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Finite-size scaling for discontinuous nonequilibrium phase transitions
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A finite-size scaling theory, originally developed only for transitions to absorbing states [Phys. Rev. E 92,
062126 (2015)], is extended to distinct sorts of discontinuous nonequilibrium phase transitions. Expressions for
quantities such as response functions, reduced cumulants, and equal area probability distributions are derived
from phenomenological arguments. Irrespective of system details, all these quantities scale with the volume,
establishing the dependence on size. The approach generality is illustrated through the analysis of different
models. The present results are a relevant step in trying to unify the scaling behavior description of nonequilibrium
transition processes.
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Methodologically speaking, nonequilibrium bears a relation
to equilibrium phase transitions somewhat similar to that
between nonlinear and linear dynamical systems. Indeed, well
established theoretical frameworks, universal methods of anal-
ysis, and generic efficient calculation protocols are far better
developed for the latter than for the former. Yet, nonequilibrium
transitions are conceivably more prevalent than equilibrium
transitions, ubiquitous in such diverse phenomena [1–5] as
interface growth, epidemics, chemical reactions, population
dynamics, flow in biological systems [6], spatiotemporal chaos
in liquid crystals [7], behavior of driven suspensions [8], and
superconducting vortices [9] (see [10] for a survey).

Most of the studies on nonequilibrium have been directed to
universality and scaling in the continuous context, with much
less attention being paid to discontinuous nonequilibrium
phase transitions (DNPTs) [11,12]. Despite this, DNPTs are
quite commonly observed in problems like heterogeneous
catalysis [13,14], ecological processes [15,16], granular sys-
tems [17], replicator dynamics [18], cooperative coinfection
[19], language formation [20], and social influence [21].

There are few general results for nonequilibrium phase tran-
sitions [2,3,22], one example being the celebrated Jarzynski
equality [23] for free energy differences �F . Another, for
DNPTs, is that to emerge they seem to require an effective
mechanism suppressing the formation of minority islands in-
duced by fluctuations [24,25]. Also, DNPTs allow a finite-size
scaling (FSS). But this fact has been shown only for transitions
to absorbing states [12], based on the idea of quasistationary
(QS) ensembles [26,27]. Calculations for several cases in d

dimensions reveal that distinct QS quantities scale with the
system volume V = Ld . Further, the shift in the coexistence
point value goes with 1/V . Such findings are in great similarity
with equilibrium phase transitions [28–35], whose coexistence
points correspond to equal F ’s in the distinct phases and for
the F ’s second derivatives displaying a δ-function-like shape
in the thermodynamic limit.

Here we extend the results in [12] for systems admitting
nonequilibrium steady states (without exhibiting absorbing

states). Relying on solid phenomenological arguments, we
deduce a general FSS behavior for DNPTs. We determine
that different quantities, like response functions, reduced ratio
cumulants, and probability distributions, go with the inverse
of the system volume. We illustrate our method addressing
diverse nonequilibrium models, such as absorption-desorption
on catalytic surfaces, systems with up-down Z2 symmetry,
and competitive interactions in bipartite sublattices, all them
displaying distinct features and symmetries. Our approach
unveils a universal scaling behavior for DNPT in close analogy
with the equilibrium case. Hence, it constitutes an additional
example of the unexpected resemblance between procedures
treating certain aspects of equilibrium and nonequilibrium
thermodynamics [12,36].

Our starting point is that in some relevant aspects equi-
librium and nonequilibrium phase transitions are akin when
the latter present stationary states [37]. For instance, as very
clearly put in [38], for a sufficiently large variation of a control
parameter λ, DNPT can be viewed as the passage through
distinct steady states, each typified by the value of an order
parameter m. Moreover—at least regarding m—these states
must be stable against [22] external disturbances, fluctuations,
and eventual internal currents (typically arising when the
detailed balance is not observed).

The above is the case when the net probability current
(yielding the order-parameter time evolution) in each steady
state is null, i.e., if the microscopic dynamics always obeys the
global balance, namely [39],∑

y

[w(y → x) p(y) − w(x → y) p(x)] = 0, (1)

for x,y microconfigurations associated to m, w(x → y) their
transition rate, and p(z) the probability of z. Therefore, in such
a situation we can ascribe a stable probability density to the
nonequilibrium steady state [40]. Also, its stationarity allied to
the global balance supports an extended version of the central
limit theorem for the distribution of m, given by Gaussians
[41], even in the nonequilibrium case [36].
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Thus, in the vicinity of the coexistence at λ0 (i.e., for �λ =
λ − λ0 small) and for a finite but large enough volume V , the
phase C probability distribution P

(C)
V (m) should read (up to a

normalization constant; see below)

P
(C)
V (m) =

√
g(V )

2π
exp

[
g(V )

(
�λ m − (m − mC)2

2χC

)]
.

(2)

Here χC is the variance and g(V ) is an increasing function of
V . For fixed V , the center of the Gaussian moves as λ changes,
which is consistent with an expected variation of 〈m〉 with λ.
For V → ∞, Eq. (2) leads to a δ function centered at m = mC

when �λ = 0. In the following, we will consider the extensive
case, so that g(V ) = V .

At the coexistence of two phases, A (λ � λ0) and B (λ �
λ0), from the previous observations and for not too “weak”
discontinuous phase transitions, we can assume that the prob-
ability distribution is a sum of two independent Gaussians, each
given by Eq. (2), yielding the global probability distribution

PV (m) = P
(A)
V (m) + P

(B)
V (m)

[FA(�λ; V ) + FB(�λ; V )]
. (3)

The denominator in Eq. (3) gives the correct normalization,
with

FC(�λ; V ) = √
χC exp

[
V

(
�λ mC + χC

2
�λ2

)]
. (4)

It is simple to analytically calculate any moment of the order
parameter m, defined as

〈mn〉V =
∫ +∞

−∞
dm mn PV (m), (5)

by means of Eqs. (2)–(4) and the formula [42]∫ +∞

−∞
dx xn exp[−ax2 + bx]

=
√

π

a
exp

[
b2

4a

] k=n−1∑
k=0

n!

k!(n − 2k)!

(2b)n−2k

(4a)n−k
. (6)

In particular, we readily obtain closed analytic expressions
for (our purposes very useful) second and fourth order re-
duced cumulants, namely, U2 = 〈m2〉V /〈m〉2

V and U4 = 1 −
〈m4〉V /(3 〈m2〉V ).

The pseudotransition point λ = λV can be estimated in
different ways, such as for both phases presenting equal
weights (areas) or through the maximum of the global variance
V (〈m2〉V − 〈m〉2

V ). From the present formalism, we have
shown in [12] that for V large and in first order in (λV − λ0),
one gets in both cases,

λV ≈ λ0 − 1

2V

ln[χB/χA]

(mB − mA)
. (7)

On the other hand, seeking for a λV given the maximum of U2,
one finds [12]

λV ≈ λ0 − 1

2V

ln[χB/χA] + 2 ln[mB/mA]

(mB − mA)
. (8)

As we will see, Eqs. (7) and (8) give very similar results for
large V ’s [comparing with Eqs. (7) and (8), we should mention
a small misprint in the denominator of the corresponding

equations in [12]]. Likewise DNPTs to absorbing states [12],
the difference between λV and λ0 consistently scales with 1/V

(this is also true by calculating λV − λ0 from the minimum of
U4, however the expression is not shown here). In the following
we demonstrate the usefulness of our analysis by discussing
distinct models.

The ZGB model with desorption of CO. As a first example,
we address the Ziff-Gulari-Barshard (ZGB) model [13] with
CO desorption [43,44]. The original ZGB is a longstanding
model reproducing relevant features of carbon monoxide oxi-
dation on a catalytic surface (represented by a square lattice).
Each site can be empty (∗) or occupied by either oxygen, O,
or carbon monoxide, CO. The interaction rules are

COgas + ∗ → COads,

O2gas + 2 ∗ → 2Oads,

COads + Oads → CO2 + 2 ∗ .

Molecules of CO (O2) reach the surface with probability Y

(1 − Y ). Whenever a CO molecule hits a vacant site, the site
becomes occupied. At the surface, if the O2 molecule finds two
vacant nearest-neighbor sites, each O occupies one of them. If
a CO2 molecule is formed (when CO and O are neighbors), it
is immediately desorbed.

In the limit of large (low) Y ’s, the ZGB exhibits phase
transitions between active steady and absorbing states, with
the surface being saturated, poisoned, by molecules of CO (O).
In the former (latter) situation we have strong discontinuous
(continuous, in the DP universality class) transitions. This
first-order absorbing phase transition has been analyzed in
Ref. [12], and in fact has attracted great theoretical interest
[45].

Experimentally, however, one observes a transition from
low to high densities of CO, ρCO, in the lattice, but without
complete poisoning [46–48]. This is a consequence of CO
desorption, governed by the substrate temperature. Above a
certain critical temperature, ρCO varies smooth and there is no
phase transition. The inclusion of a CO desorption rate k in the
initial ZGB model turns out to be very effective in describing
such an effect. Actually, phases of high and low ρCO arise only
for k less than some critical value kc ≈ 0.039 [43,44]. The
desorption (an extra step added to the previous set of rules)
is simply implemented by randomly choosing a site, and if in
it there is a CO molecule, then with probability k the CO is
desorbed.

We run the simulations for t = 107 Monte Carlo (MC) steps
and appropriate averages are evaluated after discarding the
initial 106 MC steps. The results for k = 0.02 are summarized
in Fig. 1. We clearly see typical trends of a discontinuous phase
transition: the variation of ρCO with Y [inset of Fig. 1(a)]
becomes steeper as the system size (L) increases, taking
place in narrower intervals �Y , which tend to agree with
the maximum regions of χ [Fig. 1(a)] and U2 [Fig. 1(b)]
for increasing L. Also, the overlap between the full PV (ρCO)
at the equal area condition [Fig. 1(c)] (and as it should be
expected, the minimum of U4, but not shown here) decreases
with L. The position of the peaks and minima are found
to scale as 1/V = L−2, from which we obtain the estimate
[Fig. 1(d)] Y0 = 0.5342(1) (maximum χ ), Y0 = 0.5343(1)
(equal area P

(C)
V ’s), and Y0 = 0.5343(1) (minimum U4 and

060101-2



FINITE-SIZE SCALING FOR DISCONTINUOUS … PHYSICAL REVIEW E 97, 060101(R) (2018)

0.531 0.534Y
0

0.2
0.4
0.6
0.8

1
ρ C

O

0.529 0.531 0.532 0.534 0.535
Y

0

50

100

150

200

250

300

χ

0.530 0.532 0.534
Y

1

1.1

1.2

1.3

1.4

1.5

U2

L = 30
L = 40
L = 50
L = 60
L = 80
L = 100

0.001 0.001 0.002 0.002
1/L2

0.529

0.530

0.532

0.534

YL min U4
equal area
max  χ
max U2

0 0.2 0.4 0.6 0.8 1
ρCO

0.000

0.001

0.002

0.003

P -6 -3 0 3
y*

0
0.01

0.045

χ∗

(a) (b)

)d()c(

FIG. 1. The ZGB model with desorption for distinct system sizes
L and k = 0.02. (a) The order-parameter variance χ (and order
parameter ρCO, inset) vs the creation rate Y . (b) The cumulant U2 vs
Y and (c) the equal-area probability distribution of ρCO (inset shows
the data collapse by writing χ∗ = χ/L2 and y∗ = (Y − Y0)L2). (d)
The scaling plots of YL’s as function of 1/V = L−2.

maximum U2). Note the great concordance of the different
measures for Y0. Finally, the inset in Fig. 1(c) shows a data
collapse using χ∗ = χ/L2 and y∗ = (Y − Y0)L2, confirming
the correct scaling with V = L2.

Majority vote model with inertia. The majority vote (MV)
is one of the simplest nonequilibrium up-down symmetric Z2

model exhibiting an order-disorder phase transition [49]. To
each site i of a network—whose vicinity is formed by its k

nearest neighbors—corresponds a spin variable σi = ±1. In
the original model, with probability 1 − f the value of σi

turns to that of the majority of the sites in the i vicinity. By
increasing the misalignment parameter in the interval 0 � f �
1/2, the system undergoes a continuous nonequilibrium phase
transition from an ordered to a disordered state [49–51].

It has been proved [50] that the continuous phase transition
becomes first order when a term depending on the local density
is included in the MV dynamics, an inertial effect (for a similar
mechanism in a cellular automata model, see [52]). Subsequent
works have shown that even a partial inertia (i.e., for only a
fraction of the sites) can change the transition characteristic
depending on the inertia strength θ [53], clarifying the neces-
sary ingredients to originate the DNPT [54]. For low θ and k,
the phase transition is continuous, whereas it is discontinuous
for both parameters high enough.

Very recently it has been verified [54] that the same sort of
continuous to discontinuous change—observed in networks—
can take place in regular square lattices. At each time step,
a randomly chosen σi is flipped (σi → −σi) according to the
probability (adapted from [50] for such regular topology),

w(σi) = 1

2
+

(
f − 1

2

)
σi sgn

⎡
⎣ (1 − θ )

k

k∑
j=1

σj + θ σi

⎤
⎦,

(9)
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FIG. 2. The majority vote model with inertia for distinct system
sizes L, θ = 0.375 and k = 20. (a) The order-parameter variance χ

and (b) U4 vs f . (c) The equal area probability distribution of m

[inset, the data collapse by writing χ∗ = χ/L2 and y = (f − f0)L2].
(d) The scaling plots of fL’s vs 1/V = L−2.

where for a discontinuous phase transition a minimal of k = 20
is required.

In Fig. 2 we show the simulation results for θ = 0.375 and
k = 20. Here also all the quantities scale with the inverse of the
system volume, as observed for the maximum of χ [Fig. 2(a)],
minimum of U4 [Fig. 2(b)] and equal area distribution of
m [Fig. 2(c)]. Such quantities provide the estimates for f0

[Fig. 2(d)], 0.0509(1), 0.0510(1), and 0.0509(1), respectively.
The data moreover collapse by setting χ∗ = χ/L2 and y =
(f − f0)L2 [inset of Fig. 2(c)].

Competitive contact process in bipartite sublattices. Last,
we consider a system with competitive interactions in bipartite
sublattices, introduced originally in [55]. It exhibits two types
of transitions: (i) spontaneous symmetry-broken phase transi-
tions, between two active states, and (ii) a continuous absorbing
phase transition, whose critical behavior and universality class,
DP, are not affected by the particle diffusion [56]. Nonetheless,
by requiring a minimal occupied neighborhood to create a new
particle (a restrictive interaction) it gives rise to distinct sorts
of DNPTs [57].

The model dynamics is described as the following. A
particle in a given sublattice j (A or B) creates autocatalitically
a new particle with rate λ1 n1j /4 (λ2 n2j /4) in one of its
nearest s = 1 (next-nearest s = 2) -neighbor empty sites. Here,
λs is the creating strength parameter and nsj denotes the
number of particles in the corresponding s neighborhood of
the considered site in sublattice j . A transition requires nsj � s

adjacent particles (the condition n1j � 1 is similar to that of
the original contact process model). This slight modification
[55] leads to the appearance of three coexistence lines, instead
of critical ones. Additionally, an inhibition term depending
on the local density, in the form μn2

1j , is included. This favors
unequal sublattice populations [55]. If μ = 0, one recovers the
traditional case in which a particle is spontaneously annihilated
with rate 1. Besides the typical absorbing (ab) and active
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symmetric (as), we observe a stable active asymmetric (aa)
phase for intermediate control parameters values. The ab-as
and aa-as transition lines are discontinuous (continuous) for λ1

low (large). The finite-size scaling for the absorbing first-order
transition has been studied in [12].

On the other hand, the aa-as line is not of absorbing type,
furthermore displaying spontaneous breaking of symmetry. To
locate it, we can evaluate the sublattice particle densities ρj . In
the as phase ρA = ρB 	= 0, whereas in the aa phase, ρA 	= ρB

and ρ = ρA + ρB 	= 0. Since sublattices are unequally popu-
lated in the aa phase, a natural choice for an order parameter is
the difference of sublattice densities, or φ = |ρA − ρB |. Unlike
the as phase, in which φ = 0, in the aa phase φ 	= 0.

In Figs. 3(a)–3(c) we show variance χ , U4, and equal area
distribution of φ, for the aa-as phase transition with λ1 = 0.5,
μ = 1, and different L’s. Hence, λ2 is the control parameter.
Previous calculations [57] show that the symmetry-breaking
transition occurs in the vicinity of λ2 = 50.96 (evaluated
for L = 80). Here, the finite-size analysis leads to much
more precise estimations. As in the previous examples, the
pseudotransition points (λ2)L’s, Fig. 3(d), scale with 1/V =
L−2, from which we obtain (λ2)0 = 50.55(2) (minimum U4),
50.51(1) (equal area), and 50.53(2) (maximum χ ). Once more,
the collapse [inset of Fig. 3(c)] is very good.

Summing up, we have developed a phenomenological
FSS for distinct types of DNPTs, supposing only that they
correspond to stable steady states, for which the global balance,
Eq. (1), holds true. As examples, we have considered three
distinct processes: (1) transitions between low-density (high
active) and high-density (low active) phases, in the context
of the ZGB model with desorption; (2) order-disorder phase
transitions induced by inertial effects, discussing the majority
vote model with inertia; and (3) symmetry-breaking transitions
between active phases, for a competitive contact process in
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FIG. 3. The competitive contact process in bipartite sublattices for
the aa-as transition, distinct L’s, λ1 = 0.5 and μ = 1. (a) The order-
parameter variance χ and the order parameter φ (inset) vs λ2. (b) The
reduced cumulant U4 vs λ2. (c) The equal-area probability distribution
of φ (inset, data collapse writing χ∗ = χ/L2 and y∗ = (λ2 − λ20)L2).
(d) The scaling of distinct pseudotransition points (λ2)L vs 1/V =
L−2.

bipartite sublattices. In all these cases, the finite-size behaviors
are fully described by the present phenomenological theory.

We believe the results here derived will help to put the study
and understanding of generic (nonequilibrium) discontinuous
phase transition on a more firm basis.
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