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The need of small integration time steps (∼1 fs) in conventional molecular dynamics simulations is an important
issue that inhibits the study of physical, chemical, and biological systems in real timescales. Additionally, to
simulate those systems in contact with a thermal bath, thermostating techniques are usually applied. In this work,
we generalize the Green’s function molecular dynamics technique to allow simulations within the canonical
ensemble. By applying this technique to one-dimensional systems, we were able to correctly describe important
thermodynamic properties such as the temperature fluctuations, the temperature distribution, and the velocity
autocorrelation function. We show that the proposed technique also allows the use of time steps one order of
magnitude larger than those typically used in conventional molecular dynamics simulations. We expect that this
technique can be used in long-timescale molecular dynamics simulations.

DOI: 10.1103/PhysRevE.97.053310

I. INTRODUCTION

Molecular dynamics (MD) simulations represent an impor-
tant tool to study chemical, biological, and physical systems. In
classical MD, Newton’s equations of motion are numerically
integrated for a system of interacting particles. To accurately
describe the system evolution, typically small time steps
(∼1 fs) on MD integration methods are necessary. Such small
time steps pose a problem in simulating phenomena that occur
at timescales of interest, which range from ns to ms, because
the required number of integration steps is large (∼1012),
which may lead to a significant accumulation of numerical
errors. Different strategies have been proposed to overcome
the present timescale problem, each with limited success (for
a review and other references, see Refs. [1–3]). These strategies
are aimed at improving the temporal convergence of MD by
using multiple time steps, including higher-order terms in time,
computationally efficient integration algorithms, and/or by
making simplifying assumptions applicable to specific systems
being modeled.

A different scheme based upon the use of causal Green’s
functions has been developed by Tewary [4] to integrate
the equations of motions in the microcanonical ensemble.
In this scheme, named Green’s function molecular dynamics
(GFMD), the potential energy is expanded up to quadratic
terms in atomistic displacements, in contrast to the conven-
tional MD in which only the linear terms are retained. The
advantage of the GFMD is that the equations of motions can
still be solved exactly for arbitrary time steps. The GFMD has
been shown to bridge the timescales from fs to μs in problems
involving pulse propagation in one-dimensional lattices and
ripples in graphene. However, despite the computational effi-
ciency of the GFMD, it has not been applied to real problems.
This may be because GFMD has no provision for including a
thermostat. For practical MD applications, simulations within
the canonical ensemble are necessary in order to model real
systems that interact with thermal baths. This is precisely the
need that we address in this paper.

In this work, we present a generalized formalism of the
GFMD method based upon Langevin’s equation. We illustrate
our generalized GFMD method by applying it to simulate
systems within the canonical ensemble. We show that our
method can correctly describe their main thermodynamic prop-
erties with results comparable to established thermostating
techniques. This capability of the GFMD, combined with its
excellent temporal convergence, should make it very suitable
for realistic simulations of discrete molecular systems.

Langevin’s equation for Brownian motion [5] is used in
the formulation of Langevin’s thermostat [6]. In this ther-
mostating technique, the degrees of freedom of the bath
are omitted and a set of stochastic differential equations
are used. Many integration algorithms have been proposed
[7–14] to describe stochastic differential equations [15], and
they have been compared among different aspects [16–21].
These algorithms include schemes from van Gunsteren and
Berendsen [7], Brünger, Brooks, and Karplus [8], Skeel and
Izaguirre (“Langevin impulse”) [9], Mannella [10,11], and
Euler, Heun, and Milstein [12,13]. Recently, Grønbech-Jensen
and Farago proposed a Verlet-type algorithm that produces
correct statistical-mechanics properties for large ensembles by
exactly implementing the fluctuation-dissipation relationship
in discrete time [14]. This method has been tested for simple
[14] and complex [22–24] systems, and it has been incorpo-
rated in popular molecular dynamics simulation suites [23,24].

II. FORMALISM

Consider a system with N interacting particles of mass
mi (i = 1, . . . ,N ) in a thermal bath of temperature T . The
instantaneous Newtonian force on the particle i is given by

mi

∂2ui,α(t)

∂t2
= − ∂V

∂ui,α

− mi

τi

∂ui,α(t)

∂t
+ ηi,α(t), (1)

where V is the potential energy, ui,α is the α Cartesian
component of the displacement of the particle i with respect
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to its equilibrium position, and τi is the characteristic viscous
damping time for the atom i (with friction coefficient ξi ≡
mi/τi). The α component of the random force on the particle
i, ηi,α(t), is described by a white noise and through the
fluctuation-dissipation theorem

〈ηiα(t)〉η = 0,

〈ηiα(t)ηjβ(t ′)〉η = 2ξikbT δij δαβδ(t − t ′), (2)

where kb is Boltzmann’s constant and 〈· · · 〉η is the average
over many realizations of the random function η(t). The
nonanalytic behavior of η(t) imposes difficulties to invent
methods that are accurate for higher orders of the time step
because additional Taylor terms, commonly used in integration
methods for deterministic differential equations, produce no
significant accuracy improvement [14–16].

We expand V as a Taylor series in atomic displacements as
given below in the symbolic matrix notation:

V = V0 − Fu + 1
2uT φu + 
V (u). (3)

The constant term V0 is taken to be zero without loss of
generality. The first Taylor coefficient gives the force term
Fi,α(t), the quadratic term is the force-constant term φui,α,uj,β

=
∂2V (u0i )
∂ui,α∂uj,β

, u0i,α is the displacement at t = 0, and 
V (u) includes

O(u3) and higher-order nonlinear terms. In the GFMD method,
we define an effective force term that includes the first force
term and the nonlinear terms O(u3) as follows:

Feff i,α(t) ≡ Fi,α(t) + 
Fi,α(t), (4)

where


Fi,α(t) = −∂
V (u0i)

∂ui,α

. (5)

The first-order term F in Eq. (3) is the first term in Taylor’s
expansion of the crystal potential energy in the Born–von
Karman model. Physically, it represents the negative of the
force on the atom i. This term is zero for a lattice in equilibrium,
that is, at the potential minimum. If the lattice at equilibrium
is subjected to a perturbation, such as by introducing a defect
or by displacing an atom by applying mechanical or thermal
stress, two things happen—a force is induced on each atom,
and the second- and higher-order terms (the force constants)
change. The effect of defects has been discussed in detail in
Refs. [25,26]. In our model, based upon the Born–von Karman
model, the inverse of the second term is the Green’s function,
which gives the response of the lattice. The force term and the
higher-order terms give the lattice distortion or the strains in the
perturbed lattice. If the force term is zero, there is no lattice
distortion. This ideal case corresponds to an infinite perfect
lattice, which is in stable equilibrium in the absence of external
forces. The objective is to calculate the lattice distortion caused
by the induced forces in the perturbed lattice.

The force term, which we treat as an effective force,
includes linear and all nonlinear terms in the potential except
the quadratic term. The effective force consists of the linear
term Fi,α and 
Fi,α , which formally contains the remaining
nonlinear terms. In a pure harmonic model, 
Fi,α is zero and F

is constant. In the general anharmonic case, 
Fi,α is a function
of u and therefore t . The quadratic term is the force constant
matrix, and its inverse gives the Green’s function.

The effective force, which contains linear as well as non-
linear terms, is treated by iteration [4]. At each iteration, we
calculate the effective force in terms of the displacements
obtained in the previous iteration. This force is Fi,α + 
Fi,α .
Effectively, it amounts to calculating 
Fi,α using the displace-
ments obtained in the previous iteration and absorbing into
Feff i,α . The effective force is then treated to be constant during
the new iteration. The displacements in the new iteration are
calculated by using the Green’s function obtained from the
inverse of the quadratic term. The iterations continue until the
effective force term is zero, that is, less than a prescribed value.
For a strictly harmonic nonthermal case, the assumption of
constant force is exact and no iterations are necessary.

This iteration technique is similar to the conventional MD
in the sense that in any iteration the energy is calculated in
terms of the displacements calculated in the previous iteration.
The main difference between the conventional MD and GFMD
is that in the GFMD we retain terms up to the quadratic term
in the potential at each iteration, whereas in the conventional
MD only the first-order term is retained. The inclusion of the
second-order term improves the convergence of the GFMD by
several orders of magnitude [4].

Using the transformation ui,α(t) → √
miui,α(t), Eq. (1)

can be written in the following matrix form (resembling the
system’s set of stochastic differential equations):(

I
∂2

∂t2
+ X

∂

∂t
+ D

)
U = F(t) + 
F(t) + FR(t), (6)

where U, F, 
F, and FR are vectors whose components
are

√
miui,α , (1/

√
mi)Fi,α , (1/

√
mi)
Fi,α , and (1/

√
mi)ηi,α ,

respectively. X is a diagonal matrix with the elements 1/τi , D
is a square matrix with the elements (1/

√
mimj )φi,α,j,β (the

so-called system’s dynamical matrix), and I is the unit matrix.
The formal solution of Eq. (6) is

U(t) =
(
I

∂2

∂t2
+ X

∂

∂t
+ D

)−1

Feff(t), (7)

where Feff(t) ≡ F(t) + 
F(t) + FR(t).
The inverse operator in Eq. (7) is the causal Green’s function

G(t − t ′), defined as a solution for t > t ′, of(
I

∂2

∂t2
+ X

∂

∂t
+ D

)
G(t − t ′) = Iδ(t − t ′). (8)

The Laplace transform L of Eq. (8) is

[s2I + sX + D]L[G] − (sI + X)G(0) − G′(0)

= IL[δ(t − t ′)], (9)

where s is the Laplace variable conjugate to t . For the initial
conditions G(0) = G′(0) = 0, the Laplace transform of the
Green’s function takes the form

L[G] = I

s2I + sX + D
. (10)

Therefore, the Laplace transform of Eq. (6) is

[s2I + sX + D]L[U] − (sI + X)U(0) − C(0) = L[Feff]

or

L[U] = L[G]L[Feff] + L[H]U(0) + L[G]C(0), (11)
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where

L[H] ≡ sI + X

s2I + sX + D
. (12)

Because D is real and symmetric, we can write VTDV =
E2, where V is an orthogonal matrix with the eigenvectors of
D, and E2 is the diagonal matrix with the eigenvalues E2

i of
D. Multiplying Eq. (11) by VT and using I = VVT , Eq. (11)
is written as

UL,∗ = KG FL,∗
eff + KH UL,∗(0) + KG CL,∗(0), (13)

where KG ≡ VTL[G]V, KH ≡ VTL[H]V, UL,∗ ≡ VTL[U],
FL,∗

eff ≡ VTL[Feff],UL,∗(0) ≡VTU(0), andCL,∗(0) ≡VTC(0),
with the superscript L standing for Laplace transform, and ∗
standing for the multiplication by VT .

Finally, the inverse Laplace transform of Eq. (13) is

U∗ = L−1[KG FL,∗
eff ] + L−1[KH UL,∗(0)]

+L−1[KG CL,∗(0)]. (14)

If we assume the same viscous damping time τ for all atoms,
then X = τ−1I, and Eq. (14) can be simplified to

U∗ = L−1[KG FL,∗
eff ] + L−1[(s + τ−1)KG UL,∗(0)]

+ L−1[KG CL,∗(0)], (15)

where KG is now a diagonal matrix with elements Ki =
(s2 + s/τ + E2

i )−1. The elements of Eq. (15) are written as
(see Appendix A for the derivations)

U ∗
i (t) =

(
F ∗

i + FR∗
i

)
E2

i

[
1 − e−t/(2τ )

2ωiτ
(2τ Ṡ(t) + S(t))

]

+ C∗
i (0)S(t)

ωi

e−t/(2τ ) + U ∗
i (0)

2ωiτ
(2τ Ṡ(t) + S(t))e−t/(2τ ),

(16)

where S(t)≡sin(ωit) with ωi ≡ (2τ )−1
√

4E2
i τ

2 − 1 for the
case in which 4E2

i τ
2 >1, and S(t) ≡ sinh(ωit) with ωi ≡

(2τ )−1
√

1 − 4E2
i τ

2/2τ for 4E2
i τ

2 < 1, and

U ∗
i (t) = (

F ∗
i + FR∗

i

)
τ 2

[
4 − 2e−t/(2τ )

(
2 + t

τ

)]

+C∗
i (0)te−t/(2τ ) + U ∗

i (0)e−t/(2τ )

(
1 + t

2τ

)
(17)

for the case in which 4E2
i τ

2 = 1. The velocities of the par-

ticles are obtained from U ∗
i (t) by C∗

i (t) = dU∗
i (t)
dt

. If time is
discretized in time steps 
t as tn = n
t , then the displacement
(and velocity) Ui(t + 
t) depends only on the displacement
at the previous time Ui(t). Equations (16) and (17) are the
extended GFMD (e-GFMD) equations for canonical ensemble
simulations. The original e-GFMD equations for the micro-
canonical ensemble [4] can be obtained from Eq. (16) for the
limit τ → ∞.

Note that in deriving Eqs. (16) and (17), we have assumed
that E2

i is real and positive. This is, of course, the stability
condition of the solid, which requires the dynamical matrix
to be positive-definite. Hence, the treatment given here is
applicable to only stable solids that can sustain phonons, such
that the atoms vibrate about their positions of equilibrium

but do not move away. If an eigenvalue is negative, it would
indicate unstable phonons. This would indicate displacement
of atoms away from their position of equilibrium such as in
diffusion. Use of GFMD for modeling such processes will be
the subject of a later paper.

III. RESULTS

To validate the e-GFMD, we applied it to study the one-
dimensional atomic chain comprised of N atoms of mass m =
12 amu initially separated by a distance l0 = 1 Å and located at
positions xi(t) = x0i + ui(t) (x0i = [−(N − 1)/2 + (i − 1)]l0
for i = 1, . . . ,N). The extremities of the chain are kept fixed,
and only the interaction between neighboring atoms was
considered.

Although the case of equal masses is not general, Eq. (15)
can be applied to a large range of real solids including one-,
two-, and three-dimensional monatomic systems. Examples
include conventional metals such as Na, K, and Cu; semi-
conductors like silicon, germanium, and diamond; as well
as modern advanced 1D materials like carbon and boron
nanotubes and 2D ones like graphene, silicene, germanene, and
phosphorene [3]. In addition, 1D systems are also of topical
interest because of their relevance to soft matter applications.
For example, many polymers and DNA molecules can be
modeled as chain structures (see, for example, Refs. [27–32]).
Of course, in these systems the molecules have additional
degrees of freedom, but their underlying structure is essentially
1D, to which the GFMD method should be applicable. Further,
it is quite straightforward to extend the present 1D method to
2D and 3D systems.

The interaction between the atoms separated by x was de-
scribed by Morse’s potential V (x) = V0{exp[−2γ (x − l0)] −
2 exp[−γ (x − l0)]} with V0 = 1.724 35 eV and γ = 1.0 Å−1.
For this set of parameters, the nearest-neighbor harmonic force
constant κ is 55.25 N/m.

We first tested e-GFMD for τ → ∞ to reproduce the
behavior within the microcanonical ensemble. For this test, we
set all the initial velocities to zero and the initial displacements
to zero except the one of the central atom, which was chosen
to be d0 = 10−4 Å. Such a configuration allows us to compare
the system behavior with the exact one available for the
atom displacements for a linear chain within the harmonic
approximation [4]. For comparison, we also calculated the
displacement evolution with the velocity-Verlet method [33].
Both velocity-Verlet and e-GFMD are able to reproduce the
exact behavior of the system for a time step of 1 fs (not shown),
but only e-GFMD reproduces the correct behavior for a larger
time step of 10 fs (Fig. 1). This is expected since GFMD
provides exact results in the harmonic approximation. Also,
e-GFMD exhibits excellent energy conservation with relative
energy variations 100 times smaller than the ones obtained
from the velocity-Verlet method (inset of Fig. 1).

We then applied e-GFMD to the atomic chain for the canon-
ical ensemble (finite τ ). For the calculations on the canonical
ensemble, we used two reference methods for comparison.
The first one was the frequently used Brünger-Brooks-Karplus
(BBK) method [8] and the second one was the recently
developed Grønbech-Jensen-Farago (G-JF) thermostat [14].
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FIG. 1. Evolution of the normalized displacement of the central
atom [u0(t)/d0] obtained from the e-GFMD and velocity-Verlet
methods within the microcanonical ensemble. The exact solution for
a linear chain with 23 atoms is also shown for comparison [4]. The
inset shows the total energy variation, normalized by the initial total
energy, for a time step of 1 fs. Data from e-GFMD are scale up 100
times to a better visualization.

As in Langevin’s thermostating techniques, the damping
time (τ ) plays a crucial role in temperature control and it
has to be carefully chosen since each simulated system has
specific behaviors. Unappropriated choices of τ can result in
average temperatures that may significantly differ from the
target one. To establish the appropriate range of 
t and τ that
allows temperature control, we determine the dependence of
the kinetic temperature Tk = ∑

miv
2
i /(Nkb) on damping time

for e-GFMD (Fig. 2) and for BBK and G-JF (inset of Fig. 2)
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Tk/Tk as a
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canonical ensemble (
Tk/Tk = √

2/N ). For each chain, the system
was equilibrated for 1 ns and the average was calculated for the
following 1 ps (τ = 100 fs, 
t = 1 fs). The inset shows the kinetic
temperature distribution for the final 1 ps for a chain of 223 atoms
compared with the Boltzmann distribution (black curve).

techniques. Whereas G-JF shows no dependence of Tk on the
damping time, e-GFMD and BBK show similar behaviors. For
our testing system, we found that e-GFMD is able to control
the temperature for time steps up to 10 fs for a damping time
of �100 fs.

Besides the ability to control the temperature around the
reservoir temperature T (target temperature), a thermostating
technique should be able to reproduce the properties of the
canonical ensemble. For example, temperature fluctuations
[(
Tk)2 =〈T 2

k 〉 − 〈Tk〉2] are expected to decrease with the
increase of the system size as 
Tk/Tk = √

2/N for the
canonical ensemble [6]. We found that e-GFMD correctly
describes such behavior (Fig. 3) with a Gaussian distribution of
the instantaneous kinetic temperature (inset Fig. 3). Another
property is the distribution of the velocities that should fol-
low the Maxwell-Boltzmann distribution. Figure 4 shows the
resulting distributions of the velocities obtained by e-GFMD.
Gaussian fittings show standard deviations of 4.6 ± 0.3 Å/ps
(for 
t = 1 fs) and 4.4 ± 0.4 Å/ps (for 
t = 10 fs) that are
in agreement with the expected value of 4.56 Å/ps for 300 K.

To further test e-GFMD, we calculate the normalized
velocity autocorrelation function (VACF). The VACF is an
important thermodynamic quantity because it can reveal the
dynamical processes acting on the system and it can be
used to calculate properties such as the phonon dispersion
and the diffusion coefficient that can be directly compared
with experiments. The VACF Cv0 (ζ ) was calculated as [34]
Cv0 (ζ ) = limt→∞ 〈v0(t + ζ )v0(t)〉/〈v2

0(t)〉, where the 〈 〉 is the
average over different time intervals ζ , and r0 and v0 are the
position and velocity of the central atom, respectively (see the
Appendix B for the derivations and the final expression for
VACF). To validate e-GFMD VACF results, we compared them
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with the exact VACF calculated for a linear chain of equal
masses in contact with a thermal bath within the harmonic
approximation (see Appendix B). The three methods e-GFMD,
BBK, and G-JF were able to reproduce the exact VACF for time
steps of 1 and 5 fs. However, when the time step is increased
to 10 fs, the correct VACF behavior was only reproduced by
e-GFMD (Fig. 5).

For estimating numerical convergence and accuracy in real
solids for nonlinear terms in the potential energy, the limitation
on the time step size in GFMD arises from the “space” part
of the MD equations. As far as the time part is concerned,
the time step can be arbitrarily large because the solution is
exact in time. However, the time step should not be too large
because the displacements during the time step in that iteration
must be small enough so that the cubic and higher-order terms
in displacements in the potential energy are negligible. This
constraint, in general, is less severe than in the conventional
MD [4].
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FIG. 5. Normalized velocity autocorrelation function obtained
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t = 10 fs (N = 203,
τ = 100 fs, T = 30 K, and total simulation time of 10 ns).
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FIG. 6. Convergence of the kinetic temperature (Tk) and the
potential energy (Ep) (and their respective standard deviations) with
decreasing time step for e-GFMD, BBK, and G-JF methods. The
properties were averaged for 25 000 time steps after an equilibration
of 5 × 105 time steps for e-GFMD and 106 time steps for BBK, and
G-JF methods (N = 203, τ = 100 fs, and T = 300 K).

The convergence properties of e-GFMD with decreasing
time step were analyzed by calculating the average values of
the kinetic temperature and potential energy as a function of
time step (Fig. 6). e-GFMD shows convergence of both kinetic
temperature and potential energy with decreasing time step
similar to the BBK and G-JF methods. Significant differences
occur for time steps larger than 5 fs. The observed decreasing of
Tk with decreasing time step is due to the fact that position and
velocity coordinates are not exactly conjugated in discrete-time
dynamics [24]. For the potential energy, the correct behavior is
only reproduced by the G-JF method. This happens when the
integrator shows the correct values of measured configurational
thermodynamics quantities with increasing time step. For this
case, the potential energy shows no dependence on the time
step [23,24]. Therefore, in terms of accuracy, the overall
convergence results for the kinetic temperature and potential
energy indicate that e-GFMD lies between the G-JF and BBK
methods.

A crude estimate of the computational advantage of the
GFMD relative to conventional MD can be obtained as follows.
Suppose uc is the calculated value of u after one iteration
and NMD iterations are needed to get the correct value ua .
Assuming linear convergence, uc ∼ ua/NMD. In MD the
leading neglected term is O(u2). Hence the error in MD
is O(u2) ∼ O[1/(NMD)2]. Similarly the error in GFMD is
O(u3) ∼ O[1/(NGFMD)3]. Thus, to have the same error in
MD and GFMD, O[1/(NMD)2]∼O[1/(NGFMD)3]. Hence the
estimated convergence improvement factor in GFMD, defined
as NMD/NGFMD, is (NGFMD)1/2 ∼103−4 for N ∼106−8. This
obviously is a very attractive feature of the GFMD.

In addition to its computational advantage, GFMD has
a very major physics advantage. The second-order terms in
displacements define the phononic or elastic characteristics
of the system [3]. These are neglected in the conventional
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FIG. 7. Computation time of the e-GFMD method for 100 time
steps (
t = 1 fs, τ = 100 fs, and T = 300 K). The simulations were
carried out on a 3.3 GHz-IBM Power 755 processor. The curves for
costs proportional to N3 and N 2 are also indicated for comparison.

MD, which includes only the first-order term in displacements.
Phonon frequencies and statistics are defined by the second-
order term in the potential energy near a potential minimum at
which the first-order term is exactly zero. This makes molecular
dynamics a rather inefficient representation for phonons. The
limitation of the conventional MD becomes even more severe
considering that one has to represent the potential energy in a
space of higher dimensions in which the energy may have local
minima and saddle points, where the first-order terms will be
vanishingly small. In our model, we include the second-order
term in the potential energy that exactly determines the phonon
frequency and the elastic response of the solid.

The use of e-GFMD may be computationally more expen-
sive than the BBK and G-JF techniques in the conventional
MD because e-GFMD involves the diagonalization of the
dynamical matrix D for the whole lattice, which is a O(N3)
process (Fig. 7). The computational cost should be partly
offset because of the need for much fewer iterations. For
example, if the potential energy can be expressed exactly in
a quadratic form, only a single iteration is needed to obtain
the displacement at time t from the displacement at time
t0. On the other hand, it is also possible to diagonalize the
dynamical matrix for the whole lattice by using a single-
particle approximation as in conventional MD. This would be
an O(N ) process, but many more iterations will be needed
even for harmonic crystals. Moreover, preliminary results [35]
indicate that high-performance computing coupled with simple
parallelism techniques can reduce the computational cost of
GFMD.

Finally, we foresee different applications of e-GFMD be-
yond the classical MD. For example, it is shown that the
convergence total energy calculations can be improved by the
use of analytical integration techniques [36]. Thus, coupling
e-GFMD with the Car-Parrinello method may improve total
energy calculations for electronic structure calculations.

IV. CONCLUSIONS

In summary, we show that Green’s function molecular
dynamics can be generalized to allow thermostating and to
describe systems within the canonical ensemble. The e-GFMD
also exhibit high accuracy for dynamical properties even
for larger time steps, making it a reliable alternative or, at
least, complementary technique for long-timescale molecular
dynamics simulations.
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APPENDIX A: DERIVATION OF e-GFMD EQUATIONS

The inverse transform of each term on the right-hand side
of Eq. (15),

U∗ = L−1
[
KG FL,∗

eff

] + L−1[(s + τ−1)KG UL,∗(0)]

+L−1[KG CL,∗(0)], (A1)

is calculated as follows. For the first term, we have

L−1[KiL [Feff i]] = L−1

[(
1

s2 + s/τ + E2
i

)
F ∗

eff i(s)

]

= L−1[F1(s)F2(s)]

=
∫ t

0
f1(ε)f2(t − ε)dε. (A2)

For the case in which F2(s) = F ∗
eff i(s) = F ∗

i /s + FR∗
i /s,

where F ∗
i is a constant, then f2(t) is the step function, i.e.,

f ∗
eff i(t) =

{
F ∗

i + FR∗
i if t � 0,

0 if t < 0.
(A3)

Therefore,

L−1[KiL [Feff i]]

= (
F ∗

i + FR∗
i

) ∫ t

0
L−1

[
1

s2 + s/τ + E2
i

]
(ε)dε. (A4)

If we define ωi ≡
√

1
4τ 2 − E2

i , then

L−1

[
1

s2 + s/τ + E2
i

]
= e−t/(2τ )

(
eωi t − e−ωi t

2ωi

)
. (A5)

We have three possibilities for (A5), depending on the value
of τ and Ei . If 1

4τ 2 > E2
i , then

L−1

[
1

s2 + s/τ + E2
i

]
= e−t/(2τ )

ω
sinh ωit. (A6)

If 1
4τ 2 < E2

i , then ω′
i ≡ jωi (j = √−1) and

L−1

[
1

s2 + s/τ + E2
i

]
= e−t/(2τ )

ω′
i

sin ω′
i t . (A7)

And finally, if 1
4τ 2 = E2

i , then

L−1

[
1

s2 + s/τ + E2
i

]
= te−t/(2τ ). (A8)

053310-6



GENERALIZED GREEN’S FUNCTION MOLECULAR … PHYSICAL REVIEW E 97, 053310 (2018)

Therefore, the first term L−1[KiL [Feff i]] has the following
values:(

F ∗
i + FR∗

i

)
E2

i

[
1 − e−t/(2τ )

(
cosh(ωit) + sinh(ωit)

2ωiτ

)]
(A9)

if 1
4τ 2 > E2

i ,
(
F ∗

i + FR∗
i

)
E2

i

[
1 − e−t/(2τ )

(
cos(ω′

i t) + sin(ω′
i t)

2ω′
iτ

)]
(A10)

if 1
4τ 2 < E2

i , and
(
F ∗

i + FR∗
i

)
τ 2[4 − 2e−t/(2τ )(2 + t/τ )] (A11)

if 1
4τ 2 = E2

i .
Using the same analysis, the second term on the right-hand

side of Eq. (A1) is calculated as

L−1[(s + τ−1) KiU
∗
i (0)]

= L−1

[
s + τ−1

s2 + s/τ + E2
i

U ∗
i (0)

]

=

⎧⎪⎪⎨
⎪⎪⎩

U ∗
i (0)e−t/(2τ )

[ sinh(ωi t)
2ωiτ

+ cosh(ωit)
]

if 1
4τ 2 > E2

i ,

U ∗
i (0)e−t/(2τ )

[ sin(ω′
i t)

2ω′
i τ

+ cos(ω′
i t)

]
if 1

4τ 2 < E2
i ,

U ∗
i (0)e−t/(2τ )

[
1 + t

2τ

]
if 1

4τ 2 = E2
i ,

(A12)

and the third term as

L−1[KiC
∗
i (0)] = L−1

[
C∗

i (0)

s2 + s/τ + E2
i

]

= C∗
i (0)

e−t/(2τ )

ωi

sinh (ωit) if
1

4τ 2
> E2

i ,

= C∗
i (0)

e−t/(2τ )

ω′
i

sin (ω′
i t) if

1

4τ 2
< E2

i ,

= C∗
i (0)te−t/(2τ ) if

1

4τ 2
= E2

i . (A13)

With those terms, Eq. (A1) is written as

U ∗
i (t) =

(
F ∗

i + FR∗
i

)
E2

i

[
1 − e−t/(2τ )

(
cos(ω′

i t) + sin(ω′
i t)

2ω′
iτ

)]

+C∗
i (0)

sin(ω′
i t)

ω±
i

e−t/(2τ )

+U ∗
i (0)

(
cos(ω′

i t) + sin(ω′
i t)

2ω′
iτ

)
e−t/(2τ ) (A14)

if 1
4τ 2 < E2

i ,

U ∗
i (t) =

(
F ∗

i + FR∗
i

)
E2

i

[
1 − e−t/(2τ )

(
cosh(ωit) + sinh(ωit)

2ωiτ

)]

+C∗
i (0)

sinh(ωit)

ω±
i

e−t/(2τ )

+U ∗
i (0)

(
cosh(ωit) + sinh(ωit)

2ωiτ

)
e−t/(2τ ) (A15)

if 1
4τ 2 > E2

i , and

U ∗
i (t) = (

F ∗
i + FR∗

i

)
τ 2

[
4 − 2e−t/(2τ )

(
2 + t

τ

)]

+C∗
i (0)te−t/(2τ ) + U ∗

i (0)e−t/(2τ )

(
1 + t

2τ

)
(A16)

if 1
4τ 2 = E2

i .

The velocities C∗
i (t) = dU∗

i (t)
dt

are written as

C∗
i (t) =

(
F ∗

i + FR∗
i

E2
i

− U ∗
i (0)

)[
1 + 1

4ω′2
i τ 2

]
ω′

i sin(ω′
i t)

× e−t/(2τ ) + C∗
i (0)

[
cos(ω′

i t) − sin(ω′
i t)

2ω′
iτ

]
e−t/(2τ )

(A17)

if 1
4τ 2 < E2

i ,

C∗
i (t) =

(
F ∗

i + FR∗
i

E2
i

− U ∗
i (0)

)[
− 1 + 1

4ω2
i τ

2

]
ωi sinh(ωit)

× e−t/(2τ ) + C∗
i (0)

[
cosh(ωit) − sinh(ωit)

2ωiτ

]
e−t/(2τ )

(A18)

if 1
4τ 2 > E2

i , and finally

C∗
i (t) = (

F ∗
i + FR∗

i

)
te−t/(2τ ) + C∗

i (0)e−t/(2τ )

(
1 − t

2τ

)

−U ∗
i (0)

te−t/(2τ )

4τ 2
(A19)

if 1
4τ 2 = E2

i .

APPENDIX B: VELOCITY
AUTOCORRELATION FUNCTION

Here we derive the exact velocity autocorrelation function
for a linear chain of N (N odd) particles of the same mass
with harmonic nearest-neighbor interactions in a thermal bath
of temperature T . The particles are located at la, where
l = −(N − 1)/2, . . . ,(N − 1)/2 and a is the initial separation
between neighboring atoms. The velocity autocorrelation func-
tion for the central atom (l = 0) of the chain Cv0 is given by

Cv0 (ζ ) = lim
t→∞

〈v0(t + ζ )v0(t)〉〈
v2

0(t)
〉 , (B1)

where ζ is the delay time, 〈v0(t + ζ )v0(t)〉= (1/t)
∫ t

0 v0(t ′ + ζ )
v0(t ′)dt ′. The equation of motion for a harmonic linear chain is

d2ul(t)

dt2
= κ

m
[ul+1(t) − 2ul + ul−1(t)] − 1

τ

dul(t)

dt
+ 1

m
ηl(t).

(B2)

For a linear chain with the atoms at the extremities [l = −(N −
1)/2 and l = (N − 1)/2] fixed, we write

ul(t) = 1

N

∑
ki

cos[kila]uki
(t), (B3)

ηl(t) = 1

N

∑
ki

cos[kila]ηki
(t), (B4)
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where ki = (2i + 1)π/(N − 1), i = −(N − 1)/2, . . . ,(N − 1)/2. The values of ki were obtained by imposing that the
displacements for the atoms at the extremities are zero for all times, i.e., cos[(N − 1)ka/2] = 0.

Equation (B2) is written as

dvki
(t)

dt
= −ω2

0(ki)uki
(t) − 1

τ
vki

(t) + 1

m
ηki

(t) (B5)

and

duki
(t)

dt
= vki

(t), (B6)

where ω2
0(ki) = (2κ/m)[1 − cos(ki)]. The solutions of Eqs. (B5) and (B6) are

uki
(t) =

[
cosh

(
ωki

t
) + 1

2ωki
τ

sinh
(
ωki

t
)]

e−t/2τ uki
(0) + 1

ωki

sinh
(
ωki

t
)
e−t/2τ vki

(0)

+ 1

m

∫ t

0

1

ωki

sinh
[
ωki

(t − t ′)
]
e−(t−t ′)/2τ ηki

(t ′)dt ′ (B7)

and

vki
(t) =

(
1 − 1

4w2
ki
τ 2

)
ωki

sinh
(
ωki

t
)
e−t/2τ uki

(0) +
[

cosh
(
ωki

t
) − 1

2ωki
τ

sinh
(
ωki

t
)]

e−t/2τ vki
(0)

+ 1

m

∫ t

o

[
cosh

[
ωki

(t − t ′)
] − 1

2ωki
τ

sinh
[
wki

(t − t ′)
]]

e−(t−t ′)/2τ ηki
(t ′)dt ′ (B8)

if 2ωo(ki)τ < 1 [ω2
ki

≡ ω2
o(ki) − 1

4τ 2 ], and

uki
(t) =

[
cos

(
ωki

t
) + 1

2ωki
τ

sin
(
ωki

t
)]

e−t/2τ uki
(0) + 1

ωki

sin
(
ωki

t
)
e−t/2τ vki

(0)

+ 1

m

∫ t

0

1

ωki

sin
[
ωki

(t − t ′)
]
e−(t−t ′)/2τ ηki

(t ′)dt ′ (B9)

and

vki
(t) = −

(
1 + 1

4w2
ki
τ 2

)
ωki

sin
(
ωki

t
)
e−t/2τ uki

(0) +
[

cos
(
ωki

t
) − 1

2ωki
τ

sin
(
ωki

t
)]

e−t/2τ vki
(0)

+ 1

m

∫ t

0

[
cos

[
ωki

(t − t ′)
] − sin

[
wki

(t − t ′)
]

2ωki
τ

]
e−(t−t ′)/2τ ηki

(t ′)dt ′ (B10)

if 2ωo(ki)τ > 1 [ω2
ki

≡ 1
4τ 2 − ω2

o(ki)].
Thus,

vl(t + ζ )vl(t) = 1

N2

∑
k′
i

cos[k′
i la]vk′

i
(t + ζ )

∑
ki

cos[kila]vki
(t). (B11)

For the particular case of the central atom (l = 0), we have

v0(t + ζ )v0(t) = 1

N2

∑
k′
i

vk′
i
(t + ζ )

∑
ki

vki
(t). (B12)

If we define

Aki
(t) ≡ −

(
1 + 1

4w2
ki
τ 2

)
wki

sin
(
wki

t
)
e−t/2τ uki

(0),

Bki
(t) ≡

[
cos

(
wki

t
) − sin

(
wki

t
)

2wki
τ

]
e−t/2τ vki

(0),

Iki
(t) ≡ 1

m

∫ t

0

{
cos

[
wki

(t − t ′)
]

− sin
[
wki

(t − t ′)
]

2wki
τ

}
e−(t−t ′)/2τ ηki

(t ′)dt ′
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if 2ωo(ki)τ > 1, and

A′
ki

(t) ≡
(

1 − 1

4w2
ki
τ 2

)
wki

sinh
(
wki

t
)
e−t/2τ uki

(0),

B ′
ki

(t) ≡
[

cosh
(
wki

t
) − sinh

(
wki

t
)

2wki
τ

]
e−t/2τ vki

(0),

I ′
ki

(t) ≡ 1

m

∫ t

0

{
cosh

[
wki

(t − t ′)
] − sinh

[
wki

(t − t ′)
]

2wki
τ

}
e−(t−t ′)/2τ ηki

(t ′)dt ′

if 2ωo(ki)τ < 1, then Eq. (B12) is written as

v0(t + ζ )v0(t) = 1

N2

∑
k′
i ,ki

[Ak′
i
(t + ζ ) + Bk′

i
(t + ζ ) + Ik′

i
(t + ζ )] × [

Aki
(t) + Bki

(t) + Iki
(t)

]
(B13)

if 2ωo(ki)τ < 1 and a similar expression for 2ωo(ki)τ > 1. The
time average is then written as

lim
t→∞ 〈v0(t + ζ )v0(t)〉 = 1

N2

∑
k′
i ,ki

9∑
p=1

lim
t→∞ Tp, (B14)

where

T1 = 〈
Ak′

i
(t + ζ )Aki

(t)
〉
,

T2 = 〈
Ak′

i
(t + ζ )Bki

(t)
〉
,

T3 = 〈
Ak′

i
(t + ζ )Iki

(t)
〉
,

T4 = 〈
Bk′

i
(t + ζ )Aki

(t)
〉
,

T5 = 〈
Bk′

i
(t + ζ )Bki

(t)
〉
,

T6 = 〈
Bk′

i
(t + ζ )Iki

(t)
〉
,

T7 = 〈
Ik′

i
(t + ζ )Aki

(t)
〉
,

T8 = 〈
Ik′

i
(t + ζ )Bki

(t)
〉
,

T9 = 〈
Ik′

i
(t + ζ )Iki

(t)
〉
.

When 2ωo(ki)τ > 1 (and consequently 2ωiτ > 1), the
terms T1, T2, T4, and T5 are zero because these terms

involve integrals I = (2τ/t)
∫ t/2τ

0 f (s)e−4sds, where f (s)
are products involving sin(2ωiτs) and cos(2ω′

iτ s) [e.g.,
sin(2ωiτs) cos(2ω′

iτ s)], which vanish for t → ∞. When
2ωo(ki)τ < 1 (and 2ωiτ < 1), f (s) involves combina-
tions of hyperbolic sine and cosine functions [e.g.,
sinh(2ωiτs) cosh(2ω′

iτ s)] and I is also zero when t → ∞.
By applying the ergodic theorem to replace the time average

〈· · · 〉 by the average over many realizations of the random
function η(t) (i.e., 〈· · · 〉η), the terms T3, T6, T7, and T8 can also
be shown to be zero. For example,

T3 = 〈
Ak′

i
(t + ζ )Iki

(t)
〉 = 〈

Ak′
i
(t + ζ )Iki

(t)
〉
η

= Ak′
i
(t + ζ )

〈
Iki

(t)
〉
η

= Ak′
i
(t + ζ )

m

∫ t

0

[
cos

[
ωki

(t − t ′)
] − sin

[
ωki

(t − t ′)
]

2ωki
τ

]

×e−(t−t ′)/2τ
〈
ηki

(t ′)
〉
η
dt ′, (B15)

which is zero because 〈ηl(t)〉η = 0. Therefore, the only term
that is not zero is T9:

T9 = 〈
Ik′

i
(t + ζ )Iki

(t)
〉 = 〈

Ik′
i
(t + ζ )Iki

(t)
〉
η

= 1

m2

∫ t+ζ

0

∫ t

0

[
cos

[
ωki

(t − t ′2)
] − sin

[
ωki

(t − t ′2)
]

2ωki
τ

][
cos

[
ωk′

i
(t + ζ − t ′1)

] − sin
[
ωk′

i
(t + ζ − t ′1)

]
2ωk′

i
τ

]

× e−(t+ζ−t ′1)/2τ e−(t−t ′2)/2τ
〈
ηk′

i
(t ′1)ηki

(t ′2)
〉
η
dt ′2dt ′1 (B16)

if 2ωo(ki)τ < 1, and

T9 = 〈
I ′
k′
i
(t + ζ )I ′

ki
(t)

〉 = 〈
I ′
k′
i
(t + ζ )I ′

ki
(t)

〉
η

= 1

m2

∫ t+ζ

0

∫ t

0

[
cosh

[
ωki

(t − t ′2)
] − sinh

[
ωki

(t − t ′2)
]

2ωki
τ

][
cosh

[
ωk′

i
(t + ζ − t ′1)

] − sinh
[
ωk′

i
(t + ζ − t ′1)

]
2ωk′

i
τ

]

× e−(t+ζ−t ′1)/2τ e−(t−t ′2)/2τ
〈
ηk′

i
(t ′1)ηki

(t ′2)
〉
η
dt ′2dt ′1 (B17)

if 2ωo(ki)τ > 1.
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Using that
〈
ηk′

i
(t ′1)ηki

(t ′2)
〉
η

=
∑
l,l′

cos[k′
i l

′a] cos[kila]〈ηl′(t
′
1)ηl(t

′
2)〉η

=
∑
l,l′

cos[k′
i l

′a] cos[kila]
2mkbT

τ
δl,l′δ(t ′1 − t ′2)

= 2mkbT

τ

∑
l

cos[k′
i la] cos[kila]δ(t ′1 − t ′2)

= 2mkbT

τ

∑
l

{cos[(k′
i − ki)la] − sin[k′

i la] sin[kila]}δ(t ′1 − t ′2)

= 2NmkbT

τ
δ(t ′1 − t ′2){δk′

i−ki ,0 −
∑

l

sin[k′
i la] sin[kila]}

and

(N−1)/2∑
l=−(N−1)/2

sin[k′
i la] sin[kila] = 0,

then

〈
ηk′

i
(t ′1)ηki

(t ′2)
〉
η

= 2NmkbT

τ
δ(t ′1 − t ′2)δk′

i−ki ,0. (B18)

Finally, applying the δ functions to
∑

ki ,k
′
i
limt→∞ T9, this term reduces to

∑
ki

lim
t→∞ T9 = 2NkbT

mτ

∑
ki

lim
t→∞

∫ min[t+ζ,t]

0
e−ζ/2τ e−(t−t ′)/τ

{
cos

[
ωki

(t − t ′)
] − sin

[
ωki

(t − t ′)
]

2ωki
τ

}

×
{[

cos
[
ωki

(ζ + t − t ′)
] − sin

[
ωki

(ζ + t − t ′)
]

2ωki
τ

]}
dt ′

= NkbT

m
e−ζ/2τ

∑
ki

{
cos

[
ωki

ζ
] − sin

[
ωki

ζ
]

2ωki
τ

}
(B19)

if 2ωo(ki)τ < 1, and

lim
t→∞ T9 = 2NkbT

mτ
lim
t→∞

∫ min[t+ζ,t]

0
e−ζ/2τ e−(t−t ′)/τ

{
cosh

[
ωki

(t − t ′)
] − sinh

[
ωki

(t − t ′)
]

2ωki
τ

}

×
{[

cosh
[
ωki

(ζ + t − t ′)
] − sinh

[
ωki

(ζ + t − t ′)
]

2ωki
τ

]}
dt ′

= NkbT

m
e−ζ/2τ

∑
ki

{
cosh

[
ωki

ζ
] − sinh

[
ωki

ζ
]

2ωki
τ

}
(B20)

if 2ωo(ki)τ > 1. Therefore,

lim
t→∞ 〈v0(t + ζ )v0(t)〉 = 1

N2

∑
ki

lim
t→∞ T9 = kbT

Nm
e−ζ/2τ

∑
ki

f
(
ωki

,ζ,τ
)
, (B21)

where

f (ωki
,ζ,τ ) = cos

[
ωki

ζ
] − sin

[
ωki

ζ
]

2ωki
τ

(B22)

if 2ωo(ki)τ < 1, and

f (ωki
,ζ,τ ) = cosh

[
ωki

ζ
] − sinh

[
ωki

ζ
]

2ωki
τ

(B23)
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if 2ωo(ki)τ > 1. Because

lim
t→∞〈v0(t)2〉 = kbT

Nm

∑
ki

f
(
ωki

,0,τ
) = kbT

Nm

∑
ki

1 = kbT

m
, (B24)

we have

Cv0 (ζ ) = e−ζ/2τ

N

∑
ki

f
(
ωki

,ζ,τ
)
. (B25)

For the general case of the atom l, Eq. (B25) becomes

Cvl
(ζ ) = e−ζ/2τ∑

ki
cos2[kila]

∑
ki

f
(
ωki

,ζ,τ
)

cos2[kila]. (B26)
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