the square
taxicab PCF still shows a strong oscillatory behavior for large
distance m, suggesting spatial correlation. To give an intuitive
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FIG. 8. Examples of pattern analysis. Panels (a), (c), and (e)
visualize three constructed spatial patterns. Panels (b), (d), and
(f) displays the corresponding square taxicab, square uniform and
rectilinear PCF using the occupancy matrices for (a), (c), and (e),
respectively.

explanation of this phenomenon, let us consider the shapes of
balls of size m centered at a given site a under the two metrics.
These balls are defined as Bm(a) = {b ∈ L | ‖a − b‖d � m}
with d = 1,∞, respectively (see Fig. 3). The ball correspond-
ing to the uniform metric [Fig. 3(b)] has a square shape with the
sides aligned with the directions of the axis. This implies that
when distance m becomes close to either Lx or Ly in size, the
ball corresponding to the uniform metric of distance m contains
most of the sites in the corresponding row or column at distance
m. For large m, therefore, the uniform metric begins to work in
a similar way to the Rectilinear PCF and thus fails to recognize
anisotropic patterns biased in the Cartesian directions. The ball
of the taxicab metric [see Fig. 3(a)], however, has a diamond
shape. Consequently, the long-distance correlations appear
clear even for patterns in which both the average column and
row densities are constant, as in Fig. 8.

The examples in Fig. 8 were constructed specifically to
underline the main differences between the three PCFs. Nev-
ertheless, similar patterns also arise in many biologically and
mathematically relevant applications [32–34]. We conclude
this section by comparing the three PCF approaches applied to
some real-world examples taken from the literature. In Fig. 9
we analyze three images representing examples of Turing
patterns. A corresponding occupancy matrix is obtained by
representing each pixel of the image as a value in a matrix
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FIG. 9. Spatial analysis of Turing patterns. Panels (a), (d), and (g) show original images representing the results of a reaction-diffusion
mechanism between two chemical substances, (a) is reprinted from Ref. [35], (d) from Ref. [32], and (g) from Ref. [36]. Panels (b), (e), and
(h) visualize the occupancy matrices corresponding to the original images (described in text). In panels (c), (f), and (i) we compare the square
taxicab, square uniform, and rectilinear PCFs for each of the examples.

which is 1 (i.e., occupied) if the three values of the RGB
colorization of the pixel are above a certain threshold (80) and 0
otherwise. In all cases the column and row densities are almost
constant, hence the spatial structure again remains largely un-
detected by the rectilinear PCF, while our square uniform and
square taxicab PCF correctly identify the patterns. As already
observed in the previous examples, we note that the estimated
diameter of the aggregate, wavelength, and amplitude of the
oscillations differ according to the metric used.

V. THE TRIANGLE, HEXAGON, AND CUBE PCFS

Despite the square lattice being the most popular set up for
spatially discrete models [13,37–40], in some situations other
types of tessellation, either regular or irregular, can be more
suitable [13,17,41].

In the following subsections we extend our definition of
the PCFs in Sec. III to more general types of tessellations.
We define the triangle, hexagon, cube uniform, and cube
taxicab PCFs under nonperiodic and periodic BC for tri-
angular, hexagonal, and cuboidal tessellations, respectively.
The following subsections represent qualitative discussions of
the different cases. We refer the reader to the Supplemental
Material Secs. S.2 and S.3 for the full details of the derivation
of the PCF formulas [31].

A. Triangle and hexagon PCF

First, we define triangularly and hexagonally tessellated
domains of size Lx × Ly . These comprise an array of Ly rows
of Lx regular triangles or hexagons, respectively. Examples
for which Lx = 6 and Ly = 3 for each of the two cases are
given in Figs. 10(a) and 10(b), respectively. Notice that, for a
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FIG. 10. Example domains for (a) triangular and (b) hexagonal
tessellations in which Lx = 6 and Ly = 3.

periodic BC to be meaningful in these domain definitions, Lx

must be even. Therefore, we enforce this as a condition in what
follows.

In the context of triangular and hexagonal tessellations we
focus our attention on the taxicab metric, both for simplicity
and as the most natural metric on this domain type. Using the
taxicab metric, the number of sites of distance m from any
given reference site is given by

ttri(m) = 3m, (34a)

thex(m) = 6m. (34b)

The proofs of Eqs. (34) are omitted, but they can be
obtained easily by induction on m. Examples for m = 1,2,3 are
visualized in Fig. 11. Using the same reasoning as in Sec. III
under periodic BC:

s
p

tri(m) = 3m
LxLy

2
, (35a)

s
p

hex(m) = 3mLxLy . (35b)

Substituting Eqs. (35) into Eq. (19) we obtain the normal-
izations for the triangle and hexagon PCF, respectively, under
periodic BCs, namely,

E
[
c̄
p

tri(m)
] = 3mN (N − 1)

2(LxLy − 1)
, (36a)

E
[
c̄
p

hex(m)
] = 3mN (N − 1)

LxLy − 1
. (36b)

FIG. 11. Schematic of agent pairs with the (a) triangular tes-
sellation and (b) hexagonal tessellation using the taxicab metric.
Sites in yellow, red, and green, labeled 1, 2, and 3, respectively, are
distance-one, -two, and -three neighbors from the blue site (labeled
with X), respectively.

FIG. 12. Schematic of agent pairs using (a) the taxicab metric and
(b) the uniform metric. Sites in yellow are defined to be distance-one
neighbors from the site marked in blue.

From these expressions one can obtain the formulas of ftri

and fhex under periodic BC by using the definition Eq. (9). The
normalizations in the case of nonperiodic BC are given in the
Supplemental Material Sec. S.2 [31].

B. Uniform cube and taxicab cube PCF

We define a three-dimensional Lx × Ly × Lz cuboidal
lattice with unit spacing. Using the taxicab and uniform metric,
respectively, the number of sites of distance m from any given
reference site is given by

tcube1 (m) = 2(2m2 + 1), (37a)

tcube∞ (m) = 2(12m2 + 1). (37b)

The proofs of Eqs. (37) are omitted, but they can be obtained
easily by induction on m. Examples of agent pairs for m = 1
are given in Figs. 12(a) and 12(b) for the taxicab and uniform
metrics, respectively. Using the same reasoning as in Sec. III,
under periodic BCs, the normalizations for taxicab and uniform
cube PCFs, respectively, are as follows:

s
p

cube1
(m) = (2m2 + 1)LxLyLz, (38a)

s
p

cube∞ (m) = (12m2 + 1)LxLyLz. (38b)

For simplicity we refer the reader to Sec. S.3 of the
Supplemental Material for the normalization factors for the
cases with nonperiodic BC [31].

VI. THE GENERAL PCF

In this section we provide a comprehensive method for
generating a PCF for any tessellation type, BC, and metric
but with the caveat of having a high computational cost.

This PCF is a valuable tool for irregular domain shapes and
partitions although it can be used for any tessellation of any
domain.

First, we consider a two-dimensional domain partitioned
into Z regions (or sites) with arbitrary shapes and sizes, each
labeled with a number from 1 to Z. Figure 13(a) shows an
example of an irregularly shaped domain partitioned in Z = 17
regions. Given the domain, we choose a suitable metric. For the
irregular lattice, which we consider in the following example,
we consider the taxicab metric. This means that we define the
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FIG. 13. An example of an irregular domain partition with its
corresponding connectivity graph under the taxicab metric. Panel
(a) shows A size 17 irregular lattice domain. Panel (b) shows
corresponding connectivity graph for the tessellation in (a) under
nonperiodic BC using the taxicab metric for distances.

distance, m, between two sites to be the minimum number of
sites visited when starting at one site and moving consecutively
through adjacent sites to the other. For example, in Fig. 13(a)
the sites 4 and 7 are at distance three. Similarly, adjacent sites
are defined to be at distance one.

Having chosen and defined a suitable metric, we may
now represent the connections between lattice sites as an
undirected connectivity graph G(V,E), where each vertex
represents a lattice site and each edge connects vertices whose
corresponding sites are distance-one neighbors. Using the
taxicab metric, edges connect vertices whose corresponding
sites are adjacent. Figure 13(b) shows an example of such an
association [applied to the irregular lattice in Fig. 13(a)] using
the taxicab metric.

The corresponding adjacency matrix of graph G is a Z × Z

matrix defined as follows:

AG
i,j =

{
1 for (i,j ) ∈ E,

0 for (i,j ) /∈ E.
(39)

We use properties of the adjacency matrix to determine the
number of sites at a given distance. In particular, we can
compute (AG)m whose entries (AG)mi,j are the number of walks
of length m from vertex i to vertex j . To compute the minimum
walk between two sites (and hence the distance between them)
we produce the distance matrix DG. This is a Z × Z matrix
defined as

DG
i,j =

{
min

{
m ∈ N+∣∣(AG)mi,j �= 0

}
for i �= j,

0 for i = j .
(40)

Notice that, each entry, DG
i,j , denotes the distance between the

vertices i and j on graph G and hence on the original lattice.
Given the distance matrix of the domain, DG, and the set

of the occupied sites M ⊆ V , the PCF of the system can be
computed as follow. The number of pairs of agents at distance
m for a general metric d is given by

cd (m) = 1
2

∣∣{(i,j ) ∈ M × M
∣∣DG

i,j = m
}∣∣. (41)

Similarly, we can express the number of pairs of sites at
distance m as

sd (m) = 1
2

∣∣{(i,j ) ∈ V × V
∣∣DG

i,j = m
}∣∣. (42)
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FIG. 14. Examples of spatial correlation analysis on an irregular
domain. Panels (a), (c), and (e) show three examples of irregular
lattices populated with density 0.4 with agents (gray sites). In panel
(a), agents are displaced uniformly at random (no spatial correlation).
In panel (c), agents are in a strong form of aggregation, while in panel
(e) agents are displaced in a segregate manner. Panels (b), (d), and (f)
are the corresponding general PCF evaluations for panels (a), (c), and
(e), respectively.

To compute the normalization factor, denote the total num-
ber of agents as N = |M|, and hence using the same argument
as in Sec. III we can write

E[c̄d (m)] =
(

N

Z

)(
N − 1

Z − 1

)
sd (m). (43)

The general PCF is then defined by combining Eqs. (42)
and (43) in Eq. (9). Notice that the computation of the
normalization for the general PCF can be computationally
expensive. This is because the computation of DG involves
calculating powers of matrices of size Z × Z, where Z is often
large. In particular, the cost of computing the normalization of
the general PCF is O(Z3mmax) in which mmax is the maximum
value m for which the PCF is computed. For this reason, the
general PCF is better reserved for cases in which the expression
for the normalization factor cannot be computed analytically,
unlike in Secs. III, V A, and V B, although it can, of course, be
used even if an analytical formula is available.

In Fig. 14 we apply the general PCF to three examples
of agent-based systems on an irregular lattice. In all three
examples, the irregular tessellation is the Voronoi partition
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based on a set of randomly distributed points. The randomized
points are obtained by starting with a square lattice, with lattice
size �, and perturbing the coordinates of each point (xi,yi) to
(xi + δx

i ,y + δ
y

i ) with each δx
i ,δ

y

i chosen uniformly at random
in the interval [−�

2 ,�
2 ].

In the first example, Fig. 14(a), N lattice sites selected
uniformly at random to be occupied (gray sites). By eye,
several larger clusters of occupied and unoccupied lattice sites
are evident, indicating that there may be spatial correlation.
Figure 14(b) shows the corresponding general PCF. The
values are close to unity, correctly identifying that there is,
indeed, no spatial correlation in the system. This highlights the
importance of accurate quantitative methods for determining
spatial correlation rather than a reliance on ad hoc judgements.

In the other two cases we test our PCF with examples of
strong spatial correlation. In Fig. 14(c) we consider a system in
an aggregated state. To generate such a configuration, we start
with an empty domain, and select an empty site uniformly
at random. We then place an agent in this site and all of
its neighboring sites (if they are not already occupied). We
repeat this process until we reach density 0.4. The process
leads to a strong form of aggregation which the general PCF,
in Fig. 14(d), correctly identifies. Finally, in Fig. 14(e) we
consider a system in a segregated state. To generate such a
configuration, we start with a fully populated domain, and
repeatedly select at random an occupied site. We remove all
agents occupying adjacent sites but leave the initially selected
site occupied. The process ends when density 0.4 is reached.
This mechanism generates a system which is unlikely to
have adjacent sites occupied and more likely to have agents
displaced at distance two. The corresponding PCF, shown in
Fig. 14(f), correctly captures both of these features: the PCF
has value 0.68 at pair distance one, which implies negative
correlation at the shortest distance, and value 1.1 at pair
distance two, highlighting the positive correlation at slightly
larger distances.

Note that, since the normalization in the general PCF can
give an exact value for the number of sites at certain pair dis-
tances, we used this method to check the normalization factors
for all of our previously proposed PCFs. In all cases the results
confirmed the analytical expressions given in Secs. III, V A,
and V B and in the Supplemental Material [31].

VII. CONCLUSIONS

In this paper we have developed a set of tools to study spatial
correlation on discrete domains. We derived two discrete

pair-correlation functions for an exclusion process on a square
lattice: the square uniform and square taxicab PCF. We applied
our PCFs to patterns observed in nature and to computational
simulations and showed that our PCF can not only distinguish
and quantify different types of correlation but also that it
improves upon previous on-lattice PCFs. For example, we
showed that our PCF was normalized correctly, unlike the
annular PCF, and was able to identify and quantify anisotropic
patterns such as the chessboard or the diagonal stripes that the
rectilinear PCF [12] missed. Furthermore, we highlighted how
different measures of distance, taxicab and uniform, can lead
to different quantifications of spatial correlation.

We extended the calculation of appropriate PCFs to deal
with exclusion processes on the other regular spatial tessella-
tions in two dimensions as well as the cubic lattice in three
dimensions. We derived the triangle PCF, hexagon PCF, cube
taxicab PCF, and cube uniform PCF. These are the first PCFs
defined specifically for these discrete lattice types. Finally, we
derived a comprehensive PCF for any kind of discrete domain,
BC, and metric, which we referred to as the general PCF. The
method can be computationally expensive, however, it allows
complete freedom in defining a suitable PCF for more complex
cases, including those for which recognizing spatial correlation
by eye becomes less intuitive.

All of our PCFs are designed for a single species of agents.
However, in many applications the agents are divided into
multiple species and it can be important to distinguish between
different types of spatial correlations: either within agents of
the same species (autocorrelation) or comparing the position
of agents of different species (cross-correlation). Dini et al.
[42] have recently investigated correlation in multiple species
by using the Rectilinear PCF. We believe a similar approach
to that of Dini et al. [42] can be applied to our isotropic
PCFs to quantify heterogenous correlations, yet it lies beyond
the scope of this paper and, as such, we will tackle it in a
future publication. The isotropic PCFs that we defined in this
paper will be important in further studies and applications.
In particular, our functions can improve previous studies (see
Ref. [43], for example) which have used PCF as an efficient
summary statistics to infer model parameters.
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