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The generalized Langevin equation (GLE) can be derived from a particle-bath Hamiltonian, in both classical
and quantum dynamics, and provides a route to the (both Markovian and non-Markovian) fluctuation-dissipation
theorem (FDT). All previous studies have focused either on particle-bath systems with time-independent external
forces only, or on the simplified case where only the tagged particle is subject to the external time-dependent
oscillatory field. Here we extend the GLE and the corresponding FDT for the more general case where both the
tagged particle and the bath oscillators respond to an external oscillatory field. This is the example of a charged
or polarizable particle immersed in a bath of other particles that are also charged or polarizable, under an external
ac electric field. For this Hamiltonian, we find that the ensemble average of the stochastic force is not zero,
but proportional to the ac field. The associated FDT reads as 〈FP (t)FP (t ′)〉 = mkBT ν(t − t ′) + (γ e)2E(t)E(t ′),
where Fp is the random force, ν(t − t ′) is the friction memory function, and γ is a numerical prefactor.
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The theory of Brownian motion is so far the simplest
approximation to the dynamics of nonequilibrium systems.
The Langevin equation, and its equivalent counterpart, the
Smoluchowski diffusion equation, describe the motion of a
Brownian particle in an external force field and under the action
of thermal agitation from the bath of solvent molecules, in
which the Brownian particle is immersed. At steady state, the
thermal fluctuations that cause rapid changes in the particle
velocity are dissipated by viscous drag.

This is a manifestation of the fluctuation-dissipation theo-
rem (FDT), as was originally formulated in different contexts
by Einstein and by Nyquist, and generalized by Onsager [1]
and by Callen and Welton [2]. Later, the theorem has been
further elaborated in many different contexts [3–12]. FDT
stipulates that the response of a system in thermodynamic
equilibrium to a small applied force is the same as its
response to a spontaneous fluctuation, thus connecting the
linear response relaxation of a system to equilibrium, from
a prepared nonequilibrium state, with its statistical fluctuation
properties in equilibrium. FDT applies to both classical and
quantum-mechanical systems [13,14] and has been generalized
to non-Markovian processes for classical systems by Zwanzig
[15]. In the latter case, the noise is no longer uncorrelated in
time, and the time correlation of the stochastic force is dictated
by the time correlation of the friction which plays the role of the
memory function in the generalized Langevin equation (GLE).
The non-Markovianity arises from the dynamical coupling of
the tagged Brownian particle with many particles (harmonic
oscillators) forming the heat bath. This coupling, which in
physical systems may be provided by long-range molecular
interactions, is thus responsible for both the thermal agitation
and the damping experienced by the tagged particle.

All versions of the GLE, and of the associated FDT which
can be derived from it, that have been considered in the

past, are limited to either systems in the absence of external
time-dependent forces or, if an external time-dependent force is
present, its action is restricted to the tagged Brownian particle,
leaving the bath oscillators unaffected by the external field
[5,16]. Harada and Sasa considered time-dependent driving
forces being exerted on the tagged particle and they found a vi-
olation of the fluctuation-response relation in driven nonequi-
librium systems [17,18]. More recently, Maes and co-workers
derived FDT for nonequilibrium systems by implementing
mutual interactions between bath particles and also the effect
of stochastic white-noise force on the bath particles dynamics
[19,20].

This limitation is obviously artificial and not realistic,
because in many systems there is no reason to justify why the
tagged particle is subjected to the external ac field, whereas the
bath oscillators remain unaffected by the field. This limitation
clearly leaves out a number of important physical problems,
where not only the tagged particle is subjected to the ac field,
but also the particles that constitute the heat bath are subjected
to it. This situation is clearly encountered in dielectric matter
under a uniform ac electric field E(t). In this case, every
building block (atom, molecule, ion) is polarizable or charged
such that it is subjected to a force from the electric field. Hence,
if the bath is constituted by polarizable or charged particles,
these will also respond to the ac field and it is unphysical
to neglect the effect of the ac field on the dynamics of the
bath oscillators. This situation is schematically depicted in
Fig. 1.

A similar situation arises in the field of microrheology
[21] where not only the probe Brownian particle, but also
the building blocks of the medium respond to the oscillatory
mechanical field.

In this contribution, we provide a solution to this problem
by formulating a Caldeira-Leggett particle-bath Hamiltonian
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FIG. 1. Schematic example of system of charged (solid circles) or
polarizable molecules. In the former case the particles could be ions in
a plasma or ions and electrons in a liquid metal. In the latter case, pairs
of negatively and positively charged particles represent the electron
cloud and the molecular ion of a polarized neutral molecule as in, e.g.,
dielectric relaxation of molecular liquids. A particle-bath Hamiltonian
like the one of Eqs. (1) and (2) can be applied to these systems where
a tagged particle (green) interacts with the local environment via
an interaction potential V (Q), which may represent the interaction
potential with neighbors. The tagged particle interacts also with all
other degrees of freedom in the system which can be effectively
represented as a bath of harmonic oscillators to which the tagged
particle is coupled via a set of coupling constants cα , where α runs
over all other bath oscillators in the system. In traditional models of
bath-oscillator dynamics, only the tagged particle is subjected to the
external ac field (see, e.g., [5]), whereas the other particles are not.
In the proposed model, both the tagged particle and also all the other
particles (forming the bath) are responding to the ac electric field,
which leads to new physics.

where both the particle and the bath oscillators are subjected to
the external ac electric field, which is explicitly accounted for in
both the Hamiltonian of the particle and the Hamiltonian of the
bath. The two Hamiltonians are then connected via a bilinear
coupling as is standard in this type of model. We analytically
solve the coupled Hamiltonian for the tagged particle to find
a new form of generalized Langevin equation, which accounts
for the effect of the polarization of the bath under the ac field
on the dynamics of the tagged particle.

We also derive the associated FDT and find a surprising
result: the time correlation of the stochastic force is not just
equal to the memory function for the friction, but there is an
additional term which is proportional to the time correlation of
the ac field, and hence to the amplitude of the ac field squared.
This term is absent in all previously studied versions of the
FDT. This result shows that the strength of the fluctuating
force can be controlled by the external force field in the limit
of sufficiently strong external driving. This framework opens
new avenues to understanding the macroscopic response of
complex liquids, plasmas, colloids, and other condensed matter
under oscillatory fields.

We study the classical version of the Caldeira-Leggett [22]
coupling between the tagged particle and a bath of harmonic
oscillators, which was actually proposed already in 1973 by
Zwanzig [15], and add a new term, HE , which contains the
force due to the applied ac electric field acting on both the

tagged particle and the harmonic oscillators:

H = HS + HB + HE, (1)

where HS = P 2/2m + V (Q) is the Hamiltonian of the tagged
particle without external field. The second term is the standard
Hamiltonian of the bath of harmonic oscillators that are cou-
pled to the tagged particle, HB = 1

2

∑N
α=1[ P 2

α

mα
+ mαω2

α(Xα −
Fα(Q)

ω2
α

)2], consisting of the standard harmonic oscillator ex-
pression for each bath oscillator α, and of the coupling term
between the tagged particle and the αth bath oscillator, which
contains the coupling function Fα(Q).

The new term

HE = −ze�(Q,t) −
∑

α

eα�(Xα,t)

= −E0 sin (ωt)

(
zeQ +

∑
α

eαXα

)
(2)

represents the influence of electric field on both the tagged
particle [first term in the right-hand side (RHS)] and the bath
oscillators (second term in the RHS). Here, e is the unit
charge and hence ze is the total charge of the tagged particle,
where, e.g., z = ±1 for monovalent ions or electrons in a
plasma or z = −1 for the case of molecular dielectrics where
a molecule polarizes into a negatively charged electron cloud
which oscillates about a positively charged molecular ion; eα

is the net charge of bath particle α which is subjected to the
same polarization. Here, we only consider motion along the
direction of the electric field.

In the Caldeira-Leggett Hamiltonian, the coupling function
is taken to be linear in the particle coordinate Q, Fα(Q) = cαQ,
where cα is known as the strength of coupling between the
tagged atom and the αth bath oscillator.

This Hamiltonian leads in a straightforward manner to the
following system of differential equations:

dQ

dt
= P

m
;

dP

dt
= −V ′(Q) +

∑
α

mαcα

(
Xα − cαQ

ω2
α

)
+ zeE0 sin (ωt),

dXα

dt
= Pα

mα

;

dPα

dt
= −mαω2

αXα + mαcαQ + eαE0 sin (ωt). (3)

From the second line, upon solving the second-order in-
homogeneous ordinary differential equation with the Green’s
function method (or alternatively with the Wronskian method),
we get

Xα(t) = Xα(0) cos (ωαt) + Pα(0) sin (ωαt)

mαωα

+
∫ t

0

[
cαQ(s) + eα

mα

E0 sin (ωs)

]

× sin [ωα(t − s)]

ωα

ds. (4)
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The integral
∫ t

0 cαQ(s) sin [ωα(t−s)]
ωα

ds can be evaluated via integration by parts. Upon further denoting Eα(t) =∫ t

0 eαE0 sin (ωs) sin [ωα(t−s)]
ωα

ds, we obtain

Xα(t) − cαQ(t)

ω2
α

=
(

Xα(0) − cαQ(0)

ω2
α

)
cos (ωαt) + Pα(0)

sin (ωαt)

mαωα

−
∫ t

0

cαP (s) cos [ωα(t − s)]

mω2
α

ds + Eα(t)

mα

. (5)

Substituting Eq. (5) into the equation for P (t) in Eq. (3), we derive the following generalized Langevin equation for the tagged
particle motion, which accounts for the ac electric field acting on both the tagged particle and the bath oscillators:

dP

dt
= − V ′[Q(t)] −

∑
α

∫ t

0

mα cos [ωα(t − s)]

mω2
α

c2
αP (s)ds + zeE0 sin (ωt)

+
∑

α

{
mαcα

[
Xα(0) − cαQ(0)

ω2
α

]
cos (ωαt) + cαPα(0)

sin (ωαt)

ωα

+ cαEα(t)

}

= − V ′[Q(t)] −
∫ t

0
ν(s)

mαP (t − s)

m
ds + zeE0 sin (ωt) + FP (t). (6)

We have introduced the noise or stochastic force FP (t) which is equal to the second line after the first equality,

Fp(t) =
∑

α

{
mαcα

[
Xα(0) − cαQ(0)

ω2
α

]
cos (ωαt) + cαPα(0)

sin (ωαt)

ωα

+ cαEα(t)

}
. (7)

One should note that this expression for the stochastic force
is identical with the one derived by Zwanzig for a particle-bath
system without external field, except for the important term
cαEα(t), which is new and contains the effect of the external
ac field on the bath oscillators dynamics. This is a crucial point
because the dynamical response of the bath oscillators to the
external ac field in turn produces a modification of spectral
properties of the bath fluctuations, and thus leads to a form of
the stochastic force which is different from those studied in
previous works.

The memory function for the friction ν(t) =∑
α

mαc2
α

mω2
α

cos (ωαt) is identical to the memory function of
systems without external time-dependent forces such as the
one derived by Zwanzig [15].

The integral in the function Eα(t) =∫ t

0 eαE0 sin (ωs) sin [(ωα(t−s))]
ωα

ds, can be evaluated using
trigonometric identities which leads to

Eα(t) = eαE0[ω sin (ωαt) − ωα sin (ωt)]

ωα

(
ω2 − ω2

α

) . (8)

As for the case without external time-dependent fields, we
find that our FP (t) is defined in terms of initial positions and
momenta of bath oscillators, but in our case it now also depends
on the sinusoidal electric field at time t . Note that, by shifting
the time origin, it can be easily verified that the statistical
average is stationary. Following Zwanzig [15], we assume the
initial conditions for the bath oscillators can be taken to be
Boltzmann distributed ∼exp(−HB/kBT ), where the bath is
in thermal equilibrium with respect to a frozen or constrained
system coordinate Q(0).

Then for the average of X and P we find

〈
Xα(0) − cαQ(0)

ω2
α

〉
= 0, 〈Pα(0)〉 = 0. (9)

The second moments are〈(
Xα(0) − cαQ(0)

ω2
α

)2
〉

= kBT

mαω2
α

, 〈Pα(0)2〉 = mαkBT .

(10)
Both these results are consistent with what one finds for sys-
tems without external time-dependent fields, since obviously
they descend directly from the assumption of Boltzmann-
distributed degrees of freedom at the initial time.

As for
∑

α cαEα(t), we first note that there is no singularity
when ωα → ω and ωα → 0:

lim
ωα→ω

ω sin (ωαt) − ωα sin (ωt)

ωα

(
ω2 − ω2

α

) = −ωt cos (ωt) − sin (ωt)

2ω2
,

(11)

lim
ωα→0

ω sin (ωαt) − ωα sin (ωt)

ωα

(
ω2 − ω2

α

) = ωt − sin (ωt)

ω2
.

Focusing on ions, atoms, or molecules, ωα is at least in the
THz regime or higher, which is orders of magnitude larger
than the frequency of the applied field ω (this assumption of
course may not hold for THz spectroscopy, which deserves
a separate treatment in future work). Hence, the first term in
the numerator in the RHS of Eq. (8) can be neglected along
with the first term in brackets in the denominator, and we can
approximate as follows:∑

α

cαEα(t) ≈
∑

α

cαeα

ω2
α

E0 sin (ωt) ∝ eE(t). (12)

We now take the Boltzmann average of the stochastic force,
Eq. (7), and we find

〈FP (t)〉 = γ eE(t), (13)

for some constant γ . That is, the average of the stochastic
force FP is not zero, unlike in all previously studied GLEs of
particle-bath systems and, remarkably, is directly proportional
to the ac field.
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Now, by direct calculation, using Eqs. (9) and (10) and
standard trigonometric identities, we can get the FDT for our
particle-bath Hamiltonian under a uniform ac field:

〈FP (t)FP (t ′)〉= 1

ZN

∫
FP (t)FP (t ′) exp

(
−HB

kBT

)
dX(0)dP(0)

=
∑

α

(
mαc2

α

kBT

ω2
α

cos (ωαt) cos (ωαt ′)

+ mαc2
α

kBT

ω2
α

sin (ωαt) sin (ωαt ′)
)

+ (γ e)2E(t)E(t ′)

= kBT
∑

α

mαc2
α

ω2
α

cos [ωα(t − t ′)]

+ (γ e)2E(t)E(t ′)

= mkBT ν(t − t ′) + (γ e)2E(t)E(t ′), (14)

where ZN is the canonical partition function

ZN =
∫

exp

(
− HB

kBT

)
dX(0)dP(0) (15)

and X(0) = {X1(0),X2(0), . . .}, P(0) = {P1(0),P2(0), . . .}.
Equation (14) is a key result of this Rapid Communication

and is the FDT associated with the GLE Eq. (6). This is a
remarkable result which shows that in the presence of an
external ac field which affects the microscopic dynamics of
both the tagged particle and the bath oscillators, the strength of
the noise is no longer proportional to thermal energy only, but
also has an important deterministic contribution proportional
to the ac field squared.

The implications of this result for statistical mechanics and
its applications in condensed matter are vast and profound
and will be explored in future works, including experimental
verifications and extension to nonequilibrium enviornments
[17–20]. We can, however, notice that the presence of the
external ac field makes it impossible for the noise to be
white noise. This is true even if the memory function is delta
correlated, because of the second term controlled by the ac
field in Eq. (14), which inevitably introduces a deterministic
temperature-independent correlation into the noise.

In conclusion, we have introduced a more general version
of the classical particle-bath Hamiltonian, which is used as
a starting point to derive generalized Langevin equations, for
systems subjected to an external time-dependent (oscillating)
field. Unlike in previous models where the bath oscillators
were always taken to be unaffected by the external field, here
we added the time-dependent force due to the field to both
the Hamiltonian of the particle and the Hamiltonian of the
bath oscillators. The resulting Hamiltonian has been solved
analytically and the resulting GLE and fluctuation-dissipation

theorem have been found. The formal structure of the GLE is
still formally identical to that of standard GLE with external
field acting on the particle only [5] (and the memory function
for the friction is the same), but the stochastic force is very
different. Its ensemble average is nonzero and directly pro-
portional to the ac field. The associated fluctuation-dissipation
theorem, remarkably, has an additional term given by the time
correlation of the ac field, and is thus quadratic in the field.

An immediate application of this result is to dielectric
relaxation and dielectric spectroscopy of liquids and glasses.
The Debye model treats each molecule as fully independent
from all other molecules in the material and describes it with
a Langevin equation for the orientation of the molecule in
the field [23,24]. More refined models, e.g., mode-coupling
theory, are able to account for the coupling of each molecule
to collective degrees of freedom [25,26], but do not resolve
the combined effect of the ac field on the dynamics of both
the single molecule and the other molecules which provide
the memory effect in dielectric relaxation. The GLE derived
here will open the possibility of describing both these effects at
the same time, within the GLE picture that has been proposed
more recently for the dielectric response of liquids and glasses
[27–29]. Furthermore, the GLE derived here can be used as the
starting point for a more microscopic description of nonlinear
effects in dielectric relaxation of supercooled liquids under
strong fields [30,31].

In the context of microrheology of soft and biological mat-
ter, the FDT is the starting point to derive the key relationship
[generalized Stokes-Einstein relation (GSE)] that is used to
infer the viscoelastic response of the medium to an oscillatory
mechanical field from the optically monitored dynamics of
a probe particle [21,32–35]. This method based on FDT has
found widespread application in biophysics, to measure the
viscoelasticity of cytoskeleton and other biological matters.
However, all these works, including the most recent ones (see,
e.g., Ref. [36]) always neglect the effect of the oscillatory
field on the dynamics of the medium (the bath). Clearly,
the system as a whole is composed of many building blocks
(molecules, filaments) which also respond dynamically to the
oscillatory shear field and behave as the “bath” for the probe
particle. Therefore, the same effect described in our Rapid
Communication is certainly present also in all those systems,
and yet it has always been neglected in all the literature so far.

Further applications of the proposed framework include
quantum dissipative transport and Josephson tunneling with
dissipation [16,37,38], driven dynamics of colloids in soft mat-
ter systems [39–41], and molecular dynamics simulations of
liquids [42] and of amorphous solids in oscillatory shear [43].
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arship Council (CSC)-Cambridge scholarship. The impulse
for this work originated from discussions with Gerhard Stock.
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