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Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann
model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of
single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules
based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002). A particular
feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the
kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction.
Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the
relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the
interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for
Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem
under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure,
temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios
and molar concentrations. The results are compared with those from other reliable numerical methods. The results
show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.
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I. INTRODUCTION

Rarefied gas mixture flows exist widely in nature
and practical applications, such as chemical reactions,
evaporation-condensation, and the micro-electro-mechanical
system (MEMS). The rarefaction degree of gas flows is
normally characterized by the Knudsen number (Kn), which is
defined as the ratio of the mean free path of gas molecules to
the characteristic length of the system. The conventional fluid
dynamics models, such as the Euler equations and the Navier-
Stokes equations, are valid for continuum flows (Kn < 0.001),
but for flows with relative large Kn, nonequilibrium effects will
appear and continuum models become invalid [1].

Alternatively, the Boltzmann equation can be used to de-
scribe the gas mixture flows in all regimes. But it is difficult
to obtain the accurate solutions of the Boltzmann equation
directly due to the complicated collision term. Convention-
ally, the direct simulation Monte Carlo (DSMC) method
was employed to investigate nonequilibrium behaviors of the
rarefied gas mixtures in many studies, e.g., [2–5], which is
a prevailing numerical technique for simulating moderate and
highly rarefied gas flows. However, the streaming and collision
processes of the DSMC are decoupled, such that the time
step and mesh size are limited by the molecular collision
time and the mean free path, respectively [6]. This limitation
leads to expensive computational costs for continuum and near-
continuum flows. It is noted that some efforts have been made
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to reduce these difficulties [7,8]. Besides the DSMC method,
some deterministic numerical methods for the Boltzmann
equation, such as [9–12], have been applied to gas mixture
flows with simple geometries. These deterministic methods
can offer accurate solutions of the full Boltzmann equation, but
are usually rather complicated and computationally expensive.

Some efforts have been devoted to simplify the full Boltz-
mann equation for gas mixtures by replacing the full collision
operator with certain simplified models. Compared with the
single-species kinetic model equations, the nonunitary mass
ratio between different molecular species increases the diffi-
culty. One of such models is the McCormack model [13] which
linearizes the nonlinear collision term under the assumption
that the systems only slightly deviate from equilibrium; it
is noted that extension to nonlinear problems has also been
made recently [14,15]. Another simplified model is the so
called Andries-Aoki-Perthame (AAP) model [16] in which the
collision term is modeled by a single Bhatnagar-Gross-Krook
(BGK) [17] operator considering both self-collision and cross-
collision effects. Owing to its simple formulation, the AAP
model has been applied to a number of rarefied mixture flows
[18–21].

Based on the kinetic models, some numerical schemes have
been developed, such as the lattice Boltzmann method (LBM)
[22–24] and the discrete velocity method (DVM) [25–27].
Particularly, a unified gas kinetic scheme (UGKS) for binary
gas mixtures of hard sphere molecules and Maxwell molecules
has been constructed [28,29] for all flow regimes based on the
AAP model. The original UGKS is designed for single-species
gas flows covering different flow regimes [30,31], which is
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a finite-volume scheme for the discrete velocity Boltzmann
model equation. A distinctive feature of the UGKS is that
the reconstruction of the numerical flux is based on the local
analytical characteristic solution of the kinetic equation rather
than interpolation, such that the numerical dissipation is small.
Furthermore, the semi-implicit discretization of the collision
term in the UGKS enables it to be uniformly stable, i.e., the
time step is not limited by the mean collision time. The UGKS
also has the nice asymptotic preserving (AP) property [32],
i.e., it solves the Navier-Stokes equations in the continuum
flow regime.

Recently, another unified kinetic method, i.e., the discrete
unified gas kinetic scheme (DUGKS) [33,34], was developed
for single-species gas flows covering different flow regimes.
The DUGKS shares all the advantages of the UGKS, but
some apparent differences also exist between the two schemes.
First, they achieve the characteristic solution by different
approaches: the UGKS uses an analytical temporal-spatial
integral solution of the governing equation, while the DUGKS
uses a discrete characteristic solution which is much simpler
than the analytical integral one. Second, in the UGKS, flow
variables are required to be updated first to evaluate explicitly
the implicit treatment of the collision term, while the DUGKS
removes the implicitness by introducing a new distribution
function that is tracked in implementation. The above dif-
ferences make the DUGKS more efficient than the UGKS
[28]. Compared with the LBM, the computational cost of the
DUGKS is somewhat expensive with the same uniform mesh,
but is less expensive if a nonuniform mesh is employed [35].
The DUGKS has already been applied successfully to flows
of single-species gases from continuum to rarefied regimes
[36–39]. Recently, some extensions of DUGKS to complex
flows have also been made. For example, a DUGKS for
two-phase flows was proposed based on the phase-field theory
[40]. Another possible extension is for flows in porous media,
by making use of unstructured meshes like the finite-volume
LBM [41,42].

The aim of this work is to extend the DUGKS to binary gas
mixtures of Maxwell molecules based on the AAP model. The
remaining part of this paper is organized as follows. Section II
will introduce the AAP model for binary gas mixtures. In Sec.
III, the DUGKS will be constructed based on the AAP model,
and in Sec. IV several numerical tests are performed. Finally,
a brief summary is given in Sec. V.

II. THE AAP MODEL FOR GAS MIXTURES

The Boltzmann equation for a binary gas mixture of species
A and B can be written as [43]

∂fα

∂t
+ ξ · ∇fα = Qα(f,f ), (1)

with

Qα(f,f ) =
∑

α=A,B

Qαβ(fα,fβ), Qαβ(fα,fβ )

=
∫

R3

∫
B+

(f ′
αf ′

β∗ − fαfβ∗ )Bαβ(N · V ,|V |)

× dξ ∗d N, (2)

where the Greek letters α and β will be used symbolically to
represent the gas species, i.e., {α,β} = {A,B}; fα ≡ fα(x,ξ ,t)
represents the distribution function of species α with particle
velocity ξ at position x and time t in 3-dimensional physical
space; Qα(f,f ) is the Boltzmann collision operator for species
α, Bαβ(N · V ,|V |) is the collision kernel which is decided
by the intermolecular force between species α and β, ξ and
ξ ∗ are precollision velocities, N is a unit vector, and B+ is
the semisphere defined by N · V = 0, where V is the relative
velocity

V = ξ − ξ ∗. (3)

From conservation laws of momentum and energy,

mαξ + mβξ ∗ = mαξ ′ + mβξ ′
∗,

mα|ξ |2 + mβ |ξ∗|2 = mα|ξ ′|2 + m|ξ ′
∗|2, (4)

the postcollision velocities ξ ′ and ξ ′
∗ can be written as

ξ ′ = ξ − 2mαβ

mα

N[(ξ − ξ ∗) · N],

ξ ′
∗ = ξ ∗ + 2mαβ

mβ

N[(ξ − ξ ∗) · N], (5)

with the reduced mass being

mαβ = mαmβ

(mα + mβ)
, (6)

in which mα and mβ are the molecular masses of species α and
β, respectively. Without loss of generality, we assume mA <

mB .
Furthermore, the macroscopic quantities of species α, such

as the molecular number density nα , mass density ρα , flow
velocity uα , total energy Eα , and internal energy εα are
calculated as the moments of distribution function fα:

ρα =
∫

fαdξ , nα = ρα/mα, (7a)

ραuα =
∫

ξfαdξ , (7b)

ραEα = 1

2

∫
ξ 2fαdξ = 1

2
ραu2

α + εα, (7c)

εα = 1

2

∫
|cα|2fαdξ , (7d)

where cα = ξ − uα . The mass density ρm, number density nm,
flow velocity um, energy Em, and internal energy εm of the
mixture can then be obtained as

ρm =
∑

α=A,B

ρα, nm =
∑

α=A,B

nα, (8a)

ρmum =
∑

α=A,B

ραuα, (8b)

ρmEm =
∑

α=A,B

ραEα = 1

2
ρm|um|2 + εm. (8c)
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The AAP model is a relaxation approximation of the full
Boltzmann equation in Eq. (1),

∂fα

∂t
+ ξ · ∇fα = �α(f,f ) = f ∗

α − fα

τα

, (9)

where α = A or B with

f ∗
α = ρα

(
mα

2πkBT ∗
α

) 3
2

exp

[
− mα

2kBT ∗
α

(ξ − u∗
α)2

]
, (10)

in which kB is the Boltzmann constant. The parameters u∗
α and

T ∗
α are introduced to recover the correct interspecies transfer of

momentum and energy due to the collisions between molecules
of different species [16],

u∗
α = uα + τα

∑
β=A,B

2
ρβ

mα + mβ

θαβ(uβ − uα), (11a)

3

2
kBT ∗

α = 3

2
kBTα − mα

2
(u∗

α − uα)2

+ τα

∑
β=A,B

4mα

ρβ

(mα + mβ)2
θαβ

×
[

3

2
kBTβ − 3

2
kBTα + mβ

2
(uβ − uα)2

]
, (11b)

with θαβ being the interaction coefficient between molecules.
The mean collision time and frequency from the AAP model
can be expressed as

να = 1

τα

= χ
∑

β=A,B

θαβρβ

mβ

, (12)

where χ is either 1 or selected to make τα be the same with
that of the single-species gas when all species are equal. In this
paper, we fix χ = 1. The interaction coefficient θαβ is related
to the molecular interaction model. For example, for Maxwell
molecules [44],

θαβ = 0.422π

[
aαβ (mα + mβ)

mαmβ

] 1
2

, (13)

where aαβ is the constant of proportionality, i.e.,

Uαβ = aαβ

4r4
, (14)

where Uαβ is the potential between two molecules of masses
mα and mβ with a distance r .

In this work, we will consider Maxwell molecules and the
force constant ratios aBB/aAA and aAB/aAA should be known.
According to the viscosity of the mixture given by the AAP
model [16]

μ = kBT0

∑
α=A,B

nα

να

, (15)

if we take nα = 0 then the binary gas mixture reduces to a
single gas of species β and its viscosity is

μβ = kBT0
nβ

νβ

= kBT0
1

θββ

. (16)

Then, based on Eq. (13), we can obtain

aββ

aαα

=
(

μα

μβ

)2
mβ

mα

. (17)

The constant aαβ can then be determined as [13]

aαβ = √
aααaββ. (18)

III. DISCRETE UNIFIED GAS KINETIC SCHEME

A. Updating of the cell-averaged distribution function

For problems of D < 3 dimensional, the kinetic equation
(9) can be simplified by introducing a reduced one. Specially,
the original distribution function fα can be expressed as
fα = fα(x,ξ ,η,t), where ξ = (ξ1, . . . ,ξD), x = (x1, . . . ,xD),
and η = (ξD+1, . . . ,ξ3) is a vector of length L = 3 − D, con-
sisting of the rest components of the three-dimensional (3D)
velocity space (ξ1,ξ2,ξ3). Since the evolution of the distribution
function fα is only relevant to the D-dimensional velocity and
independent of η, a reduced distribution function is used to
remove the dependence of the redundant variable η [45,46],

gα(x,ξ ,t) =
∫

fα(x,ξ ,η,t)dη. (19)

However, the energy defined by Eq. (7) cannot be determined
by this gα solely, and another reduced distribution function is
required,

hα(x,ξ ,t) =
∫

η2fα(x,ξ ,η,t)dη. (20)

The macroscopic flow variables of species α can be computed
from the two reduced distribution functions as

ρα =
∫

gαdξ , ραuα =
∫

ξgαdξ ,

(21)

ραEα = 1

2

∫
(ξ 2gα + hα)dξ ,

and the heat flux qα and stress tensor Pα can be computed as

qα = 1

2

∫
cα

(
c2
αgα + hα

)
dξ , Pα =

∫
cαcα

(
gα − geq

α

)
dξ ,

(22)

where

geq
α = ρα

(
mα

2πkBTα

)D/2

exp

[
− mα

2kBTα

(ξ − uα)2

]
. (23)

Note that g
eq
α cannot give any communication among species

in the multispecies system.
The evolution equations for gα and hα can be deduced from

Eq. (9),

∂gα

∂t
+ ξ · ∇gα = �(gα) ≡ g∗

α − gα

τα

, (24a)

∂hα

∂t
+ ξ · ∇hα = �(hα) ≡ h∗

α − hα

τα

, (24b)
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where

g∗
α = ρα

(
mα

2πkBT ∗
α

)D/2

exp

[
− mα

2kBT ∗
α

(ξ − u∗
α)2

]
, (25a)

h∗
α = (3 − D)RαT ∗

α g∗
α, (25b)

with Rα = kB/mα .
Then the DUGKS for a binary gas mixture is constructed

based on Eq. (24), which can be rewritten as

∂φα

∂t
+ ξ · ∇φα = �α ≡ φ∗

α − φα

τα

, (26)

where φα = gα or hα , φ∗
α = g∗

α or h∗
α . As a finite volume

scheme, the computation domain is first divided into a set
of control volumes (cells). Then integrating Eq. (26) over a
control volume Vj centered at xj from time tn to tn+1, and
employing the midpoint rule for the time integration of the
convective term and trapezoidal rule for the collision term
inside each cell, the evolution equation for species α can be
written as

φn+1
α,j (ξ ) − φn

α,j (ξ )

= − �t

|Vj |F
n+1/2
α,j (ξ ) + �t

2

[
�n

α,j (ξ ) + �n+1
α,j (ξ )

]
. (27)

Here �t = tn+1 − tn is the time step, |Vj | is the volume of the
cell Vj , and φn

α,j and �n
α,j are the cell averaged values of φα

and �α defined by

φn
α,j (ξ ) = 1

|Vj |
∫

Vj

φα(x,ξ ,tn)dx, (28a)

�n
α,j (ξ ) = 1

|Vj |
∫

Vj

�α(x,ξ ,tn)dx. (28b)

The term Fn+1/2
α,j in Eq. (27) is the distribution function flux

across the cell interface,

Fn+1/2
α,j (ξ ) =

∫
∂Vj

(ξ · n)φα(x,ξ ,tn+1/2)dS, (29)

where n is the outward unit vector normal to the cell surface
∂Vj . It is clear that the updating rule given by Eq. (27) is
implicit due to the term �n+1

α,j . In order to obtain an explicit
form, two new distribution functions are introduced,

φ̃α = φα − �t

2
�α = 2τα + �t

2τα

φα − �t

2τα

φ∗
α, (30a)

φ̃+
α = φα + �t

2
�α = 2τα − �t

2τα + �t
φα + 2�t

2τα + �t
φ∗

α. (30b)

Then Eq. (27) can be rewritten as

φ̃n+1
α,j = φ̃

+,n
α,j − �t

|Vj |F
n+1/2
α,j . (31)

To avoid the implicity of Eq. (27), we can track the evolution
of φ̃α instead of the original distribution function φα .

Note that the moments of g̃α and h̃α have the following
expressions:∫

g̃αdξ = ρα, (32a)∫
ξ g̃αdξ = 2τα + �t

2τα

∫
ξgαdξ − �t

2τα

∫
ξg∗

αdξ

= 2τα + �t

2τα

ραuα − �t

2τα

ραu∗
α, (32b)

1

2

∫
(ξ 2g̃α + h̃α)dξ = 2τα + �t

2τα

∫
1

2
(ξ 2gα + hα)dξ

− �t

2τα

∫
1

2
(ξ 2g∗

α + h∗
α)dξ

= 2τα + �t

2τα

ραEα − �t

2τα

ραE∗
α, (32c)

where ραE∗
α = ραu∗2

α /2 + ραRαT ∗
α /(γ − 1) with γ being the

the specific heat ratio. Once the distribution functions g̃α and h̃α

are known, the macroscopic variables Wα = (ρα,ραuα,ραEα)
and W∗

α = (ρα,ραu∗
α,ραE∗

α) can be solved from the moments
of them according to Eq. (32). Then Eq. (32) becomes an
equation set with four relations [Eq. (32b) and Eq. (32c) for
α = A,B] and eight unknown variables (uα,Tα , u∗

α , and T ∗
α for

α = A,B). To ensure the equation set is closed, the exchange
relations between species A and B in Eq. (11) are introduced.
Then the macroscopic quantities uα,Tα , u∗

α , and T ∗
α for each

species can be solved from Eqs. (32) and (11). In particular,
for Maxwell molecules, the interaction coefficients θαβ and θαα

only depend on the mass ratio [see Eq. (13)]. By this way, the
macroscopic variables Wα and W∗

α for each species can be
expressed in terms of the moments of g̃α and h̃α explicitly.

B. Flux evaluation

To update φ̃n+1
α,j according to Eq. (31), the fluxFn+1/2 should

be evaluated. Based on the definition of flux in Eq. (29),Fn+1/2

can be calculated by reconstructing the distribution function
φα(x,ξ ,tn+1/2) at the cell interface. To this end, Eq. (26) is
integrated along the characteristic line from time tn to tn+1/2,

φα(xb,ξ ,tn + s) − φα(xb − ξs,ξ ,tn)

= s

2

[
�α(xb,ξ ,tn + s) + �α(xb − ξs,ξ ,tn)

]
, (33)

where s = �t/2 and xb is the interface center of cell j , and the
trapezoidal rule is applied to evaluate the collision term again.
In order to remove the implicity caused by the term �

n+1/2
α ,

another two auxiliary distribution functions are introduced,

φ̄α = φα − s

2
�α = 2τα + s

2τα

φα − s

2τα

φ∗
α, (34a)

φ̄+
α = φα + s

2
�α = 2τα − s

2τα + s
φα + 2s

2τα + s
φ∗

α. (34b)

Then Eq. (33) can be rewritten as

φ̄α(xb,ξ ,tn+1/2) = φ̄+
α (xb − ξs,ξ ,tn), (35)
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where

φ̄+
α (xb − ξs,ξ ,tn) = φ̄+

α (xj ,ξ ,tn) + (xb − xj − ξs) · δj ,

(xb − ξs) ∈ Vj . (36)

Here δj is the slope of φ̄+
α in cell j . For example, in the one-

dimensional (1D) case, the distribution function φα at the cell
interface xb = xj+1/2 is reconstructed through approximating
the distribution function φ̄+

α as

φ̄+
α (xb − ξs,ξ,tn)

=
{
φ̄+

α (xj ,ξ,tn) + (xb − xj − ξs) · δj , ξ > 0,

φ̄+
α (xj+1,ξ,tn) + (xb − xj+1 − ξs) · δj , ξ < 0.

(37)

Here the van Leer limiter [47] is applied to determine the slope
δj for discontinuous problems. Once the distribution function
φ̄α at the interface is known, the original distribution function
φα can be obtained according to Eq. (34), i.e.,

φα(xb,ξ ,tn+1/2) = 2τα

2τα + s
φ̄α(xb,ξ ,tn + s)

+ s

2τα + s
φ∗

α(xb,ξ ,tn + s). (38)

Note that the macroscopic variables used to evaluate the
distribution function φ∗

α are computed from φ̄α directly as∫
ḡαdξ = ρα, (39a)∫

ξ ḡαdξ = 2τα + s

2τα

∫
ξgαdξ − s

2τα

∫
ξg∗

αdξ

= 2τα + s

2τα

ραuα − s

2τα

ραu∗
α, (39b)

1

2

∫
(ξ 2ḡα + h̄α)dξ = 2τα + s

2τα

∫
1

2
(ξ 2gα + hα)dξ

− s

2τα

∫
1

2
(ξ 2g∗

α + h∗
α)dξ

= 2τα + s

2τα

ραEα − s

2τα

ραE∗
α. (39c)

Similarly to the previous treatment of cell averaged macro-
scopic variables, Eqs. (39) and (11) constitute a closed system
for eight unknown variables (uα,Tα , u∗

α , and T ∗
α at cell interface

xb and half time step tn+1/2 for each species α). These macro-
scopic variables can also be obtained explicitly, and the original
distribution function φα can be updated from Eq. (38). Then
the flux across each cell interface can be computed according
to Eq. (29). Finally, the cell averaged distribution function φ̃α

in each cell is updated from tn to tn+1 according to Eq. (31).
In practical implementation, the velocity space is dis-

cretized into a set of discrete velocities ξ i(i = 1,2, . . . ,b).
Certain quadrature rules, such as the Gaussian-Hermite or
Newton-Cotes formula, can be chosen to discretize the velocity
space and approximate the moments, e.g.,

ρα =
∑

i

wi g̃α(ξ i), ραuα =
∑

i

wiξ i g̃α(ξ i),

ραEα = 1

2

∑
i

wi

[
ξ 2
i g̃α(ξ i) + h̃α(ξ i)

]
, (40)

where wi are the quadrature weights.
The time step in DUGKS is determined by the Courant-

Friedrichs-Lewy (CFL) condition,

�t = ς
�x

Um + ξm

, (41)

where 0 < ς < 1 is the CFL number, �x is the minimal
mesh size, ξm is the maximum discrete velocity, and Um is
the maximum flow velocity. Due to the coupling of particle
transport and collision in the reconstruction of the interface
distribution function, the DUGKS has the asymptotic preserv-
ing (AP) property [30,32]. As a result, the time step �t is not
limited by the particle collision time but determined by the
CFL number, and the DUGKS is uniformly stable with respect
to the Knudsen number.

C. Algorithm

Now we list the computational procedure of the DUGKS
for a binary gas mixture made up of Maxwell molecules from
tn to tn+1:

(1) Calculate φ̃+,n
α and φ̄+,n

α at each cell center according
to Eqs. (30) and (34), respectively.

(2) Reconstruct the distribution function φ̄+
α (xb − ξs,ξ ,tn)

according to Eq. (36).
(3) Calculate the distribution function φ̄α(xb,ξ ,tn+1/2)

according to Eq. (35).
(4) Calculate the macroscopic variables Wα(xb,tn+1/2) and

W∗
α(xb,tn+1/2) according to Eqs. (39) and (11).
(5) Calculate the original distribution function at each cell

interface φα(xb,ξ ,tn+1/2) according to Eq. (38).
(6) Calculate the microflux Fn+1/2 across each cell inter-

face from φα(xb,ξ ,tn+1/2) according to Eq. (29).
(7) Update the cell averaged distribution function φ̃α in

each cell according to Eq. (31).

IV. NUMERICAL EXAMPLES

In this section, the proposed DUGKS will be validated by
several test cases, including the shock structure problem under
different Mach numbers, the channel flow driven by small
pressure gradient, or temperature gradient or concentration
gradient, and the 1D and 2D shear driven flows over a wide
range of Knudsen numbers. In each test different mass ratios
and molar concentrations will be considered.

A. Shock structure

The first test case is the shock structure for a binary gas
mixture. Consider a normal shock formed by a mixture made
up of a light species (A) and a heavy species (B). The molar
concentrations, number densities, velocities, and temperatures
are expressed as χ

A,B
1 , n

A,B
1 , U1, T1 in the upstream and χ

A,B
2 ,

n
A,B
1 , U2, T2 in the downstream, where χA,B = nA,B/(nA +

nB). The Mach number is defined as

Ma1 = U1

(γ kBT1/m)1/2 , (42)

wherem = mAχA + mBχB . The Rankine-Hugoniot condition
[48] holds for each species, so the downstream quantities are
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FIG. 1. Structure of a Ma1 = 1.5 shock wave in a binary gas mixture with mA/mB = 0.5 and aBB/aAA = 1: (a) χA
1 = 0.1; (b) χA

1 = 0.9.

then determined as

Ma2 =
√

Ma2
1(γ − 1) + 2

2γ Ma2
1 − (γ − 1)

,

χ
A,B
2 = χ

A,B
1 ,

nA
2

nA
1

= nB
2

nB
1

= (γ + 1)Ma2
1

(γ − 1)Ma2
1 + 2

,

T2

T1
=

[
2 + (γ − 1)Ma2

1

]
(2γ Ma2

1 − γ + 1)

Ma2
1(γ + 1)2

. (43)

The reference mean free path is defined as [49]

λ∞ = μB

P0

√
2kBT1

mB

, (44)

where P0 = n1kBT1 and μB is the viscosity of species B

defined in Eq. (16). In the simulations, the computation domain
is set to be [−25λ∞,25λ∞], which is divided into 100 uniform
cells. The velocity space is discretized by Newton-Cotes
quadrature with 101 velocity points distributed uniformly
in [−8

√
2kBT1/m,8

√
2kBT1/m]. The CFL number is set to

be 0.6. The origin of the distribution is determined so that

n(0) = (n1 + n2)/2. The simulation results are normalized as

n̂A,B = nA,B − n
A,B
1

n
A,B
2 − n

A,B
1

, T̂ A,B = T A,B − T
A,B

1

T
A,B

2 − T
A,B

1

, (45)

where the hat will be dropped for simplicity in the following.
The number density and temperature of each species under

different Mach numbers and concentrations are shown and
compared with those of the UGKS method [28,29] in Figs. 1–3.
Good agreement between the two methods can be observed. As
shown in Fig. 1 for Ma1 = 1.5 and mA/mB = 0.5, the number
density nA and temperature TA of the light species first deviate
from their upstream quantities, and nA reaches its downstream
quantity earlier than nB . However, the temperature of the heavy
species, TB , arises rapidly, then exceeds that of the light one
(TA), and finally reaches its downstream quantity earlier. These
phenomena become more obvious as the concentration of the
light species becomes large. Figure 2 presents the results for
smaller values of mA/mB under Ma1 = 1.5. It can observed
that the above features appear more clearly. The results with
Ma1 = 3 and mA/mB = 0.5 are shown in Fig. 3, and the
above phenomena still exist. However, TB does not arise
monotonically for large concentration of the light species. At
the beginning, it approximates the maximum value and then
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FIG. 2. Structure of a Ma1 = 1.5 shock wave in a binary gas mixture with mA/mB = 0.25 and aBB/aAA = 1: (a) χA
1 = 0.1; (b) χA

1 = 0.9.
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FIG. 3. Structure of a Ma1 = 3.0 shock wave in a binary gas mixture with mA/mB = 0.5 and aBB/aAA = 1: (a) χA
1 = 0.1; (b) χA

1 = 0.9.

decreases to its downstream quantity, which has been known
as the temperature overshoot [50].

B. Channel flow driven by a gradient

Now we consider a binary mixture flow in a long channel
with width H (see Fig. 4). A uniform pressure gradient, or
temperature gradient or concentration gradient, exists along the
channel (x direction), i.e., p = p0(1 + Cpx/H ), T = T0(1 +
CT x/H ), χA = χA

0 + Cχx/H , where Cp, Cχ , CT , p0, and T0

are constants. Both plates are fully diffusive and a uniform
temperature gradient T0(1 + CT x/H ) is maintained. The inlet
and outlet are imposed with pressure boundary conditions
based on characteristics as described in Ref. [28]. In this
case, the numerical results are compared with those from
Kosuge [51] based on the McCormack model. The definitions
of the intermolecular potential and the reference diameter for
Maxwell molecules are [51]

Uαβ = καβ

r4
, dαβ

∗ =
(

4καβ

2kBT0

) 1
4

, (46)

in which καβ is a positive constant. Comparing Eq. (46) with
Eq. (14), one can obtain that

aαβ = 4καβ ; (47)

thus the relationship between d
αβ
∗ and aαβ is

dαβ
∗ =

(
aαβ

2kBT0

) 1
4

. (48)

FIG. 4. Schematic of the channel flow.

The reference mean free path is given by [51]

λ = 1√
2πn0(dAA∗ )2

, (49)

where n0 is the total number density at the inlet. In the simu-
lations, we consider the flow driven by the pressure gradient,
temperature gradient, and concentration gradient separately.
For the pressure driven flow, CT and Cχ are zero and the
nondimensional particle flux of each species is defined by [51]

MA,B
p = 1

Cp

∫ H/2

−H/2

uA,B√
2kBT0/mA

d(y). (50)

The fluxes M
A,B
T and MA,B

χ due to the temperature gradient
and concentration gradient can be defined similarly.

In our simulations, the length-to-height ratio of the chan-
nel is set to be 40 and the gradient Cp, Cχ , and CT are
kept at 0.01. The particle fluxes versus Knudsen number
are displayed in Figs. 5–7 for mB/mA = 2,4, and 10 with
aBB/aAA = aAB/aAA = 1. The results of the UGKS for binary
gas mixtures [28,29] of Maxwell molecules are also included
for comparison. Overall good agreement between the DUGKS
and UGKS can be observed for the cases considered.

In Fig. 5, the mass fluxes driven by a pressure gradient
show good agreement with the solutions of the linearized
Boltzmann equation [51], with some minor deviations. The
differences can be attributed to the discrepancy in viscosity
from different models. Furthermore, it can be observed that a
minimum appears for each species around Kn ≈ 1, which is
the well-known Knudsen minimum [52] for Poiseuille flow in
rarefied regime.

Figure 6 shows the mass fluxes of each species for flows
driven by a temperature gradient. It can be seen that MA

T

and MB
T increase monotonically with Kn, and their difference

decreases with Kn.
Furthermore, it is observed that the predicted mass fluxes

of the heavy species B match quite well with the reference
solutions. But clear deviations can be observed for the light
species A and the deviations increase with Kn. This can be
attributed to the different thermal conductivities from the AAP
model and the linearized Boltzmann equation [51].

The mass fluxes at different Knudsen numbers driven by
a concentration gradient are shown in Fig. 7. It can be seen
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FIG. 5. Particle flux versus Knudsen number of the pressure
driven channel flow with χA

0 = 0.5. mB/mA in (a), (b), and (c) is
2, 4, and 10, respectively. The linearized solutions are from Ref. [51].

that the concentration of the light species A increases while
that of the heavy one decreases along the channel. As a result,
the light one turns to flow in the opposite direction. But it can
be observed that both |MA

χ | and MB
χ grow monotonically with

increasing Kn, and the results predicted by the AAP model
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FIG. 6. Same as Fig. 5 except that the flow is driven by a
temperature gradient.

are in good agreement with the reference data for all cases
considered.

It can also be observed that the differences in the mass fluxes
of species A and B decrease with increasing Kn driven by
the pressure, temperature, or concentration gradient. This is
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FIG. 7. Same as Fig. 5 except that the flow is driven by a
concentration gradient.

because the velocities of the two species are different due to
the difference in molecular masses. Particularly, the differences
between uA and uB can be much larger as the intermolecular
collisions are insufficient such that the momentums of the
two species are not exchanged sufficiently. On the contrary,
the velocities of the two species will become closer in the
continuum limit when the collision is frequent.

FIG. 8. Schematic of the plane Couette flow.

C. Couette flow

Now we consider the plane Couette flow of a binary gas
mixture in the rarefied regime.

As shown in Fig. 8, two plates with a constant temperature
T0 are fixed at y = ±H/2 and move with velocities ±U/2 in
the x direction, respectively. The plates are fully diffusive and
the periodic boundary conditions are imposed on the inlet and
outlet of the channel. Here we assume that the plate velocities
are much smaller than the characteristic molecular velocity v0

of mixture, i.e.,

U 	 v0, v0 =
√

2kBT0

m
, (51)

where m is the mean molecular mass of the mixture m =
C0mA + (1 − C0)mB , and C0 is the molar concentration of
the light species in equilibrium,

C0 = n0
A

n0
A + n0

B

, (52)

with n0
A,n0

B being the equilibrium number density of species
A and B, respectively. In this case, we focus on the shear
stress P ′

xy = P ′
Axy + P ′

Bxy of the mixture and the velocity u′
α

of species α. The shear stress P ′
αxy of species α is calculated

according to Eq. (22). The velocity of the mixture in the x

direction is defined as

um,x = ρAu′
A,x + ρBu′

B,x

ρA + ρB

. (53)

The gas rarefaction parameter δ is defined as

δ = HP0

μv0
, P0 = n0kBT0, (54)

where μ is the mixture viscosity at temperature T0, and P0 is the
equilibrium pressure with n0 being the total number density of
the two species. Then we can get the following dimensionless
quantities

uα = u′
α

U
, Pxy = − v0

2UP0
P ′

xy. (55)

To calculate aBB/aAA by Eq. (17), the mass ratio and
viscosity ratio should be known. Here we consider two groups
of binary gas mixtures of noble gases: neon-argon (Ne-Ar)
and helium-xenon (He-Xe). The molecular masses of these
gases are mHe = 4.0026, mNe = 20.1791, mAr = 39.948, and
mXe = 131.293 in atomic units. The experimental data [53] of
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FIG. 9. Velocity profiles in the Couette flow for the Ne-Ar mixture with C0 = 0.5 at (a) δ = 0.1, (b) δ = 1, and (c) δ = 10.

the viscosities at an equilibrium temperature T0 = 300 K are
μHe = 19.73 μPa s, μNe = 31.60 μPa s, μAr = 22.39 μPa s,
and μXe = 22.62 μPa s.

In our simulations, we take U = 0.1v0 and the rarefaction
parameter δ varies from 0.1 to 10. Three values of C0 = 0.1,
0.5, and 0.9 are considered. The physical space is divided
uniformly into 2 grid points in the x direction and 400 in the y

direction. The half-range Gauss-Hermite quadrature [54] with
28 × 28 velocity points is adopted for each species. The CFL
number is set to be 0.6 in the following cases. In addition, the
flow field is assumed to be steady when the maximum relative
change of the velocity field of the two species in two successive
steps is less than 10−10, i.e.,∫ 1/2

−1/2
max

(∣∣un+1
A,x − un

A,x

∣∣
|un

A,x |
,

∣∣un+1
B,x − un

B,x

∣∣
|un

B,x |

)
dy < 10−10.

(56)

The results of the present DUGKS will be compared with
the solutions of the McCormack model in Refs. [55,56].
The results of the UGKS for binary gas mixtures [28,29]
of Maxwell molecules are also presented for comparison. A
comparative study between the McCormack model and the
linearized Boltzmann equation for this problem was performed
in Ref. [56]. The results indicate that differences in shear stress
between the two models are small, while differences in other
macroscopic quantities such as the velocity of each species

are rather large, which increase with the mass ratio of the two
species and the molar concentration of the heavy species.

The velocity profiles for the Ne-Ar and He-Xe mixtures
with molar concentration C0 = 0.5 at δ = 0.1, 1, and 10 are
demonstrated in Fig. 9 and Fig. 10. It can be seen that the
results predicted by the DUGKS agree well with those by
the UGKS at different rarefaction parameters. As δ = 0.1, the
velocity differences of Ne and Ar between the DUGKS and
the McCormack model are about 8% and 9%, respectively.
As δ = 1, the velocity differences decrease. As δ = 10, there
are slightly differences in the velocity of the two species, i.e.,
1.5% for Ne and 0.04% for Ar. The velocity of the He-Xe
mixture is also shown in Fig. 10 to illustrate the influence of
the mass ratio on the velocity. It can be seen that the deviations
in velocity between the DUGKS and the McCormack model
are significant, especially as δ is small. For instance, the
velocity difference of He between the two models reaches
46.8% at δ = 0.1. Furthermore, the DUGKS overestimates
the Xe velocity by 32.8% compared with the McCormack
model. These differences decrease with increasing δ, reducing
to 10.6% for He and 2.97% for Xe as δ = 10.

The influence of the molar concentration C0 on the gas
velocity near the plate is displayed in Table I. When δ = 0.1,
the velocity difference of Ne between the two kinetic models
decreases from 13.9% to 1.8%, while that for Ar increases from
2% to 17% as C0 increases from 0.1 to 0.9. As δ = 1, the dif-
ference in each velocity is smaller than that for δ = 0.1 for all

FIG. 10. Same as Fig. 9 but for the He-Xe mixture.
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TABLE I. Species velocity uNe and uAr and mixture velocity um near the top plate (y = H/2) for the Ne-Ar mixture with concentration of
the light species C0 and rarefaction parameter δ.

uNe uAr um

δ Present UGKS Ref. [56] Present UGKS Ref. [56] Present UGKS Ref. [56]

C0 = 0.1
0.1 0.0545 0.0546 0.0633 0.0745 0.0753 0.0736 0.0737 0.0742 0.0730
1.0 0.2141 0.2141 0.2341 0.2542 0.2543 0.2536 0.2521 0.2522 0.2525
10.0 0.4261 0.4261 0.4361 0.4396 0.4397 0.4420 0.4384 0.4389 0.4417

C0 = 0.5
0.1 0.0609 0.0610 0.0663 0.0844 0.0842 0.0773 0.0764 0.0764 0.0736
1.0 0.2280 0.2283 0.2399 0.2699 0.2700 0.2598 0.2559 0.2560 0.2531
10.0 0.04310 0.4311 0.4377 0.4437 0.4437 0.4435 0.4394 0.4395 0.4416

C0 = 0.9
0.1 0.0699 0.0700 0.0712 0.0973 0.0976 0.0833 0.0749 0.0750 0.0734
1.0 0.2456 0.2457 0.2492 0.2887 0.2889 0.2695 0.2534 0.2535 0.2529
10.0 0.4369 0.4369 0.4407 0.4484 0.4485 0.4463 0.4389 0.4390 0.4417

considered values of C0. For δ = 10, the velocity difference
of Ne between the DUGKS and the McCormack model is less
than 2.3% and that of Ar is less than 1% as C0 varies from 0.1
to 0.9.

The shear stresses Pxy of the Ne-Ar and He-Xe mixtures are
presented in Table II under different rarefaction parameters
and molar concentrations. The shear stress of each mixture
should be constant theoretically due to the momentum conser-
vation of the mixture, while the numerical results can slightly
deviate from the theoretical values. Thus the average shear
stress P av

xy = ∫ H/2
−H/2 Pxy(y)dy is presented here. The maximum

variation of the shear stress is calculated as

�Pxy = max
y∈[− H

2 , H
2 ]

∥∥∥∥∥Pxy(y) − P av
xy

P av
xy

∥∥∥∥∥, (57)

which is less than 0.7% according to Eq. (57), showing a good
numerical accuracy of the proposed DUGKS. In the Ne-Ar
mixture, the differences in shear stress between the results
obtained from the DUGKS and the McCormack model are less
than 1% for all values of the considered molar concentration
C0 and rarefaction δ, meaning a good agreement between
these two kinetic models at small mass ratio. In the He-Xe
mixture whose mass ratio is much greater than that of the Ne-Ar
mixture, the relative differences between results from the two

kinetic models are less than 1% for all considered values of C0

at δ = 0.01 and 40. However, the DUGKS underpredicts the
shear stress by 2.4% at C0 = 0.5 and 5.6% at C0 = 0.9 when
δ = 0.1 for the He-Xe mixture. At δ = 1, the differences in-
crease and reach to 9.7% for C0 = 0.5 and 13.8% for C0 = 0.9.
For δ = 10, the differences in shear stress are 8.9% and 6.5%
for C0 = 0.5 and C0 = 0.9, respectively. These comparisons
indicate that the relative difference in shear stress of the He-Xe
mixture between the DUGKS and the McCormack model is
much higher than that of the Ne-Ar mixture, especially for
δ = 1, at which the difference reaches the maximum.

The influence of the rarefaction parameter δ on the shear
stress is demonstrated in Fig. 11 with δ ranging from 0.01 to 80
and C0 = 0.5 for the Ne-Ar and He-Xe mixtures. This shows
good agreement between the DUGKS and the McCormack
model over the whole range of the flow regime for the Ne-
Ar mixture, while for the He-Xe mixture, clear deviations are
observed in the slip and transitional regimes between the two
models, suggesting that the difference between the two models
increases with mass ratio.

D. Lid driven cavity flow

The last test case is the two-dimensional lid driven cavity
flow of binary gas mixtures. The flow domain is a square

TABLE II. The shear stresses in the Couette flow of the Ne-Ar and He-Xe mixtures under different rarefaction parameter δ and concentration
of the light species C0.

C0 = 0.1 C0 = 0.5 C0 = 0.9

δ Present UGKS Ref. [55] Present UGKS Ref. [55] Present UGKS Ref. [55]

Ne-Ar
0.1 0.2600 0.2600 0.2601 0.2568 0.2568 0.2576 0.2590 0.2590 0.2594
1.0 0.1683 0.1684 0.1689 0.1657 0.1658 0.1675 0.1677 0.1678 0.1685
10.0 0.04143 0.04145 0.04150 0.04115 0.04112 0.04139 0.04137 0.04142 0.04147

He-Xe
0.1 0.2522 0.2523 0.2527 0.2111 0.2112 0.2163 0.1810 0.1811 0.1919
1.0 0.1641 0.1642 0.1655 0.1337 0.1338 0.1482 0.1171 0.1171 0.1360
10.0 0.04094 0.0410 0.04128 0.03645 0.03646 0.03999 0.03642 0.03643 0.03898
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FIG. 11. The normalized stress of the Couette flow for gas mixtures (a) Ne-Ar and (b) He-Xe under different rarefaction parameters δ with
C0 = 0.5.

cavity with length H and the upper wall moves with a constant
velocity Uw which is also much smaller than the characteristic
molecular velocity v0 in Eq. (51), while other walls are fixed.
The temperature at the four walls is fixed at T0, and the walls are
fully diffusive. The Ne-Ar and He-Xe mixtures are considered
to investigate the influence of the mass ratio on the mixture
velocity and temperature. We also simulate this problem by
the UGKS [28,29] and the DSMC [57] to validate the current
DUGKS method.

First, to verify the indifferentiability principle of the AAP
model, we set mA/mB = 1, μA/μB = 1, and aAA/aBB = 1;
namely, the mixture reduces to a single-species gas. The
rarefaction parameter δ is related to the Reynolds number as

δ = RekBT0

mAUwv0
, (58)

where

Re = ρ0UwH

μA

, ρ0 = n0mA. (59)

In the simulations, we take Uw = 0.1v0. The velocity space
is discretized via the half-range Gauss-Hermite quadrature
with 8 × 8 velocity nodes. The physical space is divided into
120 × 120 uniform cells. The CFL number is set to be 0.6.
Figure 12 shows the velocity profiles along the center lines
of the cavity at Re = 400. The Ghia benchmark solutions
[58] are also included for comparison. It can be seen that
the DUGKS results agree well with the benchmark data,
suggesting that the AAP model satisfies the indifferentiability
principle, which requires that the total distribution function
f = ∑

α=A,B fα satisfies the single-species BGK equation
when the two species are the same. Besides, the ratio of the
time step to the mean collision time (�t/τ ) is about 3.146 for
this case (Kn ≈ 5 × 10−4), which clearly shows that the time
step of the DUGKS is not limited by the mean collision time.
Thus the AP property of the DUGKS for the Navier-Stokes
limit is validated.

Then the flows of two groups of binary gas mixtures
(Ne-Ar and He-Xe) are simulated. The velocity space
for each species is discretized using the Newton-Cotes
rule, with 101 × 101 velocity points distributed uniformly

in [−4
√

2RαT0,4
√

2RαT0] × [−4
√

2RαT0,4
√

2RαT0]. The
physical space is divided into 60 × 60 cells uniformly, where
the results are nearly identical to those on a 100 × 100 mesh.

The velocity profiles of the two mixtures across the cavity
center for δ = 0.1, 1, and 10 under the concentration of
the light species C0 = 0.5 are presented in Figs. 13 and
14. Good agreement can be observed between the DUGKS
and the UGKS and DSMC results for the Ne-Ar mixture as
δ varies from 0.1 to 10. However, for the He-Xe mixture,
whose molecular mass ratio is large, deviations between the
solutions of DSMC and the DUGKS increase with δ. This
discrepancy can be attributed to the relaxation approximation
of the collision operator. The above comparisons show that
the DUGKS based on the AAP model can offer accurate flow
solutions for flows in the rarefied regimes, as the molecular
mass ratio is not large.

Similar phenomena can also be found in the temperature
field as shown in Figs. 15 and 16. The translational kinetic
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FIG. 12. Velocity profiles across the cavity center at Re = 400.
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FIG. 13. Velocity profiles along the center lines in the cavity flow for the Ne-Ar mixture with C0 = 0.5 at (a) δ = 0.1, (b) δ = 1, and (c)
δ = 10.
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FIG. 14. Same as Fig. 13 but for the He-Xe mixture.
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FIG. 15. Temperature contours in the lid driven cavity flow for the Ne-Ar mixture with C0 = 0.5 at (a) δ = 0.1, (b) δ = 1, and (c) δ = 10.
Black line: DSMC; white line with background: DUGKS.
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FIG. 16. Same as Fig. 15 but for the He-Xe mixture.
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TABLE III. Wall time (in seconds) and iteration steps of reaching
steady states. 24 cores are used in the DUGKS and UGKS, and 48
cores are used in DSMC.

δ DUGKS UGKS DSMC

time step time step time step

0.1 11454 17217 18787 19880 37534 6 110 000
1 7240 9625 8314 8770 58244 10 000 000
10 10470 14516 15633 16490 92043 10 000 000

temperature [6] is considered in this case, which is defined by

3

2
kBTtr = 1

2

∑
α

(nα/n)mαc
′2
α , (60)

where c
′2
α can be expressed as

c
′2
α = u2

α + 3RαTα − u2
m. (61)

For the Ne-Ar mixture with a small mass ratio, the DUGKS
results agree excellently with the DSMC solutions in all cases.
For the He-Xe mixture with a large mass ratio, the results of
DUGKS and UGKS always have good agreement, while they
deviate from the DSMC solutions for large δ.

In order to evaluate the computational efficiency, we also
measure the computing time of the DUGKS, UGKS, and the
DSMC method using the lid driven cavity flow case with the
Ne-Ar mixture. Both the DUGKS and UGKS are run with 24
cores using OpenMP programming, while the DSMC solver is
run with 48 cores using MPI programming. The wall time (in
seconds) and numbers of iterations to reach the steady states
in DUGKS/UGKS and the current noise level in DSMC for
δ = 0.1, 1, and 10 are listed in Table III. We can see the
DUGKS is about 15% to 64% faster than UGKS depending
on the rarefaction degree and is significantly faster than the
DSMC method.

V. CONCLUSIONS

In this paper, a DUGKS is developed for flows of binary
gas mixtures of Maxwell molecules in the whole range of the
Knudsen number based on the AAP model. The numerical
scheme possesses the asymptotic preserving (AP) property,
which means that the time step and the cell size are not
constrained by the particle collision time and the mean free path
of gas molecules, respectively, when solving the Navier-stokes
equations at the continuum limit.

In order to validate the DUGKS, several tests have been
performed, including the shock structure, the channel flows
driven by a small gradient of pressure, or temperature, or
concentration, the plane Couette flow, and the cavity flow in all
flow regimes. Excellent agreement has been obtained between
the solutions of the DUGKS and the UGKS for all cases, and
good agreement with the reference solutions is obtained at
moderate Knudsen numbers and mass ratios in channel flow,
especially for the heavy species. But some deviations in tem-
perature are found for the light species, which can be attributed
to the incorrect Prandt number of the AAP model. For the plane
Couette flow, the DUGKS results agree well with those of the
McCormack model at small mass ratio and small Knudsen
numbers; otherwise obvious differences are observed. As for
the cavity flow, the proposed DUGKS results agree well with
the DSMC solutions in all flow regimes when the mass ratio is
small, but clear deviations appear in the near-continuum regime
with large mass ratio, which can be attributed to the relaxation
approximation of the collision operator.

Finally, it should be pointed out that the present DUGKS is
based on the AAP model for Maxwell molecular gases, which
has its own limitations as indicated in the simulation results.
Further development of the method based on more accurate
kinetic models such as the ellipsoidal models [59,60] or the
McCormack model will be studied in future work.
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