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Discrete Boltzmann trans-scale modeling of high-speed compressible flows
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We present a general framework for constructing trans-scale discrete Boltzmann models (DBMs) for high-
speed compressible flows ranging from continuum to transition regime. This is achieved by designing a higher-
order discrete equilibrium distribution function that satisfies additional nonhydrodynamic kinetic moments. To
characterize the thermodynamic nonequilibrium (TNE) effects and estimate the condition under which the DBMs
at various levels should be used, two measures are presented: (i) the relative TNE strength, describing the relative
strength of the (N + 1)th order TNE effects to the N th order one; (ii) the TNE discrepancy between DBM
simulation and relevant theoretical analysis. Whether or not the higher-order TNE effects should be taken into
account in the modeling and which level of DBM should be adopted is best described by the relative TNE intensity
and/or the discrepancy rather than by the value of the Knudsen number. As a model example, a two-dimensional
DBM with 26 discrete velocities at Burnett level is formulated, verified, and validated.
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I. INTRODUCTION

High-speed compressible flows with substantial hydrody-
namic and thermodynamic nonequilibrium (HNE and TNE,
respectively) effects are ubiquitous in nature, high pressure
science and technology [1], turbulent combustion [2], shock
wave therapy [3,4], food processing [5], hypersonic flows asso-
ciated with spacecraft reentry into the upper atmosphere [6–9],
strong shock waves in the inertial confinement fusion process
[10,11], etc. More specifically, in the last two representative
fields, both rarefied gas flows at high altitude and limited
shock wave thickness (typically of the order of a few mean-
free-paths of molecules, characterized by drastic changes
in state variables) give rise to high Knudsen number and
significant out-of-equilibrium scenarios. Additionally, most
hypersonic vehicles operate over a wide range of Knudsen
number in different parts of the equipment, simultaneously
[6–9,12]. Consequently, various flow regimes with totally
different aerothermodynamics, ranging from continuum, slip,
transition, even to free molecular flow regimes coexist in the
entire flow, which adds considerably to the complexity of
the problem. For such complex nonequilibrium systems, the
appropriateness of constitutive relations, which are associated
with the TNE effects, ultimately determines the accuracy of the
hydrodynamic model. Besides the HNE effects described by
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the hydrodynamic model, the evolution of TNE characteristics
helps to dynamically characterize the nonequilibrium state and
understand the constitutive relations. Therefore, establishing a
physically accurate and computationally efficient predictive
model to investigate these extremely complex HNE and TNE
behaviors is of both great academic significance and industrial
practical value. Undoubtedly, it is a long-standing challenge.

The difficulty arises from the fact that various temporal
and spatial scales are associated and coupled with distinct
physics. Consequently, the flow lacks scale separation and the
complexity springs up [13]. Continuum-based Navier-Stokes
(NS) equations, even with slip boundary conditions, are not
adequate to describe these kinds of flows. The inadequacy
stems from the linear constitutive relations for viscous stress
and heat flux assumed in the NS model, which are no
longer valid for the far-from-equilibrium system. Thus, it is
reasonable to conjecture that the inclusion of higher-order
terms in the constitutive relations can improve the multiscale
predictive capability of such continuum models. Along this
line, the Burnett-like equations, which are expected to perform
well in the continuum-transition regime, are obtained from
the CE expansion of Boltzmann equation. Nevertheless, the
extended hydrodynamic models are still subject to at least
the following four constraints that greatly hamper their wide
applications: (i) small wavelength instability as the grids are
refined; (ii) necessity of additional boundary conditions, (iii)
complicated programming owing to the existence of extraor-
dinarily complex and numerous higher-order derivatives, and

2470-0045/2018/97(5)/053312(13) 053312-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.053312&domain=pdf&date_stamp=2018-05-31
https://doi.org/10.1103/PhysRevE.97.053312


GAN, XU, ZHANG, ZHANG, AND SUCCI PHYSICAL REVIEW E 97, 053312 (2018)

(iv) the evolution equations of relevant higher-order noncon-
servative kinetic moments are not included, even though they
are needed for an exact characterization of the nonequilibrium
behaviors and understanding the kinetic mechanisms for the
nonlinear constitutive relations. Currently, the particle-based
direct simulation Monte Carlo (DSMC) method has been
regarded as a reliable and accurate approach for simulating
rarefied gas flows with high-speed and high Knudsen number
[14–16]. Unfortunately, it becomes extremely time-consuming
and prohibitively memory-demanding for simulating nearly
continuum flows where intensive particle collisions take place
due to the limitation to the cell size and time step which are,
respectively, less than the mean-free-path and particle collision
time. So, it still cannot be qualified as a computationally effi-
cient candidate for modeling flows in the continuum-transition
regime.

Being one of the most fundamental equations of the
nonequilibrium statistical physics, the Boltzmann equation is
capable of handling thermohydrodynamics for the full spec-
trum of flow regimes. However, the direct solution of the full
Boltzmann equation encounters serious difficulties due to the
inherent nonlinearity, multidimensionality, together with the
multiple integrodifferential nature of the collision term. There-
fore, developing approximate and simplified kinetic models
that can preserve the most relevant features of the Boltz-
mann equation is currently an important and essential attempt
[6–8,17–23]. Examples in this class are the discrete ordinate
method [6–8,24], the unified gas kinetic scheme (UGKS) and
the discrete UGKS [25–32], the regularized 13 (26) moment
approach [33–37], the quadrature method of moments [38–40],
the lattice Boltzmann kinetic method (LBKM) [41–59], or
discrete Boltzmann method/model (DBM) [60–67]. In this
paper, we focus only on the strategies for constructing higher-
order LBKM/DBM beyond NS hydrodynamics [68–85], that
can be roughly classified into the following five categories,
i.e., the Hermite expansion approach, the elaborate boundary
condition way, the effective local mean-free-path approach,
the coupled particle-continuum scheme, and the collisional
lattice Boltzmann approach. The Hermite expansion approach,
presented by Shan et al. [77–79], is a straightforward and
systematic framework for constructing higher-order LB ap-
proximations to the Boltzmann-BGK equation beyond the NS
level by using high-order Hermite expansions with appropriate
quadratures. In this way, the order of Hermite expansion
is responsible for obtaining correct kinetic moment rela-
tions. Hence, through incorporating higher-order terms in the
Hermite expansions, hydrodynamic models at various levels
can be obtained at any order of truncation of the Hermite
polynomials. To capture the velocity-slip and temperature-
jump phenomena in the slip regime, an alternative way is to
design elaborate boundary conditions [80–83], for instance,
the bounce back, specular reflection, diffuse-reflection, and
Maxwell-type boundary conditions, etc. In the third approach,
Zhang et al. [84,85] proposed a novel wall function to modify
the local mean-free-path and the relaxation time through which
to take into account the nonequilibrium characteristics in the
Knudsen layer. This simple treatment is effective for Knudsen
numbers up to 1.58. The fourth approach [75,76] consists of
two coupled elements: the DSMC and LBKM which work not
only for the weak nonequiulbrium regions but also the strong

nonequilibrium regions. The delicate combination actually acts
as an efficient multiscale strategy with respect to the full
DSMC. The last approach was presented by Green et al. [59],
the main difference between their method and the conventional
LBKM is the consideration of the detailed effects of collisional
interactions via the full collision operator of the Boltzmann
equation without any equilibrium based approximations. Such
a treatment makes the method particularly suitable for simulat-
ing highly nonequilibrium flows with relative large Knudsen
number, although it involves a greater computational load due
to the numerical solution of a system of coupled, nonlinear
ordinary differential equations when dealing with the fivefold
Boltzmann collision integral. Nevertheless, it should be noted
that all the above-mentioned attempts are suitable for isother-
mal or thermal case with sufficiently small Mach number.
Significant effort is still urgently required to develop robust
high-order LBKM/DBM for modeling highly nonequilibrium
flows with high Mach number and significant thermal effects.

To this end, we resort to DBM, which aims to probe
the trans- and supercritical fluid behaviors [60] or to study
simultaneously the HNE and TNE behaviors, and has
brought significant new physical insights into the systems
[54,55,61–67,86,87]. Concretely, in this paper, we present
a general framework for developing trans-scale DBMs for
high-speed compressible flows ranging from continuum to
transition regime through the construction of higher-order
discrete equilibrium distribution function (DEDF) that satisfies
additional higher-order kinetic moments and the design of
higher-order isotropic discrete-velocity model (DVM) with
smaller number of discrete velocities; as a model example,
we present a two-dimensional compressible DBM with 26
discrete velocities at the Burnett level; determine the rela-
tions between macroscopic dissipations and nonequilibrium
measures defined through DBM, and provide a more general
constitutive relations for viscous stress and heat flux that can
be used to improve macroscopic modeling.

II. HIGHER-ORDER DBM AND HIGHER-ORDER
CONSTITUTIVE RELATIONS

The key step of physical modeling of complex fluid system
is the coarse-graining process. The principle for such a sim-
plification process is that the physical quantities we choose to
measure the system should stay unchanged after simplification.
On the whole, the discrete Boltzmann trans-scale modeling
procedure includes the following four steps, as shown in Fig. 1:
(I) linearization of the collision term; (II) discretization of
the particle velocity space; (III) determination of the required
kinetic moments via Chapman-Enskog (CE) analysis; (IV)
acquisition of the DEDF and DVM according to the required
kinetic moments.

Next, we explain what we really imply and what we
conduct in each step. In step (I), it is well known that the
original collision term of the Boltzmann equation J (f,f ∗)
is too complex to be solved directly, where f and f ∗ are
distribution functions before and after collisions, respectively.
The simplest way to linearize it is to introduce a local
equilibrium distribution function f (0) and write the collision
term into the BGK-like form [88] J = − 1

τ
[f − f (0)], where
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FIG. 1. Flow chart for the discrete Boltzmann trans-scale model-
ing of compressible flows.

f (0) = ρ

2πRT
( 1

2πnRT
)
1/2

exp [− (v−u)2

2RT
− η2

2nRT
] is the

Maxwellian distribution function, where ρ, v, u, and T

are the local density, particle velocity, flow velocity, and
temperature, respectively. R is the gas constant, η is a free
parameter introduced to describe the n extra degrees of
freedom corresponding to molecular rotation and/or vibration.
Owing to its simplicity, the BGK approximation is the most
extensively used. Besides this, other models, including the
ellipsoidal statistical BGK model [89], Shakhov model [90],
Rykov model [91], Liu model [92], etc., have also been used to
simplify the full collision operator of the Boltzmann equation
and to tune the Prandtl number.

To perform simulation, we have to write the BGK-like
Boltzmann equation in a discrete form, i.e., the discrete
Boltzmann equation,

∂tfi + vi · ∇fi = − 1

τ

[
fi − f

(0)
i

]
, (1)

which results in step (II). The discretization of six-dimensional
phase-space, i.e., position-and-velocity space, is however pro-
hibitively expensive from the computational standpoint. To
find an effective way to discretize the particle velocity space,

we go back to consider what we really need and at which level
the hydrodynamic equations are recovered from the discrete
Boltzmann equation. In fact, in the DB modeling, we do not
expect to describe the system by using specific values of the
discrete distribution function fi , but rather the kinetic moments
of fi . The CE analysis informs us that the calculations of all
the kinetic moments of fi can finally resort to those of the
DEDF f

(0)
i . Therefore, we should ensure that these kinetic

moments of f (0), originally in integral form, can be calculated
in summation form during the modeling process.

To determine which level the hydrodynamic equations are
recovered and which kinetic moments of f

(0)
i are needed,

one can derive the hydrodynamic equations from the discrete
Boltzmann equation via CE multiscale expansion. Essen-
tially, the derivation of hydrodynamic equations from discrete
Boltzmann equation is sufficient but not necessary. Compared
with the traditional modeling schemes based on continuum
assumption, DBM is a kind of different scheme to model the
nonequilibrium flows. DBM modeling and simulation do not
need the hydrodynamic equations; one needs only to determine
the required kinetic moments via CE procedure, which is one
of the prominent advantages of DBM and the key point of
the manuscript. Then we show the derivation from discrete
Boltzmann equation to hydrodynamic equations, which serves
the purpose of showing why such a modeling scheme does
work.

It is found that, when f
(0)
i satisfies the following five kinetic

moments,

M0 =
∑

i

f
(0)
i = ρ, (2)

M1 =
∑

i

f
(0)
i vi = ρu, (3)

M2,0 =
∑

i

1

2
f

(0)
i

(
v2

i + η2
i

) = 1

2
ρ[(n + 2)RT + u2], (4)

M2 =
∑

i

f
(0)
i vivi = ρ(RT I + uu), (5)

M3,1 =
∑

i

1

2
f

(0)
i

(
v2

i + η2
i

)
vi = 1

2
ρu[(n + 4)RT +u2], (6)

taking moments of Eq. (1) with the collision invariant vector
1, vi , 1

2 (v2
i + η2

i ), gives rise to the following generalized set of
thermohydrodynamic equations,

∂tρ + ∇ · (ρu) = 0, (7)

∂t (ρu) + ∇ · (ρuu + P I + �∗
2) = 0, (8)

∂t (ρE) + ∇ · [(E + P )u + �∗
2 · u + �∗

3,1] = 0, (9)

where P = ρRT is the local hydrostatic pressure and E =
cvT + u2/2 the total energy with cv = (n + 2)R/2 the spe-
cific heat at constant volume. Here “satisfaction” means the
moments calculated from the summation of f

(0)
i should be the

same as those from the integration of f (0),∑
i

f
(0)
i �(vi ,ηi) = Mm,n =

∫∫
f (0)�(v,η)dvdη, (10)
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where �(vi ,ηi) = [1,vi ,
1
2 (v2

i +η2
i ),vivi ,

1
2 (v2

i +η2
i )vi]T . Note

that Eqs. (8) and (9) are unclosed. To close these equations at
various levels, we should deduce the explicit expressions for
the TNE measures �∗

2 and �∗
3,1. Physically, these two measures

reflect molecular individualism on top of organized collective
motion, which are conventionally labeled as nonorganized
moment fluxes (NOMF),

�∗
2 = M∗

2

(
fi − f

(0)
i

) =
∑

i

(
fi − f

(0)
i

)
v∗

i v∗
i , (11)

and nonorganized energy fluxes (NOEF),

�∗
3,1 = M∗

3,1

(
fi −f

(0)
i

) =
∑

i

(
fi −f

(0)
i

)v∗2
i + η2

i

2
v∗

i , (12)

respectively. M∗
2 and M∗

3,1 are kinetic central moments. Com-
pared with NS and Burnett equations, �∗

2 (�∗
3,1) corresponds

to the full viscous stress tensor σ (heat flux jq). Therefore, the
relation between TNE measure and macroscopic dissipation is
clarified. Of course, the derivations of �∗

2 and �∗
3,1 will induce

additional requirements on moments of f
(0)
i .

Step (III) demonstrates that to recover hydrodynamic equa-
tions at different levels, f (0)

i should satisfy different additional
kinetic moments. The requirements on kinetic moments of f

(0)
i

can be determined as follows. To perform the CE expansion
on both sides of Eq. (1), we first introduce expansions

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · · , (13)

∂t = ε∂t1 + ε2∂t2 + · · · , (14)

∇ = ε∇1, (15)

where εjf
(j )
i is the j th order departure from f

(0)
i in Knudsen

number ε, and εj ∂tj is j th order term in ε. Substituting
Eqs. (13)–(15) into Eq. (1) and equating terms that have the
same orders in ε gives the following formulations for f

(1)
i and

f
(2)
i :

εf
(1)
i = −τ

[
ε∂t1f

(0)
i + ε∇1 · (

f
(0)
i vi

)]
, (16)

and

ε2f
(2)
i = −τ

[
ε2∂t2f

(0)
i +ε∂t1

(
εf

(1)
i

) + ε∇1 · (
εf

(1)
i vi

)]
= −τε2∂t2f

(0)
i +τ 2ε2∂2

t1
f

(0)
i +τ 2ε2∂t1

[∇1 · (
f

(0)
i v

i

)]
+τ 2ε2∇1 · [

∂t1f
(0)
i vi + ∇1 · (

f
(0)
i vivi

)]
. (17)

It is clear that (i) εf
(1)
i and ε2f

(2)
i can be expressed as formula-

tions of f
(0)
i ; (ii) εf

(1)
i includes a polynomial of vi of one order

higher than that in f
(0)
i ; (iii) ε2f

(2)
i includes a polynomial of

vi of one order higher than that in εf
(1)
i but two orders higher

than that in f
(0)
i . Obviously, to achieve explicit expressions for

the first-order constitutive relations, �(1)∗
2 = ∑

i εf
(1)
i v∗

i v∗
i and

�
(1)∗
3,1 = ∑

i εf
(1)
i

v∗2
i +η2

i

2 v∗
i , the highest order nonequilibrium

kinetic moments that f
(0)
i should further satisfy are

M3 =
∑

i

f
(0)
i vivivi = ρ(RT � + uuu), (18)

M4,2 =
∑

i

f
(0)
i

v2
i + η2

i

2
vivi = ρ

[(
n + 4

2
RT + u2

2

)
RT I

+
(

n + 6

2
RT + u2

2

)
uu

]
, (19)

respectively. Similarly, to achieve explicit expressions for the
second-order constitutive relations, f (0)

i should satisfy M4 and
M5,3,

M4 =
∑

i

f
(0)
i vivivivi = ρ(R2T 2� + RT � + uuuu),

(20)

M5,3 =
∑

i

1

2
f

(0)
i

(
v2

i + η2
i

)
vivivi

= ρ

[(
n + 8

2
RT + u2

2

)
uuu

+
(

n + 6

2
RT + u2

2

)
RT �

]
, (21)

with � = (uαδβγ + uβδαγ + uγ δαβ )̂eα̂eβ êγ , � = (δαβδγλ +
δαγ δβλ + δαλδβγ )̂eα̂eβ êγ êλ, � = (uαuβδγλ + uαuγ δβλ +
uαuλδβγ + uβuγ δαλ + uβuλδαγ + uγ uλδαβ )̂eα̂eβ êγ êλ, and
(̂eα,̂eβ ,̂eγ ,̂eλ) denoting unit vectors along the α, β, γ , and λ

axes, respectively, of a fixed coordinate system.
By using the above needed kinetic moments and after some

tedious but straightforward algebraic manipulation, we acquire
relations between thermodynamic forces and fluxes,

�
∗(1)
2 = −μ

[
∇u + (∇u)T − 2

n + 2
I∇ · u

]
= −σ NS, (22)

�
∗(1)
3,1 = −κ∇T = −jq,NS, (23)

where the first-order NOMF and NOEF are just the negative
viscous stress tensor and heat flux at the NS level, with μ =
Pτ , κ = cpP τ are viscosity coefficient and heat conductivity,
respectively. Here cp = (n + 4)R/2 is the specific heat at
constant pressure. Expressions for the second-order constitu-
tive relations �

∗(2)
2 = ∑

i ε
2f

(2)
i v∗

i v∗
i = −(σ Burnett − σ NS) and

�
∗(2)
3,1 = ∑

i ε
2f

(2)
i

v∗2
i +η2

i

2 v∗
i = −(jq, Burmett − jq,NS), which are

displayed in the Appendix. So far, the higher-order constitutive
relations for viscous stress and heat transfer at the Burnett
level have been given by �∗

2 = �
∗(1)
2 + �

∗(2)
2 and �∗

3,1 =
�

∗(1)
3,1 + �

∗(2)
3,1 , which are expected to noticeably improve the

macroscopic modeling. Counterparts at super-Burnett levels
can be deduced in a similar way.

Finally, in step (IV), we obtain the analytical expression
for DEDF via inversely solving the required kinetic moments.
Details are as follows. In the two-dimensional case, the above
moments M0, M1, M2,0, M2, M3,1, M3, M4,2, M4, and M5,3

have 25 components. For physical symmetry and numerical
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FIG. 2. Schematic of the D2V26 discrete-velocity model, where
v25(=−v26) is a flexible vector, adjusted to guarantee the existence
of C−1.

stability, we add the following one:

M4,0 =
∑

i

1

2
f

(0)
i

(
v2

i + η2
i

)2

= ρ

[
3n2+4n+8

2
R2T 2+(n+4)RT u2+ u4

2

]
. (24)

These moments can be rewritten in a matrix form,

C · f (0) = M, (25)

where f (0) = (f (0)
1 ,f

(0)
2 , . . . ,f

(0)
26 )T , M= (M1,M2, . . . ,M26)T =

(M0,M1x,M1y, . . . ,M4,0)T is the set of moments of f
(0)
i . C =

(c1,c2, . . . ,c26) is a 26×26 matrix bridging the DEDF and the
kinetic moments with ci = (1,vix,viy, . . . ,

1
2 (v2

i + η2
i )2)T . As

a result, f (0) can be calculated in the following way [53],

f (0) = C−1 · M, (26)

where C−1 is the inverse of matrix C. A two-dimensional DVM
with 26 discrete velocities, schematically drawn in Fig. 2, is
appropriately designed to discretize the velocity space and to
ensure the existence of C−1,

(vix,viy) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cyc : c(±1,0) for 1 � i � 4

c(±1, ± 1) for 5 � i � 8

cyc : 2c(±1,0) for 9 � i � 12

2c(±1, ± 1) for 13 � i � 16

cyc : 3c(±1,0) for 17 � i � 20

3c(±1, ± 1) for 21 � i � 24

c(3,1), − c(3,1) for 25 � i � 26

, (27)

where “cyc” indicates the cyclic permutation. For 1 � i � 4,
ηi = iη0; for 5 � i � 8, ηi = (i − 4)η0; otherwise, ηi = 0.
The choosing of v25 is flexible as long as v25 = −v26, where
c and η0 are two free parameters, adjusted to guarantee the
existence of C−1 and to optimize the properties of the model.
The specific-heat ratio can be defined as γ =cp/cv = (n+4)/
(n + 2).

After the accomplishment of physical modeling, we solve
Eq. (1) to update fi via finite difference schemes. Physi-
cal quantities, such as density, velocity, temperature, pres-
sure, viscous stress, and heat flux are calculated from ki-
netic moments of fi and equation of state: ρ = ∑

i fi , u =∑
i fivi/ρ, T = 1

(n+2)R [
∑

i fi(v2
i + η2

i )/ρ − u2], P = ρRT ,

�∗
2 = ∑

i(fi − f
(0)
i )v∗

i v∗
i and �∗

3,1 = ∑
i(fi − f

(0)
i ) v∗2

i +η2
i

2 v∗
i .

It is noteworthy that: (a) The approach for calculating DEDF
is general, straightforward, and independent of the Gaussian
quadrature formula. (b) The number of discrete velocities used
here can be as small as that of the independent kinetic moment
relations. Compared with other kinetic methods, DBM adapts
the minimal set of discrete velocities and consequently it enjoys
a high computational efficiency. (c) The model casts off the
standard “propagation + collision” mode and frees from the
combination of spatial and temporal discretizations. The sets of
particle velocities are highly flexible in magnitude and number,
which substantially improves the numerical stability, and con-
sequently, is much more convenient to meet the requirements
for simulating compressible flows. (d) To access the behavior
of the system farther away from equilibrium, one needs to add
more kinetic moment relations into �(vi ,ηi). Then �(vi ,ηi)
owns more elements and f

(0)
i becomes more complicated,

and more discrete velocities are needed. Compared with the
corresponding hydrodynamic equations whose complexity
will sharply increase with increasing the degree of TNE effects,
the modeling process of DBM is only mildly affected. This is
a major benefit of the discrete velocity representation versus
the hierarchical Hermite expansion, which generates highly
nonlinear tensors at each increasing order. (e) Being able to re-
cover the NS (Burnett) model is only one of the functions of the
DBM. The DBM presents a kind of new approach and a set of
convenient and efficient tools to describe, measure, and analyze
the nonequilibrium behaviors, by calculating the difference
between kinetic moments of discrete distribution functions
and DEDF, �m = Mm(f − f (0)) and �∗

m = M∗
m(f − f (0)).

From this point of view, a DBM is roughly equivalent to a
hydrodynamic model supplemented by a coarse grained model
of the TNE effects. (f) At last, we stress that, via the DBM, it is
straightforward to perform multiscale simulations over a wide
range of Knudsen number by switching the effective parameter
controlling the TNE extent. This is because the multiscale
modeling of DBM is under the same framework without
message passing between models at different scales. These
outstanding advantages make DBM a particularly appealing
methodology for investigating nonequilibrium flows.

Meanwhile, we point out that owing to the utilization of a
single relaxation time in the collision term, the Prandtl number
becomes fixed at a specific value Pr = 1. To overcome this
limitation, one convenient way is to add an external forcing
term Ii into the right-hand side of Eq. (1) to modify the
BGK collision operator [93], Ii = [ART + B(vi − u)2]f (0)

i
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with A = −2B and B = 1
2ρT 2 ∇ · [ 4+n

2 ρT q∇T ]. As a result,
the heat conductivity has been changed to be κ = cpP (τ + q),
and the Prandtl number Pr = τ

τ+q
. Besides its conciseness,

more importantly, this approach does not give rise to additional
kinetic moments requirement.

III. NUMERICAL SIMULATIONS AND ANALYSIS

In this section, several typical benchmarks, ranging from
subsonic to hypersonic, are conducted to validate the model.
Afterwards, we investigate carefully the performances of the
new model for describing compressible flows over a wide
range of Knudsen numbers. To improve the numerical stability,
efficiency, and to accurately capture the complex character-
istic structures, the third-order implicit-explicit Runge-Kutta
finite difference scheme [94] is adopted to discretize the
temporal derivative; the second-order nonoscillatory non-free-
parameter and dissipative finite difference (FD) scheme is
used to discretize the spatial derivatives for the second and
third Riemann problems; for other problems considered, the
fifth-order weighted essentially nonoscillatory FD scheme is
applied to calculate the spatial derivatives. The adoption of
the FD scheme makes the boundary condition (BC) easily
incorporated into the model, which is exactly the same as that
implemented in the conventional computational fluid dynamics
(CFD) methods. The discrete Boltzmann equation, particle
velocity, and hydrodynamic quantities have been nondimen-
sionalized by suitable reference variables [95]. Among which,
three independent ones are the characteristic flow length scale
L0, the reference density ρ0, and the reference temperature T0.
The other characteristic variables are defined as u0 = √

RT0,
t0 = L0/u0, and P0 = ρ0RT 0. In our simulations, we assume
that the fluid is air under normal conditions, then the scales
used to specify the magnitudes of the density, temperature,
fluid velocity components are ρ0 = 1.165 kg/m3, T0 = 303 K,
and u0 = √

RT0 ≈ 294.892 m/s with R = 287 J/(kg K),
respectively.

A. Riemann problems

1. Sod shock tube

The first test case is the standard Sod shock tube problem
with the following initial conditions,

(ρ,T ,ux,uy)|L = (1.0,1.0,0.0,0.0),

(ρ,T ,ux,uy)|R = (0.125,0.8,0.0,0.0), (28)

where subscripts “L” and “R” stand for macroscopic variables
at the left and right sides of the discontinuity. It is a classical
test in the study of compressible flows that consists of (i) a
shock wave propagating into the low pressure region, (ii) a
rarefaction wave expanding into the high pressure part, and (iii)
a contact discontinuity moving rightward. The periodic BC is
imposed in the y direction. In the x direction, we apply the
supersonic inflow BC [96,97], i.e., fi,−2,t = fi,−1,t = fi,0,t =
f

(0)
i,1,t=0, where −2, −1, and 0 are indexes of three ghost nodes

out of the left boundary. Such a BC means that the system at
the boundary stays as their corresponding equilibrium state,
or in other words, the macroscopic quantities on the boundary

FIG. 3. Comparisons between DBM simulations and the exact
solutions for the Sod shock tube, where t = 0.1 and γ = 1.4.
(a) Density, (b) pressure, (c) velocity, and (d) temperature.

nodes keep at their initial values (ρ,u,T )−2,t = (ρ,u,T )−1,t =
(ρ,u,T )0,t = (ρ,u,T )1,t=0. On the right side, we can operate in
a similar way. BC implemented on the distribution function and
macroscopic quantities may be referred to as the mesoscopic
BC and the macroscopic BC, respectively, which are consistent
with each other. Moreover, when the external environment
is out-of-equilibrium, the nonequilibrium part f

(neq)
i,I can be

obtained from the inner lattice nodes via the extrapolation
method, which is a merit of DBM over the traditional CFD.
BCs for the following test cases are consistent with what we
imposed above. Parameters are set to be �x = �y = 10−3,
�t = 10−4, τ = 10−5, c = 1, η0 = 1.5, and γ = 1.4 . The
lattice points are 2000×4. Figure 3 exhibits the computed
density, pressure, velocity, and temperature profiles at t = 0.1,
where circles indicate results from DBM simulations and
solid lines from Riemann solutions. The two sets of results
coincide with each other. Moreover, the shock wave, expanding
wave and contact discontinuity are well captured with severely
curtailed numerical dissipation and effectively refrained un-
physical oscillations.

2. Modified Lax shock tube

To further highlight robustness of the model, we construct
a modified Lax shock tube with larger velocity difference,

(ρ,T ,ux,uy)|L = (0.445,7.928,0.698,0.0),

(ρ,T ,ux,uy)|R = (0.50,1.142, − 0.698,0.0). (29)

Comparisons between simulation results and the exact solu-
tions at t = 0.07 are plotted in Fig. 4, where c = 1.7, η0 = 6.0,
and γ = 2; other parameters are unchanged. The two sets
of results agree excellently with each other. Additionally,
the shock wave and contact discontinuity are captured sta-
bly and no overshoots nor spurious oscillations appear. En-
largement of the shock wave parts shows that it spreads
over three to four grid cells, demonstrating that the present
model has a high resolving power in capturing such complex
structure.

053312-6



DISCRETE BOLTZMANN TRANS-SCALE MODELING OF … PHYSICAL REVIEW E 97, 053312 (2018)

FIG. 4. Comparisons between DBM simulations and the exact
solutions for the modified Lax shock tube, where t = 0.07 and γ = 2.
(a) Density, (b) pressure, (c) velocity, and (d) temperature.

3. Collision of two strong shocks

To further examine the robustness, precision, and adapt-
ability of the model for compressible flow with strong shock
strength, we consider the collision of two strong shocks
described by

(ρ,T ,ux,uy)|L = (5.99924,76.8254,19.5975,0.0),

(ρ,T ,ux,uy)|R = (5.99242,7.69222, − 6.19633,0.0). (30)

With respect to the former two tests, this is generally regarded
as a more challenging one. Analytical solution contains a con-
tact discontinuity moving rightward, a right-shock spreading
to the right side, and a left-shock propagating rightward very
slowly creating additional difficulties to the numerical scheme.
Figure 5 displays comparisons between DBM results and
the corresponding exact solutions, where t = 0.05, γ = 1.67.
Parameters used here are �x = �y = 4×10−3, �t = 10−4,
τ = 5×10−5, c = 9, and η0 = 30. One can see that our results
are in satisfying agreement with the theoretical solutions with

FIG. 5. Comparisons between DBM simulations and the exact
solutions for the collision of two strong shocks, where t = 0.05 and
γ = 1.67. (a) Density, (b) pressure, (c) velocity, and (d) temperature.

very correct propagation of the shocks. Successful simulation
of this aggressive test manifests that the proposed model is
robust, accurate, and applicable to compressible flows with
strong shock wave interaction.

B. Performance of the DBM for describing
higher-order TNE effects

To evaluate whether the model can describe TNE effects at
various levels and whether the model can reproduce accurate
viscous stress and heat flux for compressible flows over a wide
range of Knudsen numbers and Mach numbers, a series of
simulations for head-on collision between two shocks have
been conducted. The initial configurations are

ρ(x,y)= ρL+ρR

2
− ρL−ρR

2
tanh

(
x−Nx�x/2

Lρ

)
, (31)

ux(x,y) = −u0 tanh

(
x − Nx�x/2

Lu

)
, (32)

where Lρ and Lu are the widths of density and velocity
transition layers, respectively. ρL (ρR) is the density away from
the interface of the left (right) fluid. The whole computational
domain is a rectangle with length 1.5 and height 0.006, divided
into 1000×4 uniform meshes.

1. Viscous stress

According to the analytical expressions of TNE manifes-
tations, two factors control their strengths and structures, the
relaxation time τ and the gradient force induced by gradients
of macroscopic quantities. In the first three sets of simulations,
we fix variables as ρL = 2ρR = 2, PL = PR = 2, uy = 0,
Lρ = Lu = 20, then adjust τ and u0, resulting in three types
of viscous stresses. Figure 6 depicts the details at t = 0.025,
where two DBMs are used: the D2V16 model at the NS
level [left column, satisfies the former 7 kinetic moments,
Eqs. (2)–(6) and Eqs. (18) and (19)], and the D2V26 model
at the Burnett level [right column, satisfies all needed kinetic
moments, Eqs. (2)–(6) and Eqs. (18)–(21)]. For comparisons,
the analytical solutions with the first and second order accura-
cies calculated from Eqs. (22), (23), (A1), and (A4) are plotted
in each panel by dashed and solid lines, respectively.

Figure 6 qualitatively reveals the common features during
the procedure deviating from thermodynamic equilibrium: (i)
TNE effects are mainly around the contact interface where
the gradients of macroscopic quantities are pronounced and
exactly attain their local maxima (minima) at the points of
the maxima (∇ρ,∇T ,∇ux)max, for example, at x = 477 and
522, while they tend to vanish where the TNE driving force
is nearly zero. Behaviors of TNE can be well interpreted by
our theoretical formulations. (ii) For all cases, the first-order
NOMF �

∗(1)
2xx , linearly proportional to τ , is larger than the

second-order NOMF �
∗(2)
2xx , proportional to τ 2, numerically

manifesting that �
∗(1)
2xx is the leading part of �∗

2xx and the
appropriateness of NS model as a coarse-grained model for
compressible flows.

Apart from similarities, the following distinctive differences
between various cases and models deserve more attention. Dif-
ferent relaxation times and shock intensities generate different
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FIG. 6. Viscous stress calculated from D2V16 (left column) and D2V26 (right column) DB simulations (scatters) for the weak (I), moderate
(II), and strong (III) cases, where dashed and solid lines indicate analytical solutions with first- and second-order accuracies, respectively.

TNE amplitudes. For case I (first row), due to lack of velocity
gradient (u = 0), at the beginning, viscous stress is only
induced by gradients of density and temperature. Therefore,
�

∗(2)
2xx > �

∗(1)
2xx � 0. Afterwards, the density and temperature

gradients stimulate velocity gradients, then �
∗(1)
2xx becomes

gradually larger than �
∗(2)
2xx . In both cases, smaller τ and the

initially static fluid lead to weaker TNE effects. Neverthe-
less, even for such a very tiny TNE amplitude, remarkable
discrepancies appear between the D2V16 simulations and
the theoretical predictions, regardless of the first-order or the
second-order one [see Fig. 6, panel I(a)]. On the contrary,

the D2V26 result agrees well with the theoretical solution at
the second-order �

∗(1)
2xx + �

∗(2)
2xx [see Fig. 6, panel I(b)]. The

D2V16 model is accurate at the NS level, without considering
the second-order TNE effects, and therefore it is not suitable
for simulating cases when �

∗(2)
2xx is as important as �

∗(1)
2xx . For

case II (second row), we increase the intensity of TNE through
increasing the collision velocity. As a result, �∗

2xx is 100 times
larger than that in case I, and �

∗(2)
2xx is negligible compared

with �
∗(1)
2xx , demonstrating that the velocity gradient acts as

the dominating factor for TNE intensity. Excellent agreements
between DBM simulations and theoretical solutions are found
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FIG. 7. Hydrodynamic quantities calculated from the D2V26
model and the corresponding differences between the D2V26 and
D2V16 models at t = 0.025 for case III. (a) Density, (b) pressure,
(c) velocity, and (d) temperature.

for both models [see Fig. 6, panels II(a) and II(b)]. Further
increase in relaxation time and collision velocity give rise
to more prominent TNE phenomena and more remarkable
deviation from the Maxwellian distribution, as shown in case
III (third row). We observe that, larger velocity not only
induces a huge first-order TNE �

∗(1)
2xx , but also prominently

triggers the gradients in density and temperature (see Fig. 7
for more details), and consequently, results in considerable
second-order TNE �

∗(2)
2xx . The D2V16 model fails to tame such

strong TNE behaviors, while the D2V26 model succeeds [see
Fig. 6, panels III(a) and III(b)].

Usually, the local Knudsen number, defined as the ratio
of molecular mean-free-path to a local characteristic length
scale Kn = λ/L, is one of the main parameters employed to
describe the level of nonequilibrium, where λ = csτ , cs is
the local speed of sound, L can be defined in terms of the
macroscopic gradients, e.g., L = φ/|∇φ|. The maxima Knmax

for cases I, II, and III are 0.0018, 0.003, and 0.15, respectively,
all beyond the application scope of the NS model. Actually,
the D2V26 model has been extended into the early transition

regime. It is also interesting to note that the D2V16 model
is more reliable and more powerful to study case II than
case I. Thus, from this point of view, the Knudsen number
is not sufficient enough to describe the TNE extent for cases
with small Mach numbers. To complement this deficiency, we
introduce another dimensionless parameter to characterize the
relative TNE intensity, RTNE = |�∗(2)

2 /�
∗(1)
2 |. For the three

cases, RTNE = 0.69, 0.01, 0.42, respectively. Consequently,
higher-order DBMs are needed for cases I and III, even though
the TNE intensity is weak in case I. It is convenient to general-
ize the definition as RTNE = |�∗(N+1)

m,n /�∗(N)
m,n |, where �∗(N+1)

m,n

(�∗(N)
m,n ) is the (N + 1)th (N th) order TNE. Meanwhile, we

can define the TNE discrepancy between DBM simulation and
the corresponding theoretical analysis, � = �DBM − �Exact.
These two measures provide as effective physical criteria to
assess whether the current DBM is appropriate or not. In real
simulations, only when the RTNE and/or � is small enough, the
current DBM is suitable for describing the current problem;
otherwise, higher-order TNE effects should be taken into
account in the modeling and higher-order DBM should be
constructed.

We also stress that the exact calculation of viscous stress and
heat flux are of great importance for simulating high-speed,
nonequilibrium compressible flows, because the transport and
dissipation of kinetic energy and momentum resulting in
complex mesoscopic structures (such as shock wave interface,
material interface, Mach stem, etc.) depend strongly on them.
More importantly, accurate viscous stress and heat flux are
required to obtain accurate hydrodynamic quantities, as
demonstrated by Fig. 7, where φ16 − φ26 indicates hydrody-
namic quantities differences between the D2V16 and D2V26
models for case III. It is clear that the differences, up to 10%
of the exact solutions, are around the highly nonequilibrium
regimes. The inaccuracies of the D2V16 model are due to
the lack of some necessary kinetic moments required for
recovering f (2).

To further examine the reliability of D2V26 model in de-
scribing much stronger TNE effects, we increase τ to 6×10−3

and u0 = 1.7 . Shown in Fig. 8 are viscous stress [Fig. 8(a)]
for the very accentuated case and the local Knudsen numbers

FIG. 8. Viscous stress for the very strong case (a) and the local Knudsen numbers calculated from pressure, density, and temperature (b).
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FIG. 9. Effects of shock intensity (a) and interface width (b) on TNE effects.

[Fig. 8(b)] calculated from pressure, density, and temperature,
respectively. Good agreement between the DBM simulation
and the second-order theoretical solution can be found. The
maximum Knudsen number calculated from density exceeds
0.5, and the one calculated from pressure is as high as 0.8.
When the strength of TNE further increases, the presented
model loses its effectiveness and effects of f (3) should be taken
into account.

Effects of shock intensity and interface width on TNE man-
ifestations are investigated similarly. As plotted in Fig. 9(a),
the maximum nonequilibrium stress increases with both τ and
u0. The relationship between �∗

2xx−max and τ can be further
divided into two cases: linear and nonlinear. When u0 is less
than a critical value uc, say 0.7, �∗

2xx− max increases linearly
with τ , �∗

2xx− max = A1 + B1τ ; when u0 > uc, a nonlinear
fitting is more approximate, �∗

2xx−max = A2 + B2τ + C2τ
2,

demonstrating the necessity of a higher-order constitutive
relations for cases far-away-from-equilibrium. Conversely,
the interface width effects decrease the maximum of �∗

2xx

approximately in the following way, �∗
2xx− max = A3 + B3

L1/2 ,
with A3 = −0.81 and B3 = 8.47, as shown in Fig. 9(b). This
conclusion is consistent with the effects of surface tension that
controls the width of hydrodynamic quantities in multiphase
flows [61]. Physically, the interface width lowers the gradient
force and suppresses the TNE intensity.

2. Heat flux

The viability of the D2V26 model for describing higher-
order heat flux is verified in a similar way. Consistently, three
cases are considered, with the following initial variables, case I:
TL = TR = 1, PL = 1, PR=2, τ = 10−3; case II: TL = 2TR =
1.2, PL = PR = 1.2, τ = 5×10−4; case III: TL = 2TR = 1.2,
PL = PR = 1.2, τ = 2×10−3. Collision velocity for all cases
is fixed to be u0 = 0.5. Figure 10 presents the details, where
t = 10−3 in case II and t = 9×10−3 in the other two cases.
For the first case, temperature is initially homogeneous, thus
�

∗(1)
3,1x approaches nearly zero at the beginning stage. The

second-order heat flux �
∗(2)
3,1x is motivated exclusively by

a pressure difference. After that, gradients appear in each
quantity resulting in the emergence of the first-order heat
flux. At the moment shown in case I, the relative intensity
RTNE = �

∗(2)
3,1x/�

∗(1)
3,1x is about 0.98. As excepted, the D2V16

model fails to predict this situation although with weak TNE
intensity [see Fig. 10, panel I(a)]. Through enlarging gradient
in temperature in case II, �∗

3,1x is overwhelmed by �
∗(1)
3,1x , as

reported in the second row of Fig. 6. For this case, the two
models recover favorable results [see panels Fig. 10, panels
II(a) and II(b)]. The deficiency of the D2V16 model and the
sufficiency of the D2V26 model for portraying TNE with
higher amplitude, has been witnessed by case III [see Fig. 10,
panels III(a) and III(b)], again.

IV. CONCLUSIONS AND REMARKS

A framework for constructing the trans-scale DBM that
aims to investigate high-speed compressible flows ranging
from continuum to transition regime is presented. In this
framework, the specific forms of the extremely complex
Burnett, even super-Burnett, equations are not needed. To
access higher-order nonequilibrium effects, the extension of
the framework and the construction of corresponding DBM
are more convenient and straightforward than the extended
hydrodynamic equations; the complexity of the DBM increases
only mildly, as opposed to the sharp rise of complexity of
the thermohydrodynamic equations. Through switching the
effective parameter that controls the TNE extent, one can
perform multiscale simulations over a wide range of Knudsen
number under the same framework without message passing
between models at different scales. As a model example, a
two-dimensional DBM with 26 discrete velocities at Burnett
level is formulated, verified, and validated. As by-products,
the linear and nonlinear constitutive relations for the hydro-
dynamic modeling are derived, which contribute to improve
the macroscopic modeling. To better characterize the nonequi-
librium flows and understand the conditions under which the
DBMs at various levels must be used, besides some higher-
order kinetic moments of (f − f (0)) and the Knudsen number,
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FIG. 10. Heat flux calculated from D2V16 (left column) and D2V26 (right column) DBM simulation (scatters) for the weak (I), moderate
(II), and strong (III) cases, where dashed and solid lines indicate analytical solutions with first- and second-order accuracies, respectively.

two additional criteria, i.e., (i) the relative TNE strength,
describing the relative strength of the (N + 1)th order TNE
to the N th order one, and (ii) the TNE discrepancy between
DBM simulation and corresponding theoretical analysis, are
defined. Whether or not the higher-order TNE effects should
be taken into account in the modeling process and which level
of DBM should be utilized depends on the relative strength of
the higher-order TNE with respect to the current order and/or
the TNE discrepancy, instead of the value of Knudsen number
itself.
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APPENDIX: FORMULATIONS OF THE SECOND-ORDER
VISCOUS STRESS AND HEAT FLUX

�
∗(2)
2xx = 2n−2

2 τ 2

{
ρRT [n−2n1(∂xux)2 + n1n2(∂yux)2

− 4n ∂xux∂yuy − n2(∂xuy)2

− n−2 (∂yuy)2] + ρR2[n1n2(∂xT )2 − n2(∂yT )2]

−R2T 2

[
n1n2

∂2

∂x2
ρ − n2

∂2

∂y2
ρ

]

+ R2T 2

ρ
[n1n2(∂xρ)2 − n2(∂yρ)2]

}
, (A1)

�
∗(2)
2xy = 2τ 2

[
n−1

2 ρT (n∂xux∂xuy + n∂yux∂yuy

− 2∂xuy∂yuy − 2∂xux∂yux) + ρR2∂xT ∂yT

−R2T 2 ∂2

∂x∂y
ρ + R2T 2

ρ
∂xρ∂yρ

]
, (A2)

�
∗(2)
2yy = −2n−2

2 τ 2

{
ρRT [n−2(∂xux)2 + n2(∂yux)2

+ 4n ∂xux∂yuy − n1n2(∂xuy)2

− n−2n1 (∂yuy)2] + ρR2[n2(∂xT )2 − n1n2(∂yT )2]

−R2T 2

[
n2

∂2

∂x2
ρ − n1n2

∂2

∂y2
ρ

]

+ R2T 2

ρ
[n2(∂xρ)2 − n1n2(∂yρ)2]

}
, (A3)

�
∗(2)
3,1x = n−1

2 τ 2

{
ρR2T 2

[
n−2

∂2

∂x2
ux +n2

∂2

∂y2
ux −4

∂2

∂x∂y
uy

]

+ρR2T
[(

n2
2 + 4n

)
∂xux∂xT + n2n6∂yux∂yT

−2n6∂yuy∂xT + 2n2∂xuy∂yT
]}

, (A4)

�
∗(2)
3,1y = n−1

2 τ 2

{
ρR2T 2

[
n2

∂2

∂x2
uy +n−2

∂2

∂y2
uy −4

∂2

∂x∂y
ux

]

+ ρR2T
[(

n2
2 + 4n

)
∂yuy∂yT + n2n6∂xuy∂xT

−2n6∂xux∂yT + 2n2∂yux∂xT
]}

, (A5)

where na = n + a.
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