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We derive a bound on generalized currents for Langevin systems in terms of the total entropy production
in the system and its environment. For overdamped dynamics, any generalized current is bounded by the total
rate of entropy production. We show that this entropic bound on the magnitude of generalized currents imposes
power-efficiency tradeoff relations for ratchets in contact with a heat bath: Maximum efficiency—Carnot efficiency
for a Smoluchowski-Feynman ratchet and unity for a flashing or rocking ratchet—can only be reached at vanishing
power output. For underdamped dynamics, while there may be reversible currents that are not bounded by the
entropy production rate, we show that the output power and heat absorption rate are irreversible currents and thus
obey the same bound. As a consequence, a power-efficiency tradeoff relation holds not only for underdamped
ratchets but also for periodically driven heat engines. For weak driving, the bound results in additional constraints
on the Onsager matrix beyond those imposed by the second law. Finally, we discuss the connection between heat
and entropy in a nonthermal situation where the friction and noise intensity are state dependent.
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I. INTRODUCTION

A defining feature of an out-of-equilibrium system is a
positive irreversible entropy production. Indeed, the second
law of thermodynamics demands that during any thermody-
namic process, the total change in entropy is greater or equal
than zero [1]. More precisely, zero change in entropy is only
possible for infinitely slow processes, during which the system
is in thermal equilibrium at any point. For most applications,
however, a thermodynamic process has to occur on a finite
timescale. A useful engine, for example, should possess a finite
power output. Such a finite current—defined as the rate of
change some physical observable over time—is necessarily
accompanied by a strictly positive rate of irreversible entropy
production.

While the connection between entropy production and
nonequilibrium is a very strong and universal statement, it is
not quantitative. The second law makes no prediction about
the size of the irreversible entropy production or the currents
in the system. While it seems reasonable that a small rate
of entropy production rate should not allow for the presence
of arbitrarily large currents, this statement does not follow
from the second law. For a stochastic dynamics in contact
with a heat bath, an explicit relation between the rate of
entropy production and the size of heat currents has recently
been derived by Shiraishi er al. [2]: The square of the heat
current between the system and the heat bath is bounded
from above by a system-dependent positive constant times the
instantaneous rate of entropy production. This establishes that
any heat current is accompanied by a minimal rate of entropy
production.

A related result, originally suggested by Barato et al. in the
form of a so-called thermodynamic uncertainty relation [3],
has recently been proven and investigated in various contexts
[4-8]. It states that the square of the current is bounded from
above by the product of the variance of the current and the
entropy production. While applicable to more general types
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of currents and stochastic dynamics, this relation has the
drawback of being restricted to steady states and thus excludes
any time-dependent driving, which is a crucial ingredient
of many real-world nonequilibrium systems. However, the
similarity between the thermodynamic uncertainty relation
and the bound derived in Ref. [2] suggests that a similar
instantaneous bound may hold for more general currents and
dynamics.

In this work, we show that, for a general stochastic dynamics
described by a set of Langevin equations, such a bound can
be derived using the Cauchy-Schwarz inequality. This bound
generalizes the result of Ref. [2] to currents other than heat
currents, nonthermal heat baths, and dynamics with broken
time-reversal symmetry: The square of any irreversible current
is bounded from above by a positive constant times the rate of
total entropy production. We argue that this entropic bound
is in fact a more precise statement of the second law of
thermodynamics: It provides a nonzero lower bound on the rate
of entropy production in terms of the square of any irreversible
current. While the derivation of the bound is mathematically
straightforward, when applied to physical systems, it offers
some intriguing insights into the connection between currents
and entropy.

In Sec. II, we specify the class of systems that will be
investigated over the course of this work and define generalized
currents. In Sec. III, we then show that the irreversible part of
a such a generalized current is bounded from above by the
rate of entropy production. This is the most general statement
of the bound, which we will apply to specific situations in
Secs. V through VIII. As a general consequence of the bound,
we establish in Sec. IV a connection between the system (or
Shannon) entropy production and the entropy production in
the medium. For overdamped Langevin dynamics with only
even variables under time-reversal, discussed in Sec. V, any
current is an irreversible current. We argue that in this case,
the entropy production rate serves as a measure of the passage
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of time for the macroscopic state of the system. We apply
the entropic bound on the current to derive a tradeoff relation
between power and efficiency for ratchet models, generalizing
the relation derived in Ref. [2] for time-periodic heat engines.
This tradeoff relation states that maximal efficiency can only
be realized at vanishing output power, independent of whether
the ratchet is driven by a temperature difference or a time-
dependent ratchet potential. In the presence variables that are
odd under a reversal of time—in particular velocities or a
magnetic field—there are generally reversible currents as well
as irreversible ones. However, as we show in Sec. VI, most
currents of interest are in fact irreversible and thus bounded
by the entropy production rate. The power-efficiency tradeoff
relations derived for overdamped dynamics thus also apply
to the underdamped case. One important class of model that
serves as a prototype for stochastic heat engines [2,9-11] is a
trapped particle with a periodically varying temperature and
trapping force. We show that the tradeoff relation derived in
Ref. [2] remains valid in the presence of a magnetic field and
also applies when the engine is operated in reverse, serving
as a Brownian refrigerator. Though valid arbitrarily far from
equilibrium, the entropic bound also yields insights into the
properties of a system close to equilibrium. As we discuss in
Sec. VII, constraints on the Onsager coefficients in the linear
response regime arise as a consequence of the bound. These
constraints were proven before by Brandner et al. [12], but our
analysis illuminates their physical origin in a refinement of
the second law. Finally, in Sec. VIII, we discuss systems that
are in contact with a nonthermal heat bath, represented as a
velocity-dependent friction and diffusion coefficient. While in
this case, the thermodynamic correspondence between heat
and entropy is lost, we show that the bound remains valid
and thus establishes a connection between heat and entropy in
nonthermal situations. This leads to a tradeoff relation between
power and efficiency for nonthermal engines.

II. GENERALIZED CURRENTS IN LANGEVIN SYSTEMS

We consider a set of M coupled Langevin equations for the
dynamical variables x(t) = [x(¢), ..., xp(?)]

Xi(t) = Ai(x(1),1) + /2B (x(1),1) - §(2), (1

where i = 1,...,M, A;(x,t) and B;(x,t) > 0 are arbitrary
(time-dependent) functions of x, and &;(¢) are mutually
independent Gaussian white noises, (§;(#)§;(s)) = 8;;6(t — s).
Here, we choose to interpret the multiplicative noise as an Itd
product, without loss of generality, since another interpretation
just renormalizes the drift coefficients A;(x,#). We can also
describe these dynamics by the Smoluchowski-Fokker-Planck
equation for the probability density P(x,#) and current J(x,?)
[13]

M
OP(x,t) ==Y 0y Jix.1), (2a)

i=1

Ji(x,1) = [Ai(x,1) — 0y, Bi(x,1)] P(x,1). (2b)

The time evolution of the average (Y'), of some observable
Y (x,t) with respect to the probability density P(x,?) can then

be expressed in terms of the probability currents

d

E(y)t i/dx Y(x,t)P(x,t)

:dt

= (3,Y), +/dx Y (x,)9, P(x,1)

M
= (8,Y), +Z/dx [0, Y (x,0)]Ji(x,0),  (3)
i=1

where we used the continuity equation (2a) and integrated
by parts, assuming natural boundary conditions, i.e., that
the probability density and current vanish at the boundaries.
Here, and throughout the rest of the paper, we adopt the
convention that a derivative operator inside brackets only acts
in terms inside the brackets, e.g., [0, f]1g = g9, f; by contrast,
parentheses are transparent to a derivative operator, e.g.,
(0, f)g = go, f + f0.g. Equation (3) states that a change in
the average (Y'), decomposes into the explicit time dependence
of the function Y (x,¢) and the time evolution of the dynamical
variables x(z), expressed via the probability currents. Note
that this is similar to the decomposition of the energy change
into work and heat employed in the framework of stochastic
thermodynamics [14,15]. We may thus refer to the first part on
the right-hand side of Eq. (3) as worklike and the second part
as heatlike. In this work, we will be mainly be interested in the
latter, heatlike, contribution. We define a generalized average
current R(t)

M
ko =Y [ x zixnsen, @
i=1

with arbitrary functions Z;(x,#). The heatlike part of Eq. (3) is
included in this definition for the particular choice Z;(x,t) =
0x, Y (x,1); however, the above definition is more general and
also includes observables that cannot be written as a total
time derivative of an ensemble-averaged quantity. Note that
the definition Eq. (4) is equivalent to the average of the
generalized current discussed in Refs. [8,16,17]. Examples of
such generalized currents are the velocities of the dynamical
variables, the heat current between a particle and a heat bath
or the entropy production rate (see below).

III. TIME REVERSAL AND ENTROPIC BOUND

We assume that all variables and parameters governing the
dynamics Eq. (1) are either even or odd under time reversal.
The time-reversed drift coefficients A}L(ex,t) are obtained by
reversing the sign on all odd (velocity-like) variables ex(t) =
lerx1(2), ...,epqxpy ()], with €, = 1 for even and ¢; = —1 for
odd variables. The sign is also reversed on all odd parameters
(for example, a magnetic field) that may appear in the explicit
form of A;(x,t). We further demand that the diffusion coef-
ficients be even under time reversal, B,-T (ex,t) = B;i(x,t). We
define the reversible and irreversible probability currents via

JireV(x,t) — %[A,‘(x,t)—fiAlT(ex’t)] P(x,1), (5a)

=A™ (x,1)
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T, = L[Aix,0) + € Al(ex,0)] P(x.1),

=A(x,1)

—0y, Bi(x,t)P(x,1). (5b)

We further define the entropy production during a time
interval [0,7] as [15,18]

ASlot = ASSS + ASmEd,

ASYS = /dx (P(x,0)In P(x,0) — P(x,t)In P(x,1)),

" Dx(s) Plx(s) In — 2 OIXO)

A med — .
S 0 Pl(exi(s)|ext(0))

(6)

The first part, the system entropy production, is the Shannon
entropy difference between the initial and final states of the
system. In the second part, the medium entropy production,
we integrate over all possible paths {x(s)}se0,,; Where the
path probability density P(x(s)) measures the probability
for traversing a given path with initial conditions distributed
according to P(x,0). P(x(s)|x(0)) is the the probability of
a path given the initial condition x(0). The time-reversed
path probability density Pf(x(s)|x(0)) is obtained from the
forward path probability density by (i) reversing the explicit
time dependence of all parameters and (ii) reversing the sign
of all odd parameters (like a magnetic field). Note that xf(s) =
x(t — s) denotes the time-reversed trajectory. The path integral
in Eq. (6) can be evaluated explicitly by introducing a suitable
discretization of time. The result is the compact expression for
the total entropy production [18]

M [T ees)]

tot
AS(1) = / ds/ ZB(x vray O

This shows that the total entropy production increases mono-
tonically with time and is determined by the irreversible
probability currents. The entropy production rate o'°'(r) =
dAS™\(t)/drt further decomposes into a sum of positive con-
tributions

O,tot(t) —

M
Z O.itot(t)
i=1

[ )]

Bi(x,s)P(x,s) ®

with (1) = / dx

Note that a finite entropy production requires either that all
the diffusion coefficients are strictly positive B;(x,t) > 0 or
that, if there are vanishing diffusion coefficients, the associated
irreversible currents also vanish. If the latter condition is not
satisfied, this corresponds to a deterministic contraction of
phase space, which leads to fully irreversible transitions and
thus infinite entropy production [19,20]. In the following, we
will assume that the entropy production is finite.

Since, by definition, the probability currents can be de-
composed into the reversible and irreversible parts J;(x,7) =
J(x,t) + Jl.i"(x,t), we can similarly decompose the gen-
eralized current Eq. (4) into reversible and irreversible

parts:

R(t) = R™(1) + R™(1),
M .
Ry =) / dx Zi(x,0)J" "™ (x,1). ©)
i=1
We now rewrite the integral over x as an average,

‘ ZJ"
/dx Zi(x,t0)J"(x,1) = <’—’> :
P t

and use the Cauchy-Schwarz inequality to bound

ZI'J-HT Z,’»\/B,'Jm’ Jur
<_,> =<—l> <(Z}B) (=5 ). (D
P/, JBP |, BP?|

We identify the second factor on the right-hand side as the
contribution ¢/°'(r) to the entropy production rate. We thus
have

(10)

2
[ / dx z,»(x,t)J;”(x,t)} <(ZPB)) o). (12)

Thus every single contribution to R'™(r) is bounded by the
corresponding contribution to the entropy production rate
times a positive factor. We can also use this to bound the total
irreversible generalized current

)2

M

(R™(1))* < (Z

i=1

f dx Zi(x,t)J™(x,1)

" 2
<(SiEma).w
i=1
and, once more using the Cauchy-Schwarz inequality,
M
(R™(1))* < Y _(Z7B:),0"(1). (14)
i=1

We have thus shown that the magnitude of an irreversible
generalized current is bounded from above by the total entropy
production rate in the system. The inequality (14) constitutes
the first main result of this paper. This general bound is a more
detailed statement of the second law of thermodynamics for
stochastic dynamics: The rate of entropy production is not
only positive, but bounded from below by the square of any
irreversible current in the system.

IV. MEDIUM AND SYSTEM ENTROPY

We can split the entropy production rate Eq. (8) into the
rates of system and medium entropy production

o (t) = —%(111 P),, (15a)

M i 2
(A" — 9, B;)
>o( (el

i=1

o) = + 0y, (A" — 3, Bi)> , (15b)
t

which correspond to the time derivatives of the respective
quantities in Eq. (6). The system entropy production rate,
which is equivalent to the rate of change in the Gibbs-Shannon
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entropy, vanishes in the steady state 9, P(x,t) = 0. Since the
entropy production in the medium is an irreversible current
with

M AT (x,t) — 3, Bi(x,1) .
O,med(t): /dx i ’ Xi LAY Ji‘”(x,t), (16)
; Bi(x,1)

we can apply the bound (14) to find
[o™ O < x(Olo™ (1) + o (1)]

M [ (Al _ 5 B)?
with X(I)ZZ<( : B?XI l)

i=1

> >0, a7

where we used the decomposition ¢t = 0™ 4 %%, Com-
paring the quantity x with Eq. (15b), we can write

o™ (1) = x (1) — p(t)
M
with p(t) == (3, A" — 97 B;) . (18)
i=1
Plugging this into Eq. (17), we get
p(M(@™ (1) + (1) = —a ™ ()oY (1), (19)

This relation implies a more intricate connection between
the medium and the system entropy production than the
bare second law o™ 4+ ¢%° > 0. The relation (19) between
the medium and system entropy production rates is shown
graphically in Fig. 1. In many cases, the quantity p is positive;
for example, we have p = y for an underdamped particle
under Stokes friction with damping rate y, and p = k/(my)
for an overdamped particle in a harmonic potential with
spring constant k (more generally, p is determined by average
curvature of the potential). In this case, we have
med sys
5™ o) > — L DI (20)
p(1)
While this inequality is redundant if both 0™ and o®* are
positive, it becomes meaningful if the medium and system
entropy production have opposite signs. In particular, it is not
possible to have 0™ = —o % with a finite value for ™, i.e.,
vanishing total entropy production requires both the system and
medium part to vanish. Moreover, the product of the two terms
provides a lower bound on their sum. Let, e.g., be 0%¥® < 0 and
o™d =~ 0, and then
P (1)

p(t) — los¥s(1)]”
Thus, the rate at which the system entropy decreases is bounded
by p, and the corresponding rate at which the medium entropy
increases diverges as the former approaches this bound. Since
a decrease of system entropy corresponds to a compression
of the phase space available to the system [21], there is a
“speed limit” for this phase-space compression and that limit
can be approached only at the cost of diverging dissipation.
The case p < 0, which may occur, e.g., for the relaxation of
an overdamped particle initially located at a maximum of the
potential, leads to

o™ (1) > 1)

Gmed(t) oY) < Omed(t)asyS(t)' 22)
S )]

. Second Law |
4 o= 3.0
| | p = 10
3 = p=-05
| | p = —10
. 2
©
1
0
-1
_gz

Omed

FIG. 1. Allowed values for the medium and system entropy
production rates, indicated by the shaded areas. While the second
law only requires the total entropy production rate to be positive
(gray/lightest shade), the bound (19) is tighter and restricts the
possible values for the medium and system contribution. For p > 0
(orange, green/slightly darker shades) an equilibrium state can exist in
principle, since 0™ = ¥ = 0 is permitted. Also, for any 0™ > 0,
0% =0 is allowed, and thus the possibility of a nonequilibrium
steady state. The case p < 0 (red, blue/darkest shades), by contrast,
cannot occur in a steady state and thus corresponds to transient
behavior with both medium and system entropy production rates being
positive.

In this case, both the medium and system entropy production
rates have to be positive; thus p < 0 cannot occur in a steady
state and always corresponds to transient behavior. Further, by
minimizing the bound with respect 0™ and %%, we get the
bound on the total entropy production rate

o'(1) = 4lp(). (23)

For an overdamped particle in a potential, this translates to
a bound on the total entropy production rate in terms of the
curvature of the potential,

4U"),
my

O,tot(t) 2 _

(24)

For a particle initially located near the maximum of the
potential ((U"), < 0), therate of entropy production during the
relaxation is thus bounded from below by the average curvature
of the potential.

Finally, we note that the medium entropy production can
be measured without knowledge of the explicit form of the
probability density P, provided that the coefficients A; and B;
entering the equations of motion are known. By contrast, the
system entropy production explicitly depends on the proba-
bility density and thus cannot be measured without knowing
the solution of the Fokker-Planck equation (2). Nevertheless,
the relation (17) yields a lower bound on the system entropy

062101-4



ENTROPIC BOUNDS ON CURRENTS IN LANGEVIN SYSTEMS

PHYSICAL REVIEW E 97, 062101 (2018)

production rate,

(1) >

2
Py = — LD e 25)

x () x ()
This lower bound on the rate of change of the Shannon entropy
is expressed in terms of quantities that can be measured without
knowledge about the explicit form of the probability density.
This bound is tighter than the one obtained from the second
law, 0% > —g™d As an example, we consider a particle
under the influence of Stokes friction and arbitrary reversible
(i.e., velocity-independent or magnetic) external forces and in
contact with a heat bath at temperature 7'(¢) (see also Sec. VI).
In this case, the rate of entropy production in the medium is

given by
med,,\ __ m(vz)t . _ <0
? (t)_y< o) l) oy

where y is the damping rate, m is the mass of the particle, and
(v?), is average of the squared velocity. The entropy production
in the medium is directly related to the heat flow Q from the
heat bath to the particle. This expression is a standard result
of stochastic thermodynamics [14,15]. The relation Eq. (25)
implies that the rate of change of the Shannon entropy is
bounded by the same quantities,

T(t)
m(v2),

Q) 26)

1) - 20 27)

m(v2),

o (1) > y(

This shows that also the system entropy production is related
to the heat flow, albeit in the form of an inequality. Since the
system entropy is a total differential, we can write

Q(s)
m(v?),
The left-hand side is the difference in Gibbs-Shannon entropy,
which depends only on the final and initial states, whereas
the right-hand side measures the heat absorbed from the heat
bath relative to the particle’s kinetic energy, along the entire
trajectory. While the precise physical interpretation of the
Gibbs-Shannon entropy for nonequilibrium states is still a

matter of debate [21-24], this shows that it provides a bound
on measurable currents.

§95(r) — $95(0) > / ds . (28)
0

V. OVERDAMPED DYNAMICS

The statement of the inequality (14) is strongest for dy-
namics that only involve even variables and parameters under
time reversal, for example for overdamped Langevin dynamics.
In this case, the reversible probability currents vanish, J; =
JI™, and the total generalized current is bounded by entropy
production rate

M

[ROF < ) (Z7Bi),o @) (29)
i=1

For any explicitly time-independent observable Y (x), choosing
Zi(x) = 9y, Y (x), we find using Eq. (3)

M
< D ([0 YT B o). (30)

This means that the rate of change of any observable that
does not explicitly depend on time is bounded by the rate of
entropy production. For dynamics with only even variables,
any time evolution (on the level of ensemble averages) thus
necessarily entails a finite entropy production rate. Conversely,
zero entropy production rate implies that there are no currents
and no time evolution on average in the system. Since the rate of
entropy production bounds the time evolution of any ensemble-
averaged observable, entropy can be understood as a measure
of the passage of time on the ensemble level; see Refs. [22,25]
for related discussions. Note that this intimate relation between
time evolution and entropy production is lost in the presence of
odd variables—in this case, zero entropy production does not
preclude the presence of reversible currents and time evolution
on average.

Many examples of overdamped Langevin dynamics involve
periodic boundary conditions [26—34]. Then, an additional
boundary term from the integration by parts appears in Eq. (3),

d

M
Z(Y)t =(8Y), + ;/dx Ji(x,1)0y, Y (x,1)

—/ dx - (Y(x,t)J(x,1)), (31)
a0

where 92 denotes the boundary of the phase-space region. We
still take Eq. (4) as the definition of the generalized current;
however, the additional boundary term means that even for
Zi(x,t) = 0y,Y(x,t) the generalized current is not equal to the
time derivative of (Y),. If the coordinates x; are Cartesian
and we assume periodic boundary conditions for each x;
individually, i.e., the boundary is an M-dimensional box, then
for the choice Z;(x) = §;; the generalized current is the drift
velocity v () corresponding to xy.

A. Smoluchowski-Feynman ratchet

Let us consider two paradigmatic examples: the
Smoluchowski-Feynman ratchet [35-38] and a flashing
[31,39] or rocking [28,29] ratchet. The simplest model
for the Smoluchowski-Feynman ratchet consists of two
particles of masses m; and m; undergoing overdamped
diffusion coupled to heat baths of temperatures 77 and
T,. The particles are subject to a potential U(x,x3),
which includes interactions between the particles and
external potentials, and is assumed to be spatially periodic
Uy + Li,x0) = U(x1,xo + Ly) = U(x1,x3). In addition,
there is a constant load force Fy applied to particle 1 against
which the ratchet should perform work. The corresponding
system of Langevin equations read (i = 1,2)

. 1 2T,
X1(t) = —[Fo — 0, U(x1 (1), x2(0))] + o6, (32a)
Y1 1

. 1 27,
Xo(t) = = — 0, Ux1 (1), x2(1)) +, [ —=&(1),
V2 V2

where we absorbed the masses into the damping coefficients
y;. The total change in position of particle 1 over a time interval

(32b)
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[0,¢] is given by

x1(1) — x1(0) :/0 dt’ xy(t") (33)

Oor on average

(xl) {x1
dt /dx

since the noise averages to zero. We assume that the distribution
has relaxed to a steady state Ps(x;,x,) with the same periodicity
as the potential. Then this can be rewritten as

— [00, Ux1,x2)]) P(x1,52,1"), (34)

Ly Ly
(x1); — (x1)o = tf dx / dxy Js,1(x1,%2), (35)
0 0

where Jg; is the x; component of the steady-state probability
current corresponding to Ps. We thus identify the drift velocity
of particle 1,

(x1), — b t
V= —— dx dxy Js1(x1,%2).  (36)

This has the form of a generallzed current, Eq. (4) with Z; =1
and Z, = 0. Then a straightforward application of Eq. (29)
yields the bounds

T
()? < yl o and (1)’ < y—zo;m. (37)
1 2

The total energy of both particles is E(¢) = U (x(t),x2(¢)) —
Fypx1(t) and we have by applying Itd’s lemma
E(t) = [8,,U(x1,x2) = Fo] - %1(8) 4 95, U (x1,%2) - %a(1)

Ti , T,
+ —9;, Ux1,x2) + —0;,U(x1,x2). (33)
4! V2

The average change in energy is then

(E): — (E)o = f dr’ / dx [—i(axlu - R)’
0 Y1

T 1 T
+ 102U ——(a,U)" + —zafo}
Vi V2 V2

X P(x1,x2,1). (39

Again assuming a periodic steady state, we get by integrating
by parts and using the fact that the potential is a periodic
function of x; and x,

<E)t - <E)0 — Ql + Q'2 with

) L, Ly
0 = / dxi / dxa[0, U1, 50) — Fy)
0 0
X ‘]S,](xhxz)’
i L[ LZ
Q2 = / dX]/ de [asz(xlax2)]Js,2(x]7x2)ﬂ
0 0
(40)

where we defined the heat flows Q; and Q, between the
particles and the baths. Integrating by parts, this can be written

as
E), — (E b L
M = — F0U1 +/ d)Cl/ de U(xl,)Cz)
t 0 0
X [0x, J1(x1,52) + O, s 2(x1,32)]. (41)
Since 0, Py = —0y, Js1 — 0y, Js2 = 0, the second term van-

ishes. Then, defining the work rate W = —Fyv;, we get the
first-law-like equality

W =0+ 0s. (42)

A few remarks about the physical interpretation of the above
definitions are in order. Referring to the quantities Q; as heat
flows is _justiﬁed in the sense of stochastic thermodynamics,
in that Q; is the ensemble average of a quantity ¢; = —F; o
X;, where F; is the total systematic force on particle i and
o denotes a Stratonovich product. This is the negative of the
dissipation into heat bath i [36], i.e., the heat absorbed by
particle i from the heat bath. The work rate W is the rate at
which the particle performs work against the external load;
thus, in order for the ratchet to be used as an engine, we should
have W > 0. The heat flow Q; has precisely the form of a
generalized current with Z; = 9, U(x,x2) — Fp and Z; =0,
and we find the bounds

(01 <

where we defined the positive constants x; = ((0x,U — Fo)?)s
/(1 Ty) and 6, = ((8X2U)2)S/(y2T2), which have dimensions
of 1/time. The inequalities (37) and (43) state that the drift
velocity of a particle as well as the heat exchange rate between
the particle and the bath are bounded by the total entropy pro-
duction rate. From these inequalities, we can derive a number
of useful relations. Since the system entropy production rate is
a total time derivative [see Eq. (15a)], it vanishes in the steady
state and we have 0°' = o™ with

THol and (02) < paTP0l™,  (43)

med 1 . 1 . 1 1 w

o, = TlQl T2Q2 Ql( T1> o’ (44)
as can be seen by evaluating Eq. (15b) explicitly and replacing
0, using Eq. (40). For W > 0, the positivity of the entropy
production rate implies that either (i) Q] >0and Ty > T, or
(i) Q1 < 0and 7; > T). In the following, we will focus on
case (i); case (ii) follows by exchanging the labels 1 and 2. The
explicit expression for the heat current O reads

. 1 2 T, .,
Ql = _Z<(axl U-— FO) >s + z<axl U>5 (45)
Since the first term on the right-hand side is negative, in order
to have O > 0, we require
(07 U), = vixi. (46)
Note that this imposes a restriction on the choice of the potential
function—only a potential with specific symmetry properties
will lead to a ratchet current in the desired direction. For 77 >
T, and W > 0, we define the efficiency of the ratchet as

W T2 g, Smed . T2 g, Smed (47)
n=——=1"nc— - nc—n= - )
0 0 o
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where we introduced the Carnot efficiency nc =1 — 1>/ T).
Multiplying by n and using Eq. (43), we get
. T}
W < xi—-n(ne —n)- (48)
I,

This is exactly the tradeoff relation between power and effi-
ciency found in Ref. [2]. It states that the power produced by
the ratchet vanishes as the efficiency approaches the Carnot
efficiency, prohibiting Carnot efficiency at finite power. Note
that in Ref. [2] the relation Eq. (48) was derived for alternat-
ing coupling to the heat baths, whereas the Smoluchowski-
Feynman ratchet is coupled to two heat baths simultaneously.
From Egs. (47) and (43), we further find

med

o < T2(77c -’ (49)
This provides an upper bound on the entropy production rate
in terms of the efficiency of the ratchet. In particular, if the
ratchet operates at Carnot efficiency, the entropy production
rate is zero unless the constant x; diverges. From the definition
of x; we see that can only happen in the rather pathological
case where the average square of the force on particle 1,
(85, U — Fp)?),, diverges.

B. Flashing and rocking ratchets

Whereas the Smoluchowski-Feynman ratchet operates us-
ing two heat baths and a static potential, the so-called flashing
[31,39] and rocking [28,29] ratchets operate using a single
heat bath and a potential that changes periodically in time
U(x,t + 1) =U(x,t). In the simplest case, these ratchets
consist of an overdamped particle in one dimension

) 1 12T
X = —[FO—BXU(X,I)]-F _é(t)
y 14

As before, the potential is also periodic in space U (x + L,t) =
U(x,t). The average displacement is [see (34)]

(50)

l t
W= o= [ ar [ axify - aueanpe. 61
Y Jo
We now assume that probability density has the same spa-
tiotemporal periodicity as the potential P(x,t + 1) = P(x +
L,t) = P(x,t). Then, if the length of the time interval of
interest is + = nt, we can write the average displacement as

(X)pr = (x)o = nt0, (52)

where v is the drift velocity averaged over one period of the
driving

U= L dt/ dx [Fy — 0, U(x,t)]P(x,t)

/ dt/ dx J(x,t) =LJ. (53)
We have from the Fokker-Planck equation
T T
/ dt 0, P(x,t) = —Bx/ dt J(x,t). (54)
0 0

Since the left-hand side is zero due to the time periodicity of the
probability density, we find that the time-averaged probability

current J = 1/t [ dt’ J(x,t') is constant in space. From
Eq. (29) we find

— 1 T
<P - / —0"(1) =
T Jo

Since the system entropy production rate can be written as a
total time derivative [see Eq. (15a)], it does not contribute to
the time average. Qualitatively, we thus have the same bound
on the drift velocity as Eq. (37), but now the steady-state
quantities are replaced by time averages. For the total energy
of the particle E(t) = U(x(t),t) — Fyox(t), we get

E(t) =3,U(x(t),1) + [0, U(x(1),t) — Fol - x(¢)

= med

(55)

r 2
+ ;BXU(x(t),t), (56)

which, after averaging over the ensemble and one period of the
driving, yields time-averaged rate of energy change

<E>r B <E>O

- =E"+Q with
T L
Ei, = l/ dt/ dx [3,U(x,D1P(x,t), (57)
T Jo 0
T L
0= 1/ drf dx [0,Ux.1) — FolJ (x.0),
T Jo 0

where, as in the previous example, Q denotes the (now time-
averaged) heat current between the particle and the heat bath.
In addition, there is now an additional energy input rate E™
due to the time-dependent driving through the variation of the
potential U(x,?). Integrating by parts with respect to time,
respectively space, the energy input rate and the first term
in the heat current cancel and we have the connection to the
time-averaged work rate W = —1 Fy,

W =E"+ Q. (58)
From Eq. (15b), we find the time-averaged entropy production
rate

6_med — _g.

T
The positivity of the entropy production now straightforwardly
implies Q < 0. In order to have W > 0, we thus have to

(59)

demand E™ > 0 and define the efficiency as
w T5med
n=gn =17 (60)
We then have
WTa.med
n1=m = = (61)

We thus want to bound E™ by the entropy production rate.
Integrating by parts with respect to time in Eq. (57), we get

. 1 T L
E, = ——/ dt/ dx U(x,t)0, P(x,t)
T Jo 0
1 T L
= —/ dt/ dx U(x,t)0,J(x,t)
T Jo 0

T L
= —l/ dt/ dx [0,U(x,t)]J (x,t). (62)
T Jo 0
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We take the square of this expression

2
(Ein)* = %(/ dtf dx [0, U(x,)]J (x, t))

Q

2
< %( dl‘ dx [0, U(x,0)]J(x,1) >
1
< —2< / dt\/ (@U)) amt(r/))
1T / dt (0, UY), 6™, 63)
Ty Jo

where we used Eq. (29) from the second to the third line and
the Cauchy-Schwarz inequality from the third to the fourth
line. Defining y = for dt' (3, U)?), /(ytT), we thus have the
bound

(Ew)* < xT?a™ (64)
Plugging this into Eq. (61), we find a tradeoff relation similar
to Eq. (48):

W < xTn(1 — ). (65)

Since the ratchet is now driven by an external variation of the
potential, the efficiency is no longer bounded by the Carnot
efficiency, but can reach a value of 1. However, as for the
Smoluchowski-Feynman ratchet, reaching the maximal effi-
ciency leads to vanishing power output. This tradeoff relation
is a consequence of two physical bounds: On the one hand,
the maximally attainable efficiency is a consequence of the
second law of thermodynamics, which states that the entropy
production rate is positive. This imposes a lower bound on the
rate at which energy is dissipated into the heat bath, i.e., the
rate of energy loss. On the other hand, the vanishing power
output at maximal efficiency is a consequence of Eq. (29),
which bounds any current in the system, in particular also the
rate of energy input, by the entropy production rate.

VI. UNDERDAMPED DYNAMICS

If the dynamics Eq. (1) contains odd variables or parameters
under time reversal, then the reversible probability currents
are generally nonzero. Then only the irreversible currents
are bounded by the entropy production rate; see Eq. (14).
Fortunately, many currents of physical interest, in particular
heat currents, turn out to be irreversible currents and thus
similar statements as in the previous section are possible also
for dynamics including odd degrees of freedom. As a specific
but still rather general case, we consider a set of position
and velocity variables,x = (xq, ...,xy)andv = (vy,...,vy).
These are governed by the underdamped Langevin equations

x; () = v (1), (66a)
vi(t) = i[—ax[U(x(t),t) + Fi]
m;
T
— )+ Vm Oew.  (©6b)

While the positions are even under time reversal, x; — x;, the
velocities are odd and change sign, v; — —v;. The reversible
and irreversible currents are then, from the definition Eq. (5),

T (x,v,0) = v P(x,v,0), J(x,0,0)=0

T (x,n,1) = ni (—[0x Ux.0)] + F;)P(x,v,0),  (67)
Jll‘r ( T( ) )
(x,v,0) = —y;| vi + —=0,, | P(x,0,0),
nm;

assuming that the nonconservative forces F; are even under
time reversal. Since the irreversible probability currents asso-
ciated with the position variables vanish, we have for the total
entropy production rate

o(t) = Z / dx /

For the total energy of the system E(f) =), mivi ()22 +
U(x(t),t) — Y, Fixi(t), we get from It5’s lemma

E(t) =3,U(x(t),1)

m;(JIm(x,v t))

(68)
viT () P(x,0,1)

M
+ Z(mivi(t) 0(1) + i Ti(t) — Fixi(1)).  (69)

i=1

This yields for the change in average energy
t

(E), —(E)o = / dt" (W) + Q")
0

with W) = (3,U),

M
o) = Zm,-/dx/dv viJUi:T(x,v,t), (70)
i=1

where we assumed natural boundary conditions on the velocity
degrees of freedom, i.e., that the probability density and its
derivatives vanish as v; — £00. Any change in the average
energy of the system thus decomposes into a part that involves
the explicit time dependence of the potential and a part that is
proportional to the irreversible velocity probability currents.
In the spirit of stochastic thermodynamics [14,15], the first
part can be interpreted as work done on the system and the
second part as the heat absorbed from the reservoirs. Since
the heat flow has precisely the form of an irreversible current
[see Eq. (9)], we can apply the inequality (14) to get a bound
on the former:
M

Z YT O(v7), o). (71)

(Q1)* <

A similar relation holds for the individual heat currents,

Qi) < miy; Ti(0)v7), o'(0). (72)

Thus, any energy exchange between the system and the coupled
reservoirs in the form of heat is bounded by the total entropy
production rate. Further, we get for the medium entropy rate,
Eq. (15b),

M rmivd),

o™= yi( T

i=1

»
)X o

i=1
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A. Ratchets

We now apply this bound to the ratchet models studied
in the overdamped limit in the previous section. For the
Smoluchowski-Feynman ratchet with load force F; = Fj (and
F> = 0), the potential is time independent and we have in the
steady state

(E)z B (E)O

=0+ 0, with

0, =m,-/dx/dv v,]‘“ (x,v). (149

We can relate this to the work W = —Fy(v;), performed
against the load force by noting
/dx/dv( v2+U(x)>
2
X (B Js, + 00 J)
i=1
= Ql + Qz — (75)

where we integrated by parts and used the definitions of the
heat currents. This is exactly the same as Eq. (42). The rest of
the argument then proceeds analog to the previous section and
we find the tradeoff relation
. T?
W < X1 n(ne = ), (76)
I,
with the positive constant x; = m |y, (v%)S / T1. We note that the
value of the constant x; is different for the overdamped and
underdamped descriptions. In particular, in the overdamped
limit my — o0, the underdamped constant diverges and does
not converge to the overdamped value. The reason for this
behavior is that the velocity degrees of freedom contribute a
nonvanishing heat current even in the overdamped limit, which
is neglected in the overdamped description [40,41].
For the periodically driven rocking or flashing ratchet, we
again have to consider quantities that are averaged over one

J

period t of the driving. We find
E), —(E - .
( )r < )0 — Ein + Q with

Ei“—lfrduaz/)
- t t
T Jo

R Y L .
0= —/ dt/ dx/dv myvJ,"(x,v,1).
T Jo 0

Again, the total change in energy is found to be equal to W =
— Fy(v) with (v fo dt’'(v), /t. We can further relate EMto
the 1rreversrble velocrty current

1 T L

—f dt// dxfdv [0, U(x,t)]P(x,v,t)

T Jo 0
1 T L

——/ dt/ dx/dv U(x,t)0; P(x,v,t)
T Jo 0

1 T L

—/ dt/ dx/dv Ul(x,t)

T Jo 0

X (0y Jy(x,v,t) + 0, Jy(x,v,1)).

(77)

E'vin —

(78)

The integral over the derivative of the velocity current vanishes
and we have, integrating by parts,

T L
Ein — —l/ dtf dxfdv v[0, U(x,0)]P(x,v,1)

= — dt/ dx/dv [0.U(x, t)]]"r(x v,t), (79)
in analogy to Eq. (62). We then find the tradeoff relation
W < xTn(l =),

with x = [7dr ((0:U)?),/(myzT). Contrary to the
Smoluchowski-Feynman ratchet, the coefficient on
the right-hand side of tradeoff relation is the same in both
the overdamped and underdamped descriptions. The reason is
that now only a single thermal reservoir is present and there
thus is no additional heat current due to the relaxation of the
velocity degree of freedom.

(80)

B. Periodically driven heat engine

While the Smoluchowski-Feynman ratchet can be considered as a type of heat engine due to the presence of two baths at
different temperatures, there is a paradigmatic type of stochastic heat engine more akin to classical heat engines which has been
realized in several experimental systems [10,42]: a single trapped particle coupled to a heat bath [9,11]. In this case, both the
potential and the temperature are varied as functions of time. We consider a particle of mass m in three dimensions x = (xy,x3,X3)
under the influence of a potential force and a magnetic field,

mv = —VU(x,1) + q(v x B(x,1)) — g8, A(x,t) — myv + /2my T(H)E, (81)

where B(x,t) is the magnetic field and A(x,¢) is the associated vector potential, B(x,t) =V x A(x,t). Here V = (0y,,0x,,0x,)
and x denotes the vector product. The potential U (x,7) may be due to an electric scalar potential, but also other potential forces
like gravity. Since the magnetic field is odd under time reversal, so is the vector potential, and its time derivative is even. Then
the reversible and irreversible probability currents read

T, v,0) = v P(x,0,0), J"(x,0,0) =0,

T (x,0,1) = l{—[ax,.U(x,o] +q( x B(x.0); — g3 A(x,0)} P(x,v.1), (82)
m
irr ( T(t) >
Jv, (x,v,t) = —y|vi+ —0,, |P(x,v,1).
m

062101-9



ANDREAS DECHANT AND SHIN-ICHI SASA

PHYSICAL REVIEW E 97, 062101 (2018)

The total energy of the particle is E(t) = mv(t)*>/2 4+ U(x(t),t). Applying It5’s lemma and averaging yields

, 3
(E), - (E)o = [ dt’<<aﬂU>ﬂ +3 [dx [ v (-0, U600 + g0 x Bl = 1o AiGen) = myv)
0 i=1

+yT ')+ [y, U(x,t’)]v,-)P(x,v,t)).

(83)

The terms involving the potential force —V U (x,?) cancel. Further, the term involving the magnetic field can be written as
v - (v x B(x,t)) = 0 since v x B is orthogonal to v. The remaining terms can be written as

(E), — (E)y = / dt' (=W + 0t")) with W) =—(3,U), +q(v-3,A),
0

where we defined J, = (J,,,Jy,,Jy,). The work has now two
contributions, one due to the time dependence of the potential,
which has the same form as in the absence of a magnetic field,
and an additional term stemming from the time dependence
of the vector potential and thus the magnetic field. Because
of the absence of explicitly nonconservative forces, the energy
difference is equal to the difference in internal energy (E), —
(E)o = (H), — (H),, where H(x,v,t) = mv*/2 + U(x,t) is
the Hamiltonian of the system. The heat flow is again of the
form of a generalized irreversible current and is thus bounded
by the total entropy production rate according to Eq. (14)

OO < myT@)(v); (1) (85)
The medium entropy Eq. (15b) production now reads

(vz)t

med _ Nt
TO=74

1, (86)
and thus the heat flow is related to the medium entropy
production rate via Eq. (73),

0t) = =T (t)a™(1). (87)

Using this, we can express both Q(¢) and (v2), in terms of
o™4(¢) and obtain the inequality between total, medium, and
system entropy production rate

o (t) > —%Umed(t)asys(t), (88)

which corresponds to Eq. (19) with p = y.

We take the potential, vector potential, and tempera-
ture to be periodic functions of time, U(x,t + 1) = U(x,1),
A(x,t+1)=A(x,t),and T(t + ) = T(¢), and assume that
the probability density has the same periodicity P(x,v,t +
7) = P(x,v,?). Since the Hamiltonian H(x,v,t) = mv?/2 +
U(x,t) is time periodic, so is its average with respect to the
time-periodic probability density, and we have

T d
0=<H>,—<H>o=f0 ar L m,

dt’
= /Tdt ((8,/U),
0
m o,
+/dx/dv <Ev +U(x,t))8,P(x,v,t)>. (89)

and Q(t):m/dx/dv v J(x,0,1),
(84)

(

Using the continuity equation 9 P(x,v,5)=—)
(0, Jy, (x,0,1) + 0y, Jy,(x,v,1)), integrating by parts with
respect to x and v, respectively, and using the fact that the
boundary terms vanish, we then find

0= / dt (=W (@) + 0@)), (90)
0

which means that the energy of the system is conserved over
one period of the driving. Likewise, the system entropy does
not change over one period and the time-averaged entropy
production rate consists only of the medium part Eq. (73):

—l/Idt o0 1)
t ) O To

In order to define the efficiency of the engine, we follow
Ref. [12] and parametrize the inverse temperature in terms of
minimal and maximal temperatures 7t and T,

L] : : é(1) 92)
T T \T. T) 7
where ¢(¢) is a dimensionless periodic function with 0 <

¢(t) < 1. Then, expressing the heat flow as 0= d(H),/dt +
W, we have

6_med:%‘/(; dt’ T(lt/)(_ W(I/)— %<H>z/>
__ 11 /Idt Wit + (i - i)lffdt B()0()
T. Tt Jo T. v/ tJo
1 = 1 1 —
__ 1y (— - —) on. ©3)

The first term is just the time-averaged work rate divided by
T.. We interpret the second term as the input heat, noting
that it is only nonzero if T(¢r) > T.. For the special case
of an instantaneous temperature change, e.g., ¢(t) = 0 for
0<t <t and ¢(t) =1fort. <t < 7, weindeed find

6,med —

= 1 [° . AQy
o= [ arom =22, (04
T Js T
which is precisely the time-averaged rate of heat exchange with
the hot bath. Now we can define the efficiency as
W Tc 5 med
n = —=in = r)C - :

Q Qin

95)
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‘We can then use the bound (14) to bound 5,
(O™? < xT2 5™ with

my [° P*(1)

t1c Jo 1 —nco(t)

Multiplying Eq. (95) by ¢ — 1, we obtain the tradeoff relation

(v?),.

X = (96)

W < xTon(ne — n). (97)

For this system, such a relation was shown to be valid in
the linear response regime in Ref. [12]. The above derivation
shows that the relation remains valid beyond linear response.
Further, unlike Ref. [2], where the tradeoff relation was proven
for systems that are even with respect to time reversal, we
explicitly allow for the presence of a magnetic field which
breaks time-reversal symmetry. The relation (97) asserts that
a microscopic heat engine that can be modeled by Eq. (81)
cannot realize Carnot efficiency at finite power. Further, the
power output of the engine is bounded by

T

X ché, (98)

which is the maximal value of the right-hand side of Eq. (97)
with respect to 7.

The trapped-particle heat engine can also be operated in
reverse, serving as a refrigerator. In this case, we rewrite the
time-averaged entropy production rate as

l — 1
W—-—( —— — Qabs
T T. Th

W <

5med —

- 99)
where we defined the time-averaged heat absorption rate from
the cold reservoir as

O = % /0 1 (1 - 1) 0. (100)
In contrast to the heat input rate in the case of a heat engine,

this quantity is nonzero only for 7'(¢) < Ty and is given by
AQ./7 in the case of an instantaneous temperature change.

Noting that W < 0, the coefficient of performance £ is defined
as
Qabs ThTC 6.med
§=——=—==8+ = (101)
W hi—Tc w

where &c = T, /(Ty, — T,) is the coefficient of performance of

an ideal Carnot refrigerator. Since we have W = Q, we can
use the bound on the heat current (85),

(W)2 < xRT26™  with
T
1
xR = ﬂ/ dt ———— (%), (102)
tTe Jo 1 — ncé(r)
to get a tradeoff relation for the refrigerator
s < g EE =) 03
0" < x T, 1+ & ( )

In analogy to the tradeoff relation between output power and
efficiency for a heat engine, reaching the Carnot limit for the
coefficient of performance of a refrigerator necessarily leads
to vanishing cooling rate.

VII. CONSTRAINTS ON ONSAGER COEFFICIENTS

In Ref. [12], the tradeoff relation Eq. (97) was derived in the
linear response regime by proving an additional constraint on
the Onsager coefficients beyond the constraints imposed by the
the second law of thermodynamics. However, no interpretation
of this additional constraint was given. We are now going to
show that the constraint arises naturally as a consequence of
the inequality Eq. (14), which, as stated before, can be regarded
as a more precise statement of the second law. As in Ref. [12],
we separate the time dependence of the potential and magnetic
field, as well as the temperature, from a time-independent
equilibrium part,

U(x,t) = Up(x) + €y, Ui(x,1), (104a)
A(x,t) = Ap(x) + ey, Ai(x,1), (104b)
Ty = Tc(1 + €yy), (104c¢)

where U; and A; are some (fixed) functions, y,, y., and y;
are parameters of order 1, and we take € > 0. The linear
response treatment then corresponds to assuming that € < 1
and considering only the leading-order contributions to the
respective quantities. The equilibrium state € = 0 is most
conveniently expressed in terms of the canonical momentum
p = mv + qA, and is of the Boltzmann-Gibbs form

Hy(x.p)

Pyx,p)=Zy'e" % with

Hy(x,p)
Z():/dx/dpe_ Te

1
Ho(x,p) = 7-(p — qAo(x))* + Up(x),

and

(105)

which is the steady-state solution of the equilibrium Kramers-
Fokker-Planck equation

Lo(x,p)Po(x,p) =0 with
Lo(x,p) = =V - [V, Ho(x,p)] + V, - [V Ho(x, p)]
+yVy-(p—qAp(x) + mT.Vy)).
(106)

Assuming an expansion of the time-dependent probability

density in terms of €
P(x,p,1) = Py(x,p) + € Pi(x,p,1) + O(e?), (107)

we can write the time-averaged work and heat rates as

W = —€uju + Yaja), O™ = j, with

= ——/ dt/dxfdp Ui(x,t)0; Pi(x,p,t),
_;/0 dt/dx/dp (P — qAo(x)) - Ay(x.1)

X atpl(xapvt)’
ji = Ef dt ¢>(t)/dx/dp <Ho(x,p)8fP1(x,p,t)
0

yun%(p — qAp(x)) - A1<x,r>Po(x,p>>, (108)
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where we neglected terms of order €2 and higher in the
definition of the currents j;. In terms of the currents, the
time-averaged entropy production rate Eq. (93) reads

€ . . .
gl = 7 Oudu+ Yaja + yej) + 0(e). (109)
C

We can obtain a more explicit expression for the currents by
using the evolution equation for the first-order correction of
the probability density

0 Pi(x,p,t) = Lo(x,p)Pi(x,p,t) + Li(x,p,t)Po(x,p),
(110)

where the first-order correction to the Kramers-Fokker-Planck
operator is given by

El(x’pJ) ZYu[VUl(xJ)] . Vp
30 (VP - AV, = Ar(x0)- V)

+ ymyT.p(1)V5.

The formal solution to this equation reads [12,13]

(111)

o0
Pi(x,p,t) = / ds e‘C”("”’)Sﬁl(x,p,t —5)Py(x,p). (112)
0

Since £ consists of terms that are explicitly proportional to
Yus Ya», and y,, we can write

with the matrix of Onsager coefficients L. Since we have
g™d > 0 from the second law, the coefficient matrix has
to be positive semidefinite. This is equivalent to all of its
principal minors having a non-negative determinant, which
yields constraints on the response coefficients. In particular,
we find for any two indices &,/

Lt >0, LiLy — 3(Ly + Ly)* > 0. (115)

Using the bound on the heat input rate Egs. (96) and (108), we
further get the bound

JE < uTie™, (116)

Since in the linear response regime, we have nc ~ O(¢), we
can express the coefficient x, to leading order in € as

my

tT.

_Y / dt ¢(1),
0

T

Xe f dt ¢*(1)(v?)o
0

(117)

where we used the equilibrium average kinetic energy
m(v?)o = T.. Plugging in the expressions for j, and 5™,
Egs. (113) and (114), we find

. (Louyu + LeaYa + Luy)® < xi Ly (118)
Ji = €Te(Lyuyu + Liaya + Liryr) (113) k’lzzu,aﬂ;
and similar for j, and j,, which defines the Onsager coeffi- This can again be written in the form
cients L . This allows us to write the entropy production rate
as a quadratic form y-M-y=>0, (119)
Fmed = ¢2 Z wLuy =€*y-L-y, (114)  with the new coefficient matrix
k,=u,a,t |
XtLtt - L[Z, %(Ltu + Luz‘) - LtuLtt %(Lta + Lat) - LtaLtt
M = %(Ltu + Lut) - LtuLtt XtLuu - LIZM %(Lua + Lau) - LtuLm (120)

%(Lta + Lat) - Ltath

Since the matrix has to be positive semidefinite, all of its
principal minors need to have a non-negative determinant. We
find for k = t,u,a

XiLie > L3y (121)
and for k = u,a
1 (L — Li)?
Lném@——iﬁl—ﬁLﬂ. (122)
4 LyLy — LixLy

For k = u, the latter is precisely the constraint proven in
Ref.[12]. The above derivation shows that this relation between
the response coefficients arises directly from the nonzero lower
bound on the entropy production in terms of the heat input rate
Eq. (96). The ensuing linear response power-efficiency tradeoff
relation is

W < x: Ten(ne — ),

with the coefficient x, depending only on the temperature
protocol ¢(¢). This tradeoff relation has been derived from the

(123)

%(Lua + Lau) - LtuLm

Xt Laa - L2

ta

(

constraint (122) on the Onsager coefficients in Ref. [12]. As-
suming that L,, # 0, such that any variation in the force leads
to heat flow, we define o = Ly, /Ly and B = L2 /(L Li).
Thus o measures the asymmetry between the off-diagonal
coefficients, with oy = 1 corresponding to a symmetric On-
sager matrix, whereas f; measures the overall magnitude of
the off-diagonal coefficients relative to the diagonal ones,
with B, = 0 corresponding to a diagonal Onsager matrix. The
inequality (122) then translates into a range of allowed values
for oy and B,

1

Br < 5 A e
7 = D+ o1 =)

(124)

where we defined y; = x;/L; > 1. This constraint is tighter
than the one obtained from the second law,

4

PeS Ty

(125)
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30 Second Law
25 y1=3.0
2.0 By =20

= y=1.1

Qy

FIG. 2. The constraint (124), for different values of y; (colors or
darker shades), in comparison to the one obtained from the second law
(gray or lightest shade). The shaded area represents the allowed values
for (o, Br). Note that the two constraints only coincide for o, = 1,
i.e., a symmetric Onsager coefficient matrix. In the antisymmetic case
o, = —1, all values of §; are allowed by the second law; however,
only Bx < y; — 1 satisfies the constraint (124).

and in particular we always have B; < y;, which limits the
overall size of the off-diagonal Onsager coefficients for heat
flows. The two constraints on o and S are compared in Fig. 2.

VIII. NONTHERMAL DYNAMICS

In all the examples discussed in the previous sections, the
system was in contact with a thermal reservoir, allowing direct
identification of the medium part of the entropy production
in terms of a heat current. In the following, we discuss what
happens for nonthermal systems, where this connection is
lost. In order to have some notion of heat, we consider a
particle with position x and velocity v, with Hamiltonian
H(x,v,t) = mv?/2 + U(x,t). As in the case of coupling to
a heat bath, we assume that in addition to the force due to
the potential —VU (x,t), the particle is subject to a friction
force and a stochastic force. However, both the friction force
and the stochastic force may now depend on both the position
and the velocity of the particle, specifically

1
V=——VU(x,t)— y(x,v,0)v++/2Dx,v,t) O &
m
1
= __VU(xvt) - V(x,vyt)” + VUD(x7vat)
m

+ /2D(x,v) - &.

In a change from Eq. (1), we now use the anti-Itd stochastic
integral; however, this can be brought into Itd form by the
straightforward transformation given in the second line. For
the special case of constant friction coefficient y (x,v,f) = y
and the Stokes-Einstein relation D(x,v,t) = yT(t)/m, this
reduces to the previously studied case of coupling to a thermal
bath at temperature 7 with Stokes friction. By contrast, a
velocity-dependent friction and diffusion coefficient may oc-
cur as a result of the effective description of a nonthermal sys-
tem. Important examples include dry friction between surfaces
of solids [43—45], diffusion of cold atoms in dissipative optical
lattices [11,46,47], relativistic Brownian motion [48], and
models of active particles [49]. In all these cases, the friction

(126)

and diffusion coefficient are even functions of the velocity
y(x,—v,t) = y(x,v,t) and D(x,—v,t) = D(x,v,t), and we
will assume this in the following. Under this assumption, the
reversible and irreversible probability currents are given by

I (xv.0) = v P(x,v.0), JM(x,0.0)=0,

1
Jlf.ev(xyvat) = __[ain(xﬂt)]P(x’vﬂt)7 (127)
' m

T v.0) = —(y(x,0,0v; + D(x,,1)3,) P(x,,1).

Since we chose the anti-Ito interpretation in Eq. (126), the
diffusion coefficient now appears in front of the velocity
derivative. The change in the average energy of the particle
is given by

d

Z(H), =—-W(@)+ Q@) with

W(t) = —(3,U),

o) =m/dx/dv v JT(x,0,1). (128)
Because the Hamiltonian is quadratic in the velocity, the system
still permits decomposing the change in energy into a work
and a heat contribution, and the latter is determined by the
irreversible velocity probability current, just as for a thermal
bath. Just as before, the total entropy production rate Eq. (7) is
given by the square of the irreversible probability current

irr 2
o) = /dx/dv (J3Cx,v.0) )
D(x,v,t)P(x,v,t)

The medium part of the entropy production rate Eq. (15b) now
reads

med _ y(x,v,t) . girr
o™ () = /dx/dv —D(x,v,t)v JV(x,v,1).

(129)

(130)

This is proportional to the heat only if the ratio
y(x,v,t)/D(x,v,t) is independent of x and v. In this case,
we define T(t) = mD(x,v,t)/y(x,v,t), which can be under-
stood as a generalized Stokes-Einstein relation [50]. Then, we
recover the relation c™4(r) = — Q(t)/ T (), which thus holds
for a thermal bath, irrespective of whether the friction force
is linear in the velocity or not. Even if such a relation does
not hold, the heat flow still has the form of an irreversible
generalized current (9) and is thus bounded by

(O < m*(Dv?),5 ().

In the particular case of a nonequilibrium steady state, we then
have

(131)

(Q)? < m*(Dv*)s0™ . (132)
Thus, even though there is no relation between the heat
flow and the entropy production rate in the form of an
equality for nonthermal systems, the inequality relating the
entropy production rate to the magnitude of the heat flow
is preserved for the Hamiltonian plus nonequilibrium-bath
dynamics discussed above. Since the heat flow cannot be
straightforwardly expressed in terms of the entropy production
rate, the efficiency cannot be readily defined. However, by
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introducing the effective temperature

D(x,v,t
Ty = (6), with 6Ge,v.0) = mlD (133
y(x,v,0)
we can write the medium entropy production rate as
med _
o™ed(r) Teff(t)[Qm— (). (134)
The quantity 6(x,v,t) is a state-dependent “temperature,”’

whose average is the effective temperature 7°(¢). The above
relation defines the nonthermal heat flow

eff
Q(t):m/dx/dv (1— a0

O(x,v,t)
This nonthermal heat flow vanishes whenever the generalized
Stokes-Einstein relation holds and thus 7°f(z) is the actual
temperature of the thermal heat bath.

As an example, consider a spatially periodic potential in
one dimension and, as in Sec. VIA, the work output rate
W = — Fy(v), with the constant load force Fy. Such a situation
may be encountered in a ratchet driven by a nonlinear friction
force [51-53]. In the steady state, we then have Q = W and we
interpret Q as the part of heat flow due to the nonthermal nature
of the bath. Since o™ > 0, positive output work requires
Q > 0. We then define the efficiency as

)v SJM(x,,0). (135)

W Teff - med
)’I = —-— = —_— .
Q Q
Since the nonthermal heat flow is an irreversible generalized
current, it is bounded by the entropy production rate

(136)

(Q) < X(TC“)Z med Wlth

m Teff 2 )
X = ﬁ<y9<1 ~ 3 ) V7). (137)
S
This then leads to the tradeoff relation
W < xTn(1 — ). (138)

Just as for a thermal system, the extracted power vanishes as
the efficiency approaches its maximum value, which is in this
case unity, since there is a single nonthermal bath. However,
it should be noted that the quantity Q is only formally a heat
flow and may not be a measurable quantity or represent the true
energetic cost of maintaining the bath in its nonequilibrium
state. Whether the above definition of efficiency is suitable
thus depends on the specific system, and it generally does
not correspond to a thermodynamic efficiency. To clarify this
point, let us further specify the dynamics. We consider an
overdamped particle in one dimension, subject to a spatially
periodic potential U(x 4+ L) = U(x) and temperature profile
0(x + L) = 6(x). We further apply a constant load force Fp.
This situation is a ratchet model first discussed by Biittiker [54]
and Landauer [55]. Similar to Sec. V A, we have the work rate
W= — Fyv, where v is the steady-state drift velocity, and the
heat flow

L
0= / dx [3,U(x) — FolJs = W, (139)
0

since in one dimension the steady-state current is independent
of x. The medium entropy production rate is

L
pmed _ / dx —[0.U(x) — Fo + 0.0(0)1Js
TeS!

L 1
__ /0 dx Gos U@ = Fold. (140)

since the last term in the first line vanishes, being a total
derivative of Inf(x). Comparing Eqgs. (139) and (140), and
defining To = (0),, the nonthermal heat flow is given by

eff
Q= / dx (1— e )>[axU(x)_F0]Js~

Similar to Sec. VIB, we parametrize the inverse temperature
as

(141)

1 (i iy 142
o= - C)¢><x> (142)

where the function 0 < ¢(x) < 1 is now periodic in space

¢(x + L) = ¢(x). Using this, the entropy production rate can
be split into two contributions in two different ways:
Umed Teff( W + Q)
— L (L L)on (143)
T T. T ’
where the heat flows Q™ and O are defined as
. L
o" = / dx ¢(x)[0:U(x) — FolJs (144a)
0
. Teff Teff .
=(1- W 1, 144b
Q ( T ) + T ncQ (144b)

While the work rate W is uniquely defined as the work per
time performed against the external load, which of the two
quantities Q™ and Q is interpreted as the cost associated with
the performed work depends on the physical setting. Taking
Q'™ as the heat cost is the thermodynamic viewpoint that one
has a cold reservoir at temperature 7, and heat is absorbed from
the hot reservoir, whose temperature 7(x) = 6(x) > T in this
case depends on the position of the particle. In this situation, the
efficiency is indeed bounded by the Carnot efficiency. On the
other hand, taking Q as the heat cost corresponds to interpreting
f(x) as a single, out-of-equilibrium heat bath at effective
temperature T°T. Note that since T° > T, the nonthermal
heat flow is always smaller than the thermodynamic heat
absorbed from the hot bath O < Qi“. In this situation, the
efficiency is not bounded by the Carnot efficiency and can
in principle reach unity.

IX. DISCUSSION

The results for specific systems derived in this work are
based on the general bound (14), which we interpret as a
quantitative statement of the second law of thermodynamics:
It gives a positive and finite lower bound on the total rate of
entropy production in terms of the square of any irreversible
current in the system. Given the universality of the second
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law of thermodynamics, it is encouraging that its quantita-
tive refinement can have similarly far-reaching consequences,
imposing universal limits on the performance of engines in
contact with a heat bath. The preceding results also support the
statistical definition of entropy production (6) in terms of the
path probability—even though this quantity coincides with the
thermodynamic definition of entropy only for thermal systems,
it nevertheless continues to serve as a measure of irreversibility
and provides a tangible upper bound on observable currents
even for nonthermal systems.

For Langevin dynamics, the bound (14) follows from a
simple application of the Cauchy-Schwarz inequality and is
a consequence of the mathematical structure of the system,
including the expression for the entropy production rate Eq. (7).
Since a similar bound, albeit for a more restrictive class of
observables, was derived for a Markov jump process in Ref. [2],
the more general bound may also hold for other observables in
the latter case.

Finally, let us remark on the relation of our results to a family
of recently derived bounds on stochastic currents in terms

of their variance, referred to as thermodynamic uncertatinty
relation [3,5,8]. The latter implies that the proportionality
constant between the current and the entropy production rate
in Eq. (14) should be related to the variance of the current.
Indeed, the bound (14) can be obtained as a short-time limit of
an inequality involving the variance of the current; however,
the thermodynamic uncertainty relation itself only holds for
the steady state of a dynamics that is even under time reversal.
Under these conditions, the bound Eq. (14) is less tight than
the uncertainty relation; however, it has the advantage that
remains valid in the presence of time-dependent driving and
odd variables under time reversal.
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