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Manipulation of viscous fingering in a radially tapered cell geometry
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When a more mobile fluid displaces another immiscible one in a porous medium, viscous fingering propagates
with a partial sweep, which hinders oil recovery and soil remedy. We experimentally investigate the feasibility of
tuning such fingering propagation in a nonuniform narrow passage with a radial injection, which is widely used in
various applications. We show that a radially converging cell can suppress the common viscous fingering observed
in a uniform passage, and a full sweep of the displaced fluid is then achieved. The injection flow rate Q can be
further exploited to manipulate the viscous fingering instability. For a fixed gap gradient α, our experimental
results show a full sweep at a small Q but partial displacement with fingering at a sufficient Q. Finally, by varying
α, we identify and characterize the variation of the critical threshold between stable and unstable displacements.
Our experimental results reveal good agreement with theoretical predictions by a linear stability analysis.
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The process of fluid-fluid displacement in a porous medium
is omnipresent in nature and occurs in numerous applications
[1], for example, printing [2–7], groundwater hydrology [8,9],
contamination propagation in soils [10], CO2 geological se-
questration [11,12], and enhanced oil recovery technologies
[13–15]. Manifested in finger-shaped propagation, an inter-
facial instability emerges whenever a fluid of high mobility,
M = k/μ, characterized by the ratio of permeability k to
fluid viscosity μ, pushes an immiscible one of low mobility.
Because of its importance for an abundance of technologies,
fingering instability of viscous fluids has been extensively
studied. In particular, the classic Saffman-Taylor instability
[16] for both rectangular [17–20] and radial displacements
[21–23] in a Hele-Shaw cell, comprised of two parallel plates,
separated by a small and uniform gap h0 with k = h2

0/12,
is a convenient paradigm of a porous media flow with a
homogeneous permeability [23].

Viscous fingering instabilities can be beneficial or detri-
mental depending upon the application. However, the control
of viscous fingering has been a great challenge and hence
investigated to a less extent since the mobility or viscosity
contrast is often predetermined by the fluids chosen for the
applications. Recently, such control has been achieved by
controlling the injection rate of the displacing fluid [25–27],
or using an upper elastic membrane forming a Hele-Shaw
cell [28–31]. In addition, a study has experimentally demon-
strated the feasibility of suppressing fingering via a capillary
effect using a rectangular Hele-Shaw cell with a converging
gap [32], which has attracted renewed interest in the topic
[33–39]. Subsequently, several potential strategies for con-
trolling viscous fingering instability have been explored, for
instance, via wettability control of the fluids [40,41], by
experimentally lifting a plate with a time-dependent strategy at
fixed flow rates [42] and numerically exploiting a gravitational
(Rayleigh-Taylor) instability [43]. Nonetheless, systematic
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and thorough experimental investigation has yet to be carried
out on the effect of depth gradients in a radial injection. In
this Rapid Communication, we experimentally investigate the
viscous fingering problem in radial tapered Hele-Shaw cells
(see Fig. 1) and examine the impacts of depth gradients, radial
propagation, and flow rates.

In our experiments, a variant of a Hele-Shaw cell with a
converging gap is used to control the fingering instability with

FIG. 1. (a) Schematic diagram of the side view of the exper-
imental setup of immiscible fluid-fluid displacement in a radially
converging passage, with a viscosity ratio λ = μ2/μ1 = 8.8 × 103.
(b) Snapshot of a classical viscous-fingering pattern obtained when
air pushes oil in a flat radial Hele-Shaw cell with h0 = 1.2 mm
and Q = 40 ml/min. (c) In contrast, snapshot of a stable interface
with a complete sweep of oil by air in a radially tapered cell with
α = −6.67 × 10−2, h0 = 150 μm, and Q = 40 ml/min. For the
experiments in (b) and (c), h0 are chosen so that both configurations
have equal fluid volumes. The scale bars in (b) and (c) are 2 cm.
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FIG. 2. (Supplemental Material movie [24].) The dependence of sweep efficiency on flow rateQ: snapshots of two representative experiments
[24] of air displacing oil for the same geometrical configuration with the gap gradient α = −4.75 × 10−2 and h0 = 500 μm, but different flow
rates: (a) stable displacement at Q = 40 ml/min, whereas (b) viscous fingering at Q = 110 ml/min.

a radial injection [shown in Fig. 1(a)]. The bottom plate is
made of plexiglass and strengthened by another, thicker plate
to avoid any bending. The upper plate is tapered over a radius
r0 = 7 cm, with a negative gap gradient, α = dh(r)/dr , i.e.,
the ratio of the height to length of the tapered area. We control
the height of the outer flat edge h0, using translation stages
with an accuracy of 10 μm. The gap thickness inside the
cell evolves linearly along the radius h(r) = h0 + α(r − r0),
i.e., α = h0−h(0)

r0
< 0. The defending fluid is heavy mineral oil

(viscosity μ2 = 158 cP; Fisher Scientific), which initially is
injected into and fully saturates the cell. We then inject air
(viscosity μ1 = 1.8 × 10−5 Pa s = 0.018 cP) at a constant
flow rate Q, ranging from 10 to 300 ml/min.

The observations are captured with a camera (Canon EOS
70D) at 30 fps (frames per second). We use IMAGEJ and
MATLAB to analyze the images and track the evolution of the
interface. The local velocity, V , is calculated by tracking the
interface position over a short period of time. We characterize
the importance of the viscous forces relative to capillary forces
using the capillary number, Ca = 12μ2V/γ , where the surface
tension of the oil, γ = 30 mN/m, was measured using a
tensiometer. The fluid combination in our experiments has a
viscosity ratio of λ = μ2/μ1 = 8.8 × 103.

We first performed control experiments in flat and tapered
cells, set with respective gap thicknesses so that both geome-
tries have equivalent fluid volumes. As in the case of the clas-
sical Saffman-Taylor instability, when we conducted exper-
iments with unfavorable viscosity-ratio displacement (μ1 <

μ2) in a uniform cell, we observed unstable interfacial propa-
gation with fingering, as shown in Fig. 1(b). However, remark-
ably, when we carry out a similar experiment with μ1 < μ2 in a
converging cell, the interface can be stabilized, as illustrated in
Fig. 1(c).

Through our experiments, we aim to understand the varia-
tion of the onset of instabilities for various flow configurations
with different α. By systematically varying the flow rate, Q

(for a fixed α and h0), we observed a stable interface at
low Q throughout the experiment [see Fig. 2(a)]. However,
above a certain flow rate, the interface becomes wavy, and the
instability grows as air displaces the oil, as shown in Fig. 2(b).
Physically, in the case of M > 1, the viscous pressure gradient
gained is �Pν ∼ μ

k
V and further destabilizes the interface

as fluid travels radially outwards. For the radial injection,

the interfacial velocity can significantly change due to mass
conservation via a radially increasing cross-sectional area and
a decreasing gap thickness, and hence alters �Pν . On the
other hand, the converging gap introduces a varying capillary
pressure, �Pγ , which increases and plays a crucial role in
stabilizing the interface when fluids travel in a passage of
decreasing depth.

By varying Q gradually for different α, we characterize the
critical threshold of flow rate, Qc, between stable [Fig. 3(b)]
and unstable [Fig. 3(c)] displacements. Figure 3(a) illustrates
the phase diagram of stable vs unstable interfacial propagation
for different α and Q. This stability diagram reveals a general
trend of increasing Qc with an increasing depth gradient, |α|.

Based on linear stability analysis, a theoretical model to
characterize the interface behavior has been carried out for
a rectangular [32] or radial fluid cell [44]. The stability of
a radially tapered viscous-fingering interface is expressed in
terms of its growth rate, σ [44]:

rσ

V
= −

(
1 + αr

h

)
+

(
1 + 2α + (h/r)2

Ca

)
N − (h/r)2

Ca
N3,

(1)
where N is the number of fingers, and r is the radial position
of the interface. σ < 0 characterizes a stable interface, while
the critical transition occurs when σ = 0. We extract the
values of r , N , and V from the experiments, showing the
transitional behavior from a stable to an unstable interface to
analyze the growth rates. Under a constant flow rate, Q, as
the fluid interface advances radially, r = r(t), the interfacial
speed V changes due to mass conservation, i.e., V = V (r(t)).
Consequently, the capillary number varies greatly with r . For
a gas displacing a wetting viscous liquid in a rectangular cell,
the stability of the interface depends only on Ca and α, with a
stable interface when 1 + 2α/Ca < 0 [32]. On the other hand,
the linear stability problem and the resulting growth rate, σ , for
a radial variant Hele-Shaw cell are more complex than those
in a rectangular configuration, due to the interplay between
geometric and capillary parameters (e.g., r , Ca, and N ).

To further compare our experimental results with the
analytical prediction, we analyze the critical parameters at
the transition when the wavy and fingering interface starts
to set in. The theoretical analysis of the growth rate σ for
our experimental conditions using Eq. (1) is detailed in the
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FIG. 3. (a) Stability diagram of stable vs unstable propagation
front by varying the flow rate Q, for different gap gradients α (while
h0 = 250 μm). The general trend shows that for each α, stable and
complete sweep occurs at a relatively small Q (denoted by •), whereas
unstable fingering propagation emerges at large Q (◦). For a radially
tapered cell of α = −4.75 × 10−2, h0 = 250 μm, time evolution of
top-view, stable interfaces with Q = 20 ml/min in (b) [corresponding
to in (a)], while unstable interfaces in (c) for Q = 70 ml/min [
in (a)]. The time steps are �t = 9 and 1 s between each contour for
(b) and (c), respectively.

Supplemental Material [24]. Both results reveal a significant
influence of r and N on the growth rate. We found that
the growth rate strongly depends on r for a certain critical
fingering number, N , observed experimentally. As revealed in
Fig. S1, a stable interface can become unstable within 1 cm.
Since multiple experimental parameters (e.g., Q, α, N , and
r) influence the growth rate of radial viscous fingering, we
further analyze the critical capillary number, Ca∗. Figure 4(a)
shows the comparison of experimentally observed Ca∗ with
the theoretical prediction Ca∗

th based on Eq. (1) at the transition
(i.e., by setting σ = 0), where

Ca∗
th = [2α + (h/r)2]N − (h/r)2N3

1 + (αr/h) − N
. (2)

The comparison, shown in Fig. 4(a), reveals consistent re-
sults between the experimental and theoretical critical capillary
numbers. The experimental capillary number values, Ca∗, are
determined via Ca = 12μ2V/γ for each α and h0, where
the local velocity, V , is measured with the videos showing a
transitional displacement from a stable to an unstable interface.
The theoretical predictions of Ca∗

th are estimated using Eq. (2),
with the inputs of N and average r analyzed from the same
experimental videos.

Our experimental results show the small effect of h0 on Ca∗

( , , in Fig. 4), while the theoretical critical Ca∗
th from Eq. (2)

depends on h(r) = h0 + α(r − r0). Overall, a good agreement
is found for the smaller gap gradient. More importantly, the
general trend of both theoretical Ca∗

th and experimental Ca∗

increases with an increasing magnitude of the gap gradient. In
other words, a larger interfacial velocity is required to trigger

FIG. 4. (a) Variation of the critical capillary number Ca∗ sepa-
rating stable vs unstable displacements for different depth gradients
α and h0. We compare the experimental values ( , , ) to the
theoretical Ca∗

th ( , , ) derived from Eq. (2) with α, r , and N from
our experimental results and parameters. (b) Surface plot of theoretical
Ca∗

th greatly depends on r and N using Eq. (2), for α = −8.66 × 10−2

and h0 = 250 μm, showing a stable displacement when Ca < Ca∗,
whereas an unstable one when Ca > Ca∗.

viscous fingering instability in a steeply convergent gap, where
large capillary pressure is present and acts to stabilize the
interface.

For relatively larger |α|, the deviation may be explained
with the experimental difficulty of meeting the theoretical
assumptions. The theoretical model, Eq. (1) [44], assumes
a symmetric displacement, a constant static contact angle,
and a small dimensionless depth variation, i.e., || αr

Nh
|| � 1. In

contrast, our experiments have this dimensionless parameter
ranging from 5 × 10−2 to 10−1 and may have some surface
roughness (due to the polish using fine sand papers) leading to
inhomogeneous wetting and front propagation. These factors
are likely the reasons for the deviation observed. In addition,
the strong dependence of theoretical Ca∗

th based on Eq. (2) on
r and N is shown in Fig. 4(b). For instance, within a range
of 0.5 cm in r and N ± 1, Ca∗

th varies from 0.67 to 1.54 for
the specific configuration presented in Fig. 4(b). This drastic
change within such a small radial position, r , and/or number
of fingers, N , may explain the slight and moderate deviations
observed for relatively moderate |α| in Fig. 4(a).

In summary, we have experimentally demonstrated that
the presence of a radial depth gradient (i.e., permeabil-
ity variation), can alter significantly the viscous fingering
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instability and pattern. Using a converging passage, the classic
viscous fingering commonly observed in a flat Hele-Shaw
cell can be completely suppressed with a suitable flow rate.
For each converging gradient, α, we can tune the viscous-
fingering instability from a stable to an unstable displacement
by increasing the flow rate, Q, injected. This critical flow rate
is increased for a steeper gap gradient. We further compare our
experimental results with a theoretical linear stability analysis,
showing consistent dependence of the instability growth rate
on radial location, r and, N . From the experimental results
with different α, we further showed that the critical threshold
Ca∗ increases with an increasing gap gradient, |α|, in good
agreement with a recent theoretical prediction considering

the effect of capillary pressure [44]. Our experimental results
reveal the possibility of controlling interfacial instabilities with
a radial injection in an inhomogeneous passage. The result
of critical Ca∗ depending on α, r , h0, and N is beneficial
for the design and prediction of flow settings where the
process of fluid-fluid displacement in a porous medium is
crucial.
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