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Shearlet-based measures of entropy and complexity for two-dimensional patterns
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New spatial entropy and complexity measures for two-dimensional patterns are proposed. The approach is
based on the notion of disequilibrium and is built on statistics of directional multiscale coefficients of the fast
finite shearlet transform. Shannon entropy and Jensen-Shannon divergence measures are employed. Both local
and global spatial complexity and entropy estimates can be obtained, thus allowing for spatial mapping of
complexity in inhomogeneous patterns. The algorithm is validated in numerical experiments with a gradually
decaying periodic pattern and Ising surfaces near critical state. It is concluded that the proposed algorithm can
be instrumental in describing a wide range of two-dimensional imaging data, textures, or surfaces, where an
understanding of the level of order or randomness is desired.
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I. INTRODUCTION

Spatial patterns with different levels of order and intricacy
emerge in the processes of self-organization and morphogen-
esis, as a result of flow instabilities, as interphase surfaces in
systems with criticality. How can one tell if spatial oranization
of a pattern is trivial or complex, random, or ordered? Are these
properties uniform across the system or can they vary at larger
scales? It appears that there is no universal definite answer, as
reviewed, e.g., by Crutchfield [1].

Here a practical approach to this problem is proposed in
terms of statistics of coefficients of a directional multiscale
transform. Additionally, this approach allows for spatial reso-
lution of the complexity and randomness properties.

Footprint of a system can be characterized by its location on
the complexity-entropy plane [2–4]: A totally ordered periodic
structure with a single temporal or spatial scale will have
low entropy but also low complexity—simple rules based on
a small part are sufficient to reconstruct the full pattern; in
the other extreme case of random noise lacking any spatial
structure, entropy is maximal, while complexity must again
be low—the system is now easily described statistically by a
random variable drawn from some distribution. Intermediate
cases, on the other hand, can be characterized by high com-
plexity, which makes them more interesting, as they represent
systems with nontrivial regularities and correlations in scaling
or, in the case of spatially extended signals, in orientation and
preferred directions of anisotropic features. Analysis of time
series has linked such high-complexity states with systems in
a dynamical chaos regime [3]. We note that the theory and
method inventory of complexity-entropy relation is much more
developed for one-dimensional signals, such as time series,
than for higher-dimensional systems. It seems important to be
able to distinguish disorder due to randomness and noise from
a less trivial one, related to dynamical chaos, fractals, or critical
phenomena.
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Earlier, Ribeiro et al. [5] used a two-dimensional (2D)
extension to the permutation entropy of Bandt and Pompe
[6] and constructed a method to obtain complexity-entropy
pairs for texture images. They used the same intensive entropic
nontriviality measure for statistical complexity as introduced
by Lamberti et al. [4]. This measure is based on the notion of
disequilibrium by López-Ruiz et al. [2] and is defined in terms
of Jensen-Shannon divergence of the observed distribution
from an equiprobable one. Recently, Zunino and Ribeiro [7]
generalized the original 2D complexity algorithm to obtain
multiscale and direction-sensitive estimates of entropy and
complexity. The Bandt and Pompe’s algorithm relies on rank-
ing signal values within short intervals followed by estimating
the distribution of the ordinal permutation patterns. In the 2D
domain one clips rectangular patches of the size Dx × Dy ,
where Dx and Dy are positive integers. The size of the
distribution thus grows as DxDy! and requires that image size
NxNy should be at least an order of magnitude larger than
that for a reliable estimation [7]. This effectively restricts the
application of (Dx,Dy) > (2,2) patches for only very large
images.

Spatial structures can also be inhomogeneous, containing
isles or gradients of entropy and complexity properties. For ex-
ample, biological membranes can partition into domains with
liquid-ordered (rafts) and liquid-disordered states, influencing
also spatial organization of protein complexes [8–10]. One is
thus interested in the ability to define spatially resolved mea-
sures of entropy and complexity, such that both local and global
estimates of these parameters become possible. Accordingly,
the goal of this work was to employ an image decomposition
system optimally representing anisotropic features at multiple
spatial scales to generate structure-related probability distribu-
tions sensitive to interscale and directional correlations in the
input image. A recently developed shearlets framework [11],
which has already found its way into many applications, such as
denoising, segmentation, image fusion, and inpainting, seemed
the most promising for this goal, as it provides optimally
sparse approximation of anisotropic features, is multiscale,
uses compactly supported analyzing functions and allows for
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efficient implementations. In a nutshell, we substitute the
ordinal permutation-derived probabilities of Bandt and Pompe
by probabilities based on the power of coefficients of shearlet
transform to build the complexity-entropy measures.

The rest of the paper starts with a short description of
discrete shearlet transform, followed by plugging it into the
entropic nontriviality scheme of Lamberti et al. [4]. Next,
the utility of the algorithm is demonstrated in controlled
numerical experiments, previously employed for illustration
of the complexity-entropy analysis in the literature [5,7]. The
key innovation of this study is to define local spatial entropy
in terms of spatially resolved statistics of shearlet coefficients.
We then calculate local complexity in terms of Jensen-Shannon
divergence from the equiprobable distribution. This approach
is inherently multiscale and allows for analysis of smaller
images than are required by the spatial permutation entropy
algorithm.

II. METHODS

A. Inspecting spatial features with shearlet transform

In short, shearlet transform of a digital 2D image f (x,y)
is defined in terms of convolution of the image with scaled,
sheared, and shifted copies of a specific “mother” shearlet func-
tion ψ , thus accounting for different scales and orientations
of features contained in the image [11]. To produce modified
shearlets, a dilation matrix Aa and a shear matrix Ss are used:

Aa =
(

a 0
0

√
a

)
, a ∈ R+, Ss =

(
1 s

0 1

)
, s ∈ R. (1)

Given shear a, scale s, and translation t , the shearlet function
becomes ψa,s,t = a−3/4ψ[A−1

a S−1
s (x − t)]. An example of

shearlet at some scale and orientation and its corresponding
Fourier image is shown in Fig. 1. Used as a spatial filter,
the scaled and shared copies of ψ will emphasize prevalent
anisotropic features at different spatial scales and orientations.

In the discrete transform, a fixed number of decomposition
scales, shifts, and scale-dependent number of orientations is
used with more orientations at higher spatial frequencies. There
are several flavors of the discrete shearlet transform. Here
we employ a fast finite discrete shearlet transform (FFST)
described in detail by Häuser and Steidl [12,13]. Below we pro-
vide a minimally sufficient description of the FFST required to
build the proposed definition of spatial entropy and complexity.
Let us consider the FFST of a square digital image f ∈ RN,N ,
which we interpret as a continuous 2D function sampled on
a grid {m1/N,m2/N},m ∈ G. Let j0 := � 1

2 log2 N� be the
number of considered scales. Under discretization introduced
in Ref. [12], the dilation, shear and translation parameters
become

aj := 2−2j , j = 0, . . . ,j0 − 1,

sj,k := k2−j , − 2j � k � 2j ,

tm :=
(m1

N
,
m2

N

)
, m ∈ G. (2)

This notation leads to the following shearlet definition:
ψj,k,m(x) := ψaj ,sj,k ,tm (x) = a−3/4ψ[A−1

aj ,
1
2
S−1

sj,k
(x − tm)]. Note

that in Ref. [12] the a−3/4 scaling factor is omitted, but we

ith scale-shear combination

(a) (b)

(c)

(e)

(d)

FIG. 1. Example of shearlet transform and shearlet coefficient
power distribution. (a) Input image, a striped pattern with added
Gaussian noise. (b) Shearlet coefficients Sj,k(x,y) for scale and
orientation with highest energy of Sj,k . (c) Corresponding shearlet
|ψ̂j,k| in Fourier domain. (d) Corresponding shearlet ψj,k in image
domain. (e) Spectrum of normalized shearlet power at all scale and
orientation combinations

∑
x,y S2

i (x,y).

keep it here in order to result in uniform distribution of shearlet
coefficient power for spatially uncorrelated random images
used as input. Thus, the shearlet transform is defined as a
mapping from image f to a set of shearlet coefficients:

SH(f ) : f �→ 〈f,ψj,k,m〉. (3)

Because the translation grid m is scale independent and
redundant, the shearlet coefficients can be also represented as
a set of images Sj,k(x,y) of the same size as f , produced by
convolution of f (x,y) with directionally oriented filters of dif-
ferent spatial scales gj,k: Sj,k = (f ∗ gj,k)(x,y). Introducing
consecutive indexing i to run though all scales j and shears
sj,k , we have SH(f ) := {Sj,k(x,y)} ≡ {Si(x,y)}.

The above definition of discrete shearlet transform provides
a tight frame: For any image f the following must hold:

A‖f ‖2 �
∑
j,k,m

|〈f,ψj,k,m〉|2 � B‖f ‖2, (4)

where A and B are positive real numbers such that 0 < A �
B < ∞, and because the frame is tight, A = B. This allows us
to use normalized power of shearlet coefficients as a descriptor
of local feature statistics and interpret it in terms of feature
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probability density, which is exploited in the estimate of local
structural entropy and complexity in the next section.

B. Shearlet-based entropy and complexity measures

Both entropy and complexity (entropic nontriviality) mea-
sures are defined as functionals of some probability distribution
P = {Pi ,i = 1 . . . N}. While previous works have employed
Bandt and Pompe’s permutation entropy [6] for this purpose,
we are building our definition based on ideas stemming from
the spectral entropy of Powell and Percival [14]. In a similar
way as wavelets extend spectral entropy to provide for time-
resolved description of one-dimensional signals [15,16], we
here propose to use shearlets to provide for a two-dimensional
extension of the same measure. Intuitively, the energy of
shearlet coefficients Ei(x,y) = S2

i (x,y) describes how the
corresponding scale and orientation is represented at a given
location of the image f (x,y). Starting from Ei(x,y) we can
define shearlet feature distributions in a global and local
settings. In the global case, a single feature distribution is
computed for all pixels:

P
(g)
i =

∑
x,y Ei(x,y)∑

j,k,x,y Ej,k(x,y)
. (5)

The global approach can be used if the image is regarded as
a homogeneous pattern, but some images of interest can be
inhomogeneous and contain regions of different complexity
properties. To provide for a spatially resolved estimate, we
use locally averaged (Gauss-blurred) shearlet power coefficient
images E∗

i (x,y) := (Kσj
∗ Ei)(x,y) to define a local shearlet

feature distribution:

P
(l)
i (x,y) = E∗

i (x,y)∑
j,k E∗(x,y)

, (6)

thus interpreting a spectrum of local feature scales and ori-
entations as a density function. Here (Kσ ∗ ·) denotes con-
volution with a Gaussian kernel of standard deviation σ .
Scale-dependent σj = σ02j0−j−1 are used to allow for wider
neighborhood at larger spatial scales.

Based on the obtained probability distribution P = {Pi} we
define Shannon entropy S[P ] = −∑

i Pi log2 Pi , and normal-
ized entropy Hs[P ] = S[P ]/S[Pe], where S[Pe] = Smax =
log2 N for the equiprobable or uniform distribution Pe, where
all shearlet features are equally presented Pi = 1/N, | i =
1 . . . N . In a similar way to Ribeiro et al. [5] and Zunino and
Ribeiro [7], we use a disequilibrium-based statistical measure
of complexity C[P ] introduced by López-Ruiz et al. [2]:

C[P ] = QJS[P,Pe]HS[P ], (7)

where, following Lamberti et al. [4] and Rosso et al. [17],
we employ normalized Jensen-Shannon divergence QJS =
J [P,Pe]/Jmax as disequilibrium measure, which describes a
distance between an observed (P ) and the equiprobable (Pe)
distributions:

J [P,Pe] = S

[
P + Pe

2

]
− 1

2
(S[P ] + S[Pe]). (8)

Clearly, J [P,Pe] = 0 if P = Pe and is maximal when only
one feature, say, mth, is present, while all others are ab-

sent: Pi = 1 | i = m, Pi = 0 | i �= m, Jmax = − 1
2 [N+1

N
log2

(N + 1) − 2 log2 2N + log2 N ].
The obtained complexity measure quantifies both random-

ness and degree of spatial correlations in the data, and thus
for each entropy value H there exists a range of admissible
complexity C values between a lower Cmin and upper Cmax

bounds [2,3,18]. For a distance measure based on Jensen-
Shannon divergence, the lower bound is found by a family
of distributions where one of the outcomes Pi has probability
Pi = 1

N
. . . 1 and the rest Pj have uniform probabilities Pj =

1−Pi

N−1 | j �= i. The upper bound is formed by distributions with
n < N outcomes having probabilities Pi = 1

n
,i = 1, . . . ,n and

the rest having zero probabilities Pj = 0,j = n + 1, . . . ,N .
In recapitulation, the normalized power of shearlet coeffi-

cients is interpreted as a probability distribution, which is next
compared to an equiprobable and a singular distributions in
order to define spatial entropy and complexity measures.

The software and example code needed to compute the
shearlet-based spatial entropy and complexity estimates will
be available open source at [19].

III. RESULTS OF NUMERICAL EXPERIMENTS

The proposed approach is tested in two computational
experiments of the same kind as used in the literature [5,7]: (i)
gradually randomized periodic pattern and (ii) simulated Ising
surface around critical temperature. In the first experiment we
observe nonmonotonic change of complexity with noise level,
and in the second the phase transition is clearly reflected in the
entropy and complexity values.

A. Gradual randomization of a periodic grid pattern

We start with a periodic pattern of regularly spaced
grayscale stripes. The original pattern is gradually corrupted
by setting, with some probability, pixel values to a random
grayscale level [Fig. 2(a)]. Shearlet-based spatial entropy
monotonically rises from zero to one with pixel defacing prob-
ability, while the complexity estimate reaches a peak value of
around C = 0.2 at p ≈ 80% [Fig. 2(b)]. The qualitative picture
is in a good agreement with results based on permutation
entropy [7], but in the current work the peak in complexity is
lower and is reached at a higher noise level. This discrepancy
can in part be explained by the difference in algorithms and in
part by dependence of the complexity peak position on spatial
frequency of the grid (not shown).

The observed dependence of entropy and complexity on
deface probability is quite intuitive. The original pattern is
ordered, and the shearlet coefficients are dominated by those
matching the stripe scale and orientation as exemplified by
Figs. 1(a)–1(d). Hence the distribution of coefficient power
is far from equiprobable, which leads to zero entropy and
maximal Jensen-Shannon divergence. Because complexity is
a product of normalized entropy and disequilibrium, it is
zero, too. With adding increasing levels of noise the entropy
predictably rises, while remains of the ordered structure visible
behind the noise make the pattern complex, and complexity
peaks almost just before the ordered structure is completely
lost p ≈ 0.8. With p = 1 the input image becomes featureless
independent and identically distributed Gaussian noise and
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(a)

(b) (c)

FIG. 2. Evolution of entropy and complexity in gradually randomized periodic patterns. (a) Input images with different probabilities of pixel
value change shown on top; image size: 280 × 280. (b) Entropy (blue) gradually rises with increase in probability of pixel value change, while
complexity behavior is nonmonotonic (orange and red). Light-blue and orange lines, global estimate; dark-blue and red lines, “mean field”
estimate. Dotted line, admissible complexity C range for given entropy H . (c) Same as in (b) but plotted on the H–C plane for “mean-field”
estimates; pixel probability change is color coded. Region enclosed in the thin gray line, the admissible complexity range.

thus shearlet coefficients are nearly uniformly distributed,
leading to maximal entropy and zero disequilibrium and hence
complexity.

Thus, as a regular ordered state dissolves, the complexity
will reach a peak value, while entropy will rise monotonically,
which is also in agreement with similar results obtained for
equilibration in closed systems [20]. It is also clear that the
pixel defacing process in this experiment is equivalent to
swapping pairs of pixels at random in the image, which would
make the system analogous to that of Aaronson et al. [20].

There are two pairs of complexity-entropy curves in
Fig. 2(b): The dashed line corresponds to a global definition of
shearlet-based probability (5), while the solid line is derived
from the local definition (6) by averaging the H [P (x,y)]
and C[P (x,y)] values over the image domain and denoted
as a “mean-field” estimate in the rest of the text. The two
estimates are congruent because of the uniform dominating
regular pattern. This agreement between the global and mean-
field estimates does not always have to hold: For example,
a number of small-scale anisotropic structures with high
spatial complexity randomly dispersed in an input image will
result in low global complexity due to spatial averaging of
inputs from S2

j,k at different orientations but can have a large
mean-field complexity. The discrepancy between the global
and mean-field estimates becomes more evident in the next
section.

Interestingly, despite the transient rise, the complexity
levels for decaying regular pattern remain on the lower bound
of the admissible complexity level [shaded regions in Figs. 2(b)
and 2(c)]. Thus, equilibration of a closed system follows
the path of minimal possible complexity. The next section
demonstrates that the situation is different for a critical system.

B. Ising surfaces

We next turn to the analysis of rough surfaces induced
by two-dimensional lattice spin models described by Brito
et al. [21,22]. Specifically, it is interesting to test whether the
proposed approach will be able to capture spatial complexity
and entropy changes associated with phase transition. Here the
surfaces are built by summing up the lattice spin values σl =
{−1,1}of the spin-1/2 Ising model defined by the Hamiltonian:

H = −
∑
〈m,n〉

σmσn , (9)

where the summation runs over all 〈m,n〉 pairs of nearest-
neighbor nodes. This system undergoes phase transition at
Tc = 2

ln(1+√
2)

. The model was simulated with a Monte Carlo
algorithm on 256 × 256 lattices. Surface height at a site l at
simulation step t is then defined as Wl = ∑t

k=0 σl(t). Examples
of the obtained surfaces at different reduced temperatures
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(a) (b)

FIG. 3. Ising surfaces and temperature dependence of complexity and entropy properties. (a) Examples of simulated Ising surfaces at different
reduced temperature levels Tr = T/Tc shown on top (image size: 256 × 256, after 3 × 104 iterations; image intensities are renormalized to
0 . . . 1 interval for better representation). (b) Dependence of entropy (blue) and complexity (orange and red) on reduced temperature. The critical
temperature is characterized by a peak in complexity and a dip in entropy. Light-blue and orange lines, global estimate; dark-blue and red lines,
“mean field” estimate. Dotted lines, admissible complexity C range for given entropy H . Dotted lines, admissible complexity C range for given
entropy H .

Tr = T/Tc after 3 × 104 Monte Carlo steps are shown in
Fig. 3(a).

As expected, both spatial entropy and complexity param-
eters undergo dramatic changes as the reduced temperature
sweeps through the critical point Tr = 1: the critical temper-
ature is associated with a peak in system complexity and a
negative peak in entropy [Fig. 3(b)]. Thus, the temperature
of phase transition is characterized by maximal complexity
and minimal entropy of the analyzed spatial pattern. Indeed, a
critical state leads to emergence of scale-free spatial structure
with marked spatial correlations. As in wavelets for time
series, one can expect a power-law scaling of the power of
shearlet coefficients, which should lead to high complexity
and intermediate entropy.

One also observes from Fig. 3(a) that at temperatures
slightly larger than Tc the spatial correlations in the structure
do not vanish immediately, and the images remain “grainy”
for about Tr ≈ 1.25. Existence of isles with higher spatial
correlations leads to asymmetric dependence of both entropy
and complexity on temperature: The changes are steeper for
temperatures below Tc than for T > Tc, so the complexity
falls off slower with an increase than with a decrease in
temperature. Higher temperatures are also characterized by a
larger discrepancy between the global and the “mean-field”
estimates of H and C: Here HMF < Hglobal and CMF > Cglobal,
which can be explained by existence of small isles of higher
complexity, which are attenuated by spatial averaging of the
shearlet coefficients in the global estimate but not in the
“mean-field” one.

Again, the obtained results are qualitatively similar to the
analogous experiment in Ref. [5]: The H and C parameters
change in the same direction and display the same asymmetry
with respect to temperature change. However, the changes

in both H and C are more pronounced with the proposed
method: Entropy reaches a smaller minimal value of HTc

≈
0.5 and complexity peaks at a higher level CTc

≈ 0.35. In
addition, we note that near Tc the system nearly reaches the
maximum complexity Cmax allowed for the corresponding
entropy value [see also Fig. 4(b)]. This is dramatically different
from the previous example with decaying structure, where the
complexity remained near Cmin.

The main novelty of the proposed method as compared
to the method suggested by Ribeiro et al. [5] is that the
shearlet-based approach allows for spatially resolved estimates
of complexity C(x,y) and entropy H (x,y) as illustrated in
Fig. 4(a), where the H and C estimates are mapped for an Ising
surface at T = Tc. Thus, an input image can be characterized
not with a single (H,C) pair but with a complexity-entropy
spectrum, representing distribution of all spatial locations of
the analyzed pattern on the complexity-entropy plane. Such
spectra are shown together with “mean-field” and global
estimates for Ising surfaces at several temperatures around
the critical one in Fig. 4(b). Here one can see that the
relation between the entropy and complexity for points be-
longing to one image can be markedly different depending
on the location on the complexity-entropy plane. In all cases
the Ising surface remains well above Cmin. Moreover, near
the Tc, the complexity-entropy spectra concentrate around
the curve corresponding to a set of power-law distribu-
tions depicted as a gray line in Fig. 4(b). This supports
the expectation that shearlet coefficients should have power-
law statistics for a spatially scale-free pattern. Above Tc,
spatial inhomogeneities acquire characteristic scale which
gradually shrinks with temperature—reflected in deviation
from the complexity-entropy spectra from the power-law
curve.
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(a)

(b)

FIG. 4. Spatial mapping of local complexity and entropy and
complexity-entropy spectra for Ising surfaces. (a) Ising surface
at T = Tc (left), local entropy (middle), and complexity (right).
(b) Complexity-entropy spectra taken from local values and shown on
the H–C plane for Ising surfaces at different temperatures. Crosses,
average, “mean field” values; stars, global estimates. Thin gray line
encircles the admissible complexity C range for each H value. Thick
gray line, point curve corresponding to power-law distributions.

IV. CONCLUSIONS

An algorithm of estimating empirical spatial entropy and
complexity measures for two-dimensional patterns or tex-
ture images is proposed. The algorithm builds on recent
success in employing a two-dimensional extension to the
Bandt and Pompe’s permutation entropy augmented with a
Jensen-Shannon–based definition of statistical nontriviality
(complexity). The core difference of the proposed algorithm is
that it replaces the permutation approach by a new probability-
inducing decomposition of spatial patterns based on an efficient
multiscale directional transform, namely the fast finite shearlet
transform. In other words, it generalizes the ideas of wavelet
entropy to higher-dimensional data by using an adapted decom-
position system. Besides computational efficiency, the pro-
posed algorithm provides for local, spatially resolved estimates

of complexity and entropy of the analyzed pattern, which was
not possible with previous algorithms.

Numerical experiments with two classes of spatial patterns
support the utility of the proposed method, as the expected
changes in both entropy and complexity associated with
changes in the controlled parameters are faithfully captured
in the estimates provided by the algorithm. These two dif-
ferent systems, although both undergoing a rise and fall in
complexity, behave differently in the complexity-entropy plane
as compared to whether they are close to the lower or higher
bounds of complexity. Attaining a max-entropy equilibrium
from an ordered state follows a minimum possible complexity
path, which seems to be at odds with Ref. [23], where a
tendency towards maximum complexity has been reported.
Calbet and López-Ruiz [23] used a Euclidean distance mea-
sure of dissimilarity between the observed and equiprobable
distributions as originally suggested by López-Ruiz et al. [2],
which has troublesome characteristics, remedied by the use
of the Jensen-Shannon divergence measure [4], which can
explain the apparent discrepancy of the results. In contrast, the
Ising surface model was characterized by complexity values
closer to the upper bound, and near the critical point was in
agreement with a scale-free structure governed by a power-law
distribution of feature scales and orientations. One can thus
discriminate between intrinsic complexity, resulting from the
system properties and foraying into high-complexity regions
towards the upper complexity bound, and extrinsic complexity,
appearing, e.g., due to remains of ordered state melted by
noise, in which case the complexity keeps to near the lower
bound.

The paper is accompanied by an open-source python-based
software and a usage example in the form of a jupyter notebook,
thus prompting other research groups for employment of the
proposed algorithm in problems where a global or spatially
resolved characterization of textures is required. It is expected
that this method will be instrumental in the analysis of cell
or tissue morphology in microscopy data, characterization of
patterns in the studies of hyperuniformity packing, description
of fiber networks, displacement landscapes in oil and water
flooding, and other applications.
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