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Theoretical understanding of how a deep neural network (DNN) extracts features from input images is still
unclear, but it is widely believed that the extraction is performed hierarchically through a process of coarse
graining. It reminds us of the basic renormalization group (RG) concept in statistical physics. In order to explore
possible relations between DNN and RG, we use the restricted Boltzmann machine (RBM) applied to an Ising
model and construct a flow of model parameters (in particular, temperature) generated by the RBM. We show that
the unsupervised RBM trained by spin configurations at various temperatures from 7 = 0 to 7 = 6 generates a
flow along which the temperature approaches the critical value 7, = 2.27. This behavior is the opposite of the
typical RG flow of the Ising model. By analyzing various properties of the weight matrices of the trained RBM,

we discuss why it flows towards 7, and how the RBM learns to extract features of spin configurations.
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I. INTRODUCTION

Machine learning has attracted interdisciplinary interest as
the core method of artificial intelligence, particularly for big
data science, and is now widely used to discriminate subtle
images by extracting specific features hidden in complicated
input data. A deep neural network (DNN), which is motivated
by human brains, is one of the well-known algorithms [1].
Despite its enormous successes, it is still unclear why the DNN
works so well and how a DNN can efficiently extract specific
features. In discriminating images, we first provide samples of
input images with assigned labels, such as a cat or a dog, and
then train the neural network (NN) so as to correctly predict
the labels of new, previously unseen, input images: this is
the supervised-learning algorithm, and its ability of prediction
depends on how many relevant features the NN can extract.
On the other hand, in unsupervised-learning algorithms, a NN
is trained without assigning labels to data, but trained so as
to generate output images that are as close to the input ones
as possible. If the NN is successfully trained to reconstruct
the input data, it must have acquired specific features of the
input data. With this in mind, unsupervised learnings are often
adopted for pretraining of supervised NNs.

How can a DNN efficiently extract features? Specific
features characteristic of input data usually have hierarchical
structures. An image of a cat can still be identified as an
animal in a very low resolution image but one may not be
able to distinguish it from a dog. Thus, it is plausible that
depth of neural networks reflects such a hierarchy of features.
Namely, a DNN learns low-level (microscopic) characteristics
in the upper stream of the network and gradually extracts
higher-level (macroscopic) characteristics as the input data
flow downstream. In other words, the initial data will get
coarse grained toward output. This viewpoint is reminiscent
of the renormalization group (RG) in statistical physics and
quantum field theories, and various thoughts and studies are
given [2-9] based on this analogy. In particular, in a seminal
paper [4], Mehta and Schwab proposed an explicit mapping
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between the RG and the restricted Boltzmann machine (RBM)
[1,10-13].

The RG is the most important concept and technology to
understand the critical phenomena in statistical physics and
also plays an essential role to constructively define quantum
field theories on a lattice. It is based on the idea (and proved
by Wilson [14]) that the long-distant macroscopic behavior
of a many body system is universally described by relevant
operators (relevant information) around a fixed point and
not affected by microscopic details in the continuum limit.
Through reduction of degrees of freedom in the RG, the
relevant information is emphasized while other irrelevant in-
formation is discarded. In particular, suppose that the statistical
model is described by a set of parameters {A,}, and that
the parameters are mapped to a different set {A} by RG
transformations.' Repeating such RG transformations, we can
draw a flow diagram in the parameter space of the statistical
model, {Ao} = {A,} — {A} — ---. These RG flows control
the behavior of the statistical model near the critical point
where a second order phase transition occurs.

The simplest version of a RBM is a NN consisting of two
layers, a visible layer with variables {v; = 1} and a hidden
layer with variables {h, = %1}, that are coupled to each other
through the Hamiltonian

O({vih{ha)) = — (Z Wiaviha + ) b+ b&“ha).
i,a i a
1
A probability distribution of a configuration {v;,h,} is given
by
1
p(vi) {he)) = Z e k), 2
Z
'In order to describe the RG transformation exactly, infinitely many

parameters are necessary to be introduced. But it can be usually well
approximated by a finite number of parameters.

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.053304&domain=pdf&date_stamp=2018-05-08
https://doi.org/10.1103/PhysRevE.97.053304

SATOSHI ISO, SHOTARO SHIBA, AND SUMITO YOKOO

PHYSICAL REVIEW E 97, 053304 (2018)

where we defined the partition function by Z =
Dty € 2D No intralayer couplings are introduced
in the RBM. Now suppose that the RBM is already trained
and the parameters of the Hamiltonian in Eq. (1), namely,
{Wi, ,bl(.v),bg')}, are already fixed through a process of training.
The probability distribution p({v;},{h,}) also provides the
following conditional probabilities for {h,} (or {v;}) with the
other variables being kept fixed:

p{ha}.{vi})
>y PURY {0}

p{ha},{vi})
Z{vi} pha}{vid)

As we see in the following, these conditional probabilities
generate a flow of distributions, and consequently a flow of pa-
rameters {),} of the corresponding statistical model. Suppose
that we have a set of N(C>1) initial configurations {v; = ol.A}
(A=1,...,N), which are generated by a statistical model
with parameters 1), such as the Ising model at temperature
T©. In the large-N limit, the distribution function

p({ha}{vi}) =

3)

p{uitl{ha}) = “4)

1
qoui) = = > 8(vi — o) ©)

A

faithfully characterizes the statistical model with parameters
A9, Multiplying go({v;}) by the conditional probabilities
of Egs. (3) and (4) iteratively, we can generate a flow of
probability distributions as

qo({vi)) = ri({hah) = Y pUhadliviHao(tvid),  (6)
{vi}
ri(tha) = @1((vih) =Y p(uilthahrithad), (D)

{ha}

and so on for q,({vi) = rusi(ha)) and rypi(the)) —
gn+1({vi}). By combining these transformations, we can
generate a flow of the probability distributions go({v;}) —
q1({v;i}) = q2({vi}) — - --. Then, if the probability distribu-
tion g, ({v;}) is well approximated by the Boltzmann distribu-
tion of the statistical model with different parameters )\fx”), we
can say that the RBM generates a flow of parameters?

)\.fxo)—>)u‘(¥1)—>“-—>)xt(xn)—>”', ®)

where 7 is the number of iterations. We call it the RBM flow
of statistical parameters.

Mehta and Schwab [4] pointed out similarity between RG
transformations and the above flows of parameters in the
unsupervised RBM. But in order to show that the transfor-
mation of parameters {},} in the RBM indeed generates the
conventional RG transformation, it is necessary to show that
the weight matrix W;, and the biases b\",b of the RBM
must be appropriately chosen so as to generate the correct
RG transformation that performs coarse-graining of input
configurations. In Ref. [4], amultilayer RBM is employed as an

2The situation is similar to Footnote 1, and infinitely many parame-
ters are necessary to represent the probability distribution p({%,}) in
terms of the statistical model.

unsupervised-learning NN, and the weights and the biases are
chosen by minimizing the Kullback-Leibler (KL) divergences
(relative entropy) between the input probability distribution
and the reconstructed distribution by integrating (marginal-
izing) over the hidden variables. The authors suggested the
similarity by looking at the local spin structures in the hidden
variables, but they did not show explicitly that the weights
determined by the unsupervised learning actually generate the
flow of RG transformations.

The arguments [4] and misconception in the literature are
criticized by Ref. [6].> In a wider context, the criticism is
related to the following question: what determines whether a
specific feature of input data is relevant or not? In RG transfor-
mations of statistical models, long-wavelength (macroscopic)
modes are highly respected while short-wavelength modes are
discarded as noise. In this way, RG transformations can extract
universal behavior of the model at long wavelength. But, of
course, it is so because we are interested in the macroscopic
behavior of the system: if we are instead interested in short-
wavelength physics, we need to extract opposite features of the
model. Thus, we may say that extraction of relevant features
needs preexisting biases to judge, and supervised learning is
necessary to give such biases to the machine. However, this
does not mean that unsupervised learnings do not have anything
to do with the RG. Even in unsupervised learnings, a NN
automatically may notice and extract some kind of features
of the input data, and the flow generated by the trained NN
will reflect such features.

In the present paper, in order to investigate further the
relationship between the RBM and the RG, we train an RBM
by using spin configurations of an Ising model and construct a
flow of statistical parameters, i.e., temperature 7. Here notice
that in defining the flow of Egs. (6) and (7), we need to specify
how we have trained the RBM because the training determines
the properties of the weights and biases and, accordingly, the
behavior of the flow. In this paper we use the following three
different trainings. One type of RBM (which we call type
V) is trained by configurations at various temperatures from
low to high. The other two types (H and L) are trained by
configurations only at high and low temperatures. The RBM
flow of temperature is constructed for each type of the RBMs:

7O . 7O o .. 570 5 )

In order to measure temperature, we prepare another NN
trained by a supervised learning. The main observation in our
numerical simulations is that, in the type-V RBM with an
appropriate number of neurons, the temperature approaches
the critical point T — T, along the RBM flow, irrespective of
the initial temperature T® of configurations. The behavior is
opposite to the RG flow of the Ising model.

The paper is organized as follows. In Sec. II, we explain
the basic settings and the methods of our investigations. We

3The authors of Ref. [9] gave another counterargument against the
claim by Ref. [4]. In the paper, they showed that in order to reproduce
the ordinary RG flow, it is necessary to train the RBM by a different
method which optimizes the mutual information so that it takes the
relationship between a specific region of spin configurations and its
surroundings into account.
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prepare sample images of the spin configurations of the Ising
model and train RBMs by the configurations without assigning
labels of temperature. Then we construct flows of parameters
(i.e., temperature) generated by the trained RBM.* In Sec. III,
we show various results of the numerical simulations, including
the RBM flows of parameters. In Sec. IV, we analyze properties
of the weight matrices W;, using the method of singular value
decomposition. The final section is devoted to summary and
discussions. Our main results of the RBM flow and conjectures
about the feature extractions of the unsupervised RBM are
written in Sec. III B.

II. METHODS

In this section we explain various methods for numerical
simulations to investigate relations between the unsupervised
RBM and the RG of the Ising model. Though most methods
in this section are standard and well known, we explain them
in detail to make the paper self-contained. In Sec. IIC, we
explain the central method of generating the RBM flows. Basic
materials of the RBM are given in Sec. IIB. The other two
sections, Secs. II A and IID, can be skipped over unless one
is interested in how we generate the initial spin configurations
and measure the temperature of a set of configurations.

A. Monte Carlo simulations of Ising model

We first construct samples of configurations of the two-
dimensional Ising model by using Monte Carlo simulations.
The spin variables o, , = &1 are defined on a two-dimensional
lattice of size L x L. The index (x,y) represents each lattice
site and takes x,y = 0,1, ...,L — 1. The Ising model Hamil-
tonian is given by

L—1
H=-J Z Gx,}*(ax+l._y' +Gx—1,y + Ux,y+1 +Ux,y—l)- (10)

x,y=0

It describes a ferromagnetic model for J > 0 and an antifer-
romagnetic model for J < 0. Here we impose the periodic
boundary conditions for the spin variables,

OL,y = 00,y, O_1,y :==0L—1,y,

Ox,L *= Ox, 05 Ox,—1:=0x[—1- (11)

Generations of spin configurations at temperature 7 are
performed by the method of Metropolis Monte Carlo (MMC)
simulation. In the method, we first generate a random configu-
ration {0y ,}. We then choose one of the spins o, , and flip its
spin with the probability

1 (dE;y <0)
Px,y = e dExy/ksT (dE,, > 0),

where d E, , is the change of energy of this system:

12)

dEx,y = Zjox,y(ax+l,y + 0x—1,y + Ox,y+1 + Ux,y—l)- (13)

“The two-dimensional Ising model is the simplest statistical model
to exhibit the second order phase transition, and there are many
previous studies of the Ising model using machine learnings. See,
e.g., Refs. [15-20].

.-
u u
. | k
T=0 T=2 T=3 T=6

FIG. 1. Examples of spin configurations at temperatures 7 =0,2,
3,6.

The probability of flipping the spin, Eq. (12), satisfies the
detailed balance condition P,y p, = Py_,spy Where p;
e~ Es/ksT ig the canonical distribution of the spin configuration
s = {oy,y} at temperature 7. Thus, after many iterations of
flipping all the spins, the configuration approaches the equilib-
rium distribution at 7'. Since all physical quantities are written
in terms of a combination of J/kpT, we can set the Boltzmann
constant kg and the interaction parameter J to be equal to 1
without loss of generality.

In the following analysis, we set the lattice size L?=10x
10 and repeat the procedure of MMC simulations 100L> =
10000 times to construct spin configurations. In our simula-
tions, we generated spin configurations at various temperatures
T =0,0.25,0.5, ...,6.5 The number of sample spin configu-
rations to train the RBM is 1000 for each temperature. Some
of typical spin configurations are shown in Fig. 1.

B. Unsupervised learning of the RBM

Our main motivation in the present paper is to study whether
the RBM is related to the RG in statistical physics. In this
section, we review the basic algorithm of the RBM [1,10-13],
which is trained by configurations constructed by the MMC
method of Sec. ITA.

As explained in the Introduction, the RBM consists of two
layers as shown Fig. 2(a). The initial configurations {oy ,} of
the Ising model generated at various temperatures are input
into the visible layer {v; }. The number of neurons in the visible
layer is fixed at N, = L>=100 (G =1,...,N,) to represent
the spin configurations of the Ising model. On the other hand,
the hidden layer can take an arbitrary number of neurons, N;,. In
the present paper, we consider seven different sizes: N, = 16,
36, 64, 81, 100, 225, and 400. The N, spin variables in the
hidden layer are given by {h,} fora =1, ...,Nj.

The RBM is a generative model of probability distributions
based on Eq. (2). We first explain how we can train the RBM by
optimizing the weights W;, and the biases bl(.v),bg’). The goal
of the training is to represent the given probability distribution
qo({v;}) in Eq. (5), as faithfully as possible, in terms of a model
probability distribution defined by

pvi}) = é Y e bt (14)

{ha}

SFor T = 0, we practically set T = 107 for numerical calculations.
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(a) (b)

FIG. 2. (a) Two-layer neural network of the RBM with a visible
layer {v;} and a hidden layer {A,}. These two layers are coupled
but there are no intralayer couplings. (b) The RBM generates
reconstructed configurations from {v;} to {9;} through the hidden
configuration {4, }.

The partition function Z =Y, e~ () js difficult to
evaluate,® but summations over only one set of spin variables
(e.g., over {v;}) are easy to perform because of the absence
of the intralayer couplings. It also makes the conditional
probabilities in Eqs. (3) and (4) to be rewritten as products
of probability distributions of each spin variable:

p(thalvi})
=[] pthaltvi)

1
_ . s
1:[ 1+ exp [—2hq (X2 Wiavi + br(lh))] "
p{{vitl{ha})
= l—[ p(vi|{ha})
1
_ 1—[ (16)

1 +exp[—2u (X, Wicha + bfv))] '
Then the expectation values of spin variables in the hidden (or
visible) layer in the background of spin configurations in the
other layer are calculated as

(ha) v, = tanh (Z Wiqvi + bfj”), (17)

1

(v:)(n,) = tanh (Z Wiaha + bﬁ”). (18)

Now the task is to train the RBM so as to minimize the
distance between two probability distributions of g({v;}) and
p({v;}) by appropriately choosing the weights and the biases.
The distance is called the KL divergence, or relative entropy,

%An efficient way to evaluate the partition function using the mean-
field method is proposed in Ref. [21].

and is given by

g({vi})
p({vi})

KL(g Il p) =) q({vi})log
{vi}

= const — Y _g({v;)log p({vi}).  (19)
{vi}

If the two probabilities are equal, the KL divergence vanishes.
Otherwise, derivatives of KL(q || p) with respect to the weight

W,, and the biases b\, b are given by

dKL(q |l p)
8‘;&4 : = (vihd>dala - (Uiha>mode1»
dKL(q || p)
IO = (Vi )data — {Vi)model, (20)
d KL
(C{h)” p) = (ha>data - (ha>model»
db,

where averages are defined by

(A{ViD)a = Y (DA ). 1)
{vi}
(A} haD)modea = Y pUvikhaD AW} {ha)), (22)
{vi} {hat

and h, in (- )gaa is replaced by (h4)(,; of Eq. (17). In
training the RBM, we change the weights and biases so that
the KL divergence is reduced. Using the method of maximum
likelihood learning, we renew values of the weights and biases
as

W = Woew = W +8W,
bW — bV = bV + 5, (23)

new

) _y ph) () (h)
b bnew b 8b ’
where

Wia = €((viha)data — (Vilta)model)s
5b§”) = €((V;)data — (Vi) model), (24)
SbE,h) = €({ha)data — (ha)model)-

Here € denotes the learning rate, which we set to 0.1. The
first terms (---)qaa are easy to calculate, but the second
terms (- - - )moder are difficult to evaluate since it requires the
knowledge of the full partition function Z.

To avoid this difficulty, we need to use the method of Gibbs
sampling to approximately evaluate these expectation values
(- -+ Ymodel- Practically we employ a more simplified method,
which is called the method of contrastive divergence (CD)
[22-24]. Given the input data of the visible spin configurations
{viA O = o}, the expectation value of the hidden spin variable
h, canbe easily calculated as Eq. (17). We write the expectation
value as

D = (hg) a0, = tanh (Z Wi v @ 4 bg'>>. (25)

l

Then in this background of the hidden spin configurations, the
expectation value of v; can be again easily calculated by using
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Eq. (18). We write it as
v = (v;) a0, = tanh (Z Wih2D 4 bf.'”). (26)

Then we obtain hf(z) = <ha){u%‘“>}» and so on. We can iterate
this procedure many times and replace the model-dependent
terms in Eq. (20) by the expectation values generated by this
method.

In doing the numerical simulations in the present paper,
we adopt the simplest version of CD, called CD;. In the CD;
method, averages over the initial data are given as

1
(Vi)data = N ;O‘iAa
1
(hadawa = ;h;‘“), 27)

1
(Viha)data = N ZUiAh;q(l)v
A

where o* denotes input spin configuration generated by the
method of Sec. Il A. On the other hand, (- - - ) moqer are replaced
by the following approximate formulas:

1
(Vi) model = N Z U,‘A(l)y
A
1
(hadmoder = ; hA®), (28)

1 3 ppe
Uihamoe:_ v; h().
( )model N ~ i a

In the numerical simulations, we generated 1000 spin
configurations for each of 25 different temperatures 7 =
0,0.25, ... ,6fortraining the (type-V) RBM, in which the index
A runs from 1 to N = 25 000. In training other types of RBMs
(type H or L), we use only a restricted set of configurations at
high or low temperatures. We repeat the renewal procedure of
Eq. (23) many times (5000 epochs) and obtain adjusted values
of the weights and biases.

The training of the RBM is performed so as to minimize
the KL divergence, but it does not mean that the reconstructed
configuration becomes exactly the same as the initial one since
it is the distance of probability distributions that is minimized.
Moreover, the KL divergence itself cannot become zero unless
the number of the hidden neurons is infinite.

C. Generation of RBM flows

As discussed in the Introduction, once the RBM is trained
and the weights and biases are fixed, the RBM can be used to
generate a sequence of probability distributions in Eq. (7). Then
we translate it into a flow of parameters (i.e., temperature).
In generating the RBM flow, the initial set of configurations

FIG. 3. Three-layer neural network for supervised learning with
an input layer {z!"}, a hidden layer {z®}, and an output layer {z}.

should be prepared separately in addition to the configurations
that are used to train the RBM.”

Let us see more explicitly how we can generate a flow of
parameters. For an initial configuration v; = vi(o), we can define

a sequence of configurations following Eqs. (25) and (26) as
{vfo)} - {hP} — {vlf])} - {hP} - {vl@} — . (29)

Fig. 2(b) shows a generation of new configurations from {v; }
to {#;} through {A,}. Since each value of v\’ and K (for
n > 0) is defined by an expectation value as in Egs. (25) and
(26), it does not take an integer 1 but a fractional value
between *1. In order to get a flow of spin configurations,
we need to replace these fractional values by +1 with a
probability (1« (v"))/2 or (1 £ (h™))/2. It turns out that
the replacement is usually a good approximation since the
expectation values are likely to take values close to 1 owing
to the property of the trained weights |W;,| > 1. In this way,
we obtain a flow of spin configurations

{vfo)} — {vfl)} — {vl@} - {vf")} (30)

starting from the initial configuration {vfo)}. It is transformed
to a flow of temperature distributions by using the method
explained in Sec. IID.

D. Temperature measurement by a supervised-learning NN

Next we design a NN to measure the temperature of spin
configurations. The NN for the supervised learning has three
layers with one hidden layer in the middle (see Fig. 3).

The input layer {zgl)} consists of L = 100 neurons in which
we input spin configurations of the Ising model. The output
layer {zf)} has 25 neurons which correspond to 25 different
temperatures that we want to measure. The number of neurons
in the hidden layer {z} is set to 64. We train this three-layer
NN by a set of spin configurations, each of which has a label of
temperature. Thus, this is the supervised learning. As input data

"Thus we generate 25 000 spin configurations in addition to the
25 000 configurations used for training the RBM.
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to train the NN, we use the same N = 25000 configurations
which were used to train the RBM.?

The training of the NN is carried out as follows. Denote the
input data as

Zitli) =0/, 31

where A=1,...,N, and aiA are the spin configurations
{or,y = 1} as in Sec. IIB. The input data are transformed
to fo()l in the hidden layer by the following nonlinear transfor-
mation:

100
(2) (Z Z(l)W(l) + bél)) f(U(l)) (32)

where W'V is a weight matrix and b is a blas The activation
function f(x)ischosenas f(x) = tanh(x). Z 1s transformed

to Z( ) in the output layer, which corresponds to the label,

namely, temperature, of each configuration. The output Z; (3)

given by

z9 = g(Z Zow? + b(2)> Lg(Us).  (33)

where Wa(i) and bf) are another weight matrix and bias. The
function g(x) is the softmax function

expU, (2)

U(Z) i
S =

(34)

so that Zi\i can be regarded as a probability since Y, Z; (3) =1
is satlsﬁed for each configuration A. Thus, the NN transforms
an input spin configuration Z, (1) to the probability Z, (3) of the
configuration to take the pth output value (i.e., temperature)
Each of the input configurations Z(Ali) is generated by the
MMC method at temperature 7. T takes one of the 25 discrete
values T = le(V — D @w=1,...,25). If the Ath configuration

is labeled by v, we want the NN to give an output Zf;l as close
as the following one-hot representation:

dV =(0,...,0,17,0,...,0), (35)

or its uth component is given by d(”) = 8. It can be inter-
preted as a probability of the conﬁguratlon A to take the pth
output. Then the task of the supervised training is to minimize
the cross entropy, which is equivalent to the KL divergence
of the desired probability d, (V) and the output probability Z(3)
The loss function is thus grven by the cross entropy,

Ey=KL(d\)|Z5) = Z d10gzb). (36)

Then, using the method of back propagation [25], we renew
values of the weights and biases from the lower to the upper

8In order to check the performance of the NN, namely, to see how
precisely the machine can measure the temperature of a new set of
configurations, we use another 25 000 configurations that are prepared
for generating the sequence of probability distributions of the RBM
in Sec. IIC. We show the results of the performance in Sec. [II A.

stream:
WO 5 wO — woO 4 sw®,
b — b = p® 4 5p©, (37)

The variations of W ,8b®) at the lower stream are given by

2 € DNT AB)
W = -5 Z(z< Daalis
A
@o_ _*€ ©)]
8bu - _NZAAM’ (38)
A
where A(g) = ZG) d(v) The learning rate € is set to 0.1.

Then using these 1ower stream variations, we change the upper
stream weights and biases as

swi = Z(zU))T AL,
(O) 2)
o) = — XA: A, (39)
where
A =D AR W F(UL). (40)
n

We repeat this renewal procedure many times (7500 epochs)
for the training of the NN to obtain suitably adjusted values of
the weights and biases.

Finally we note how we measure temperature of a configu-
ration. If the size of a configuration generated at temperature 7
is large enough, say, L = 10'°" the trained NN will reproduce
the temperature of the configuration quite faithfully. However,
our configurations are small sized with only L = 10. Thus,
we instead need an ensemble of many spin configurations and
measure a temperature distribution of the configurations. The
supervised learning gives us this probability distribution of
temperature.

III. NUMERICAL RESULTS

In this section we present our numerical results for the flows
generated by the unsupervised RBM and discuss a relation with
the renormalization group flow of the Ising model. Our main
results of the RBM flows are written in Sec. III B.

A. Supervised learning for temperature measurement

Before discussing the unsupervised RBM, let us first see
how we trained the NN to measure temperature.

In Fig. 4, we plot behaviors of the loss function in Eq. (36)
as we iterate renewals of the weights and biases, Eq. (37).
The lower line shows the training error, namely, values of the
loss function Eq. (36) after iterations of training using 25 000
configurations. It is continuously decreasing, even after 7500
epochs. On the other hand, the upper line shows the test error,
namely, values of the loss function for an additional 25 000
configurations which are not used for the training. This is also
decreasing at first, but after 6000 epochs it becomes almost
constant. After 7500 epochs, in fact, it begins to increase. This
means the machine becomes overtrained; therefore, we stopped
the learning at 7500 epochs.
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FIG. 4. Training error and test error (up to 7500 epochs).

In Fig. 5 we show the probability distributions of temper-
ature this NN measures. Here we use configurations at 7 =
0,2,3,6 which are not used for the training. Though they are not
sharply peaked at the temperatures where the configurations
are generated,’ each of them has characteristic shape that
is different temperature by temperature. Thus, it is possible
to distinguish the temperature of the input configurations by
looking at the shape of the probability distribution.'?

In the following, by using this NN, we measure the temper-
ature of configurations that are generated by the RBM flow.

B. Unsupervised RBM flows

Now we present the main results of our numerical simula-
tions, namely, the flows generated by the unsupervised RBM.
As discussed in the Introduction, if the RBM is similar to the
ordinary RG in that it possesses a function of coarse graining,
the RBM flow must go away from the critical point 7, = 2.27.
In order to check it, using the method of Sec. II B, we construct
three different types of unsupervised RBMs, which we call type
V, type L, and type H, respectively. Each of them is trained by
a different set of spin configurations generated at different sets
of temperatures. We then, following the methods of Secs. IIC

There are two reasons for this broadening of the distributions.
One is due to the finiteness of the size of a configuration N =
LxL = 10x10. Another is due to the limit of measuring temperature
by the NN. If the size of a configuration was infinite and if the
ability of discriminating subtle differences of different temperature
configurations was limitless, we would have obtained a very sharp
peak at the labeled temperature.

10The sharpness of distribution is different for different tempera-
tures, and accuracy is worse for very low or very high temperatures.
This is because our lattice has IR and UV cutoffs. Namely, for low tem-
perature, most spin configurations are almost uniform below 7' < 1
and difficult to distinguish from each other. If lattice size is bigger
than 10x 10, low-temperature configurations will be more sharply
distinguishable. For high temperature, the correlation length becomes
shorter than the unit lattice length and again spin configurations are
hard to distinguish above 7' > 3.
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FIG. 5. Probability distributions of measured temperatures for
various sets of configurations generated at 7 =0, 2, 3, and 6.
Temperature of the configurations can be distinguished by looking
at the shapes of the distributions.

and IID, generate flows of temperature distributions by using
these trained RBMs.

1. Type-V RBM: Trained by various configurations
at T ={0,0.25,0.5, ...,6}

First we construct the type-V RBM, which is trained by
configurations at temperatures ranging widely from low to
high, T = 0,0.25, ...,6. The temperature range includes the
temperature 7 = 2.25 near T,. After training is completed,
this unsupervised RBM will have learned features of spin
configurations at these temperatures.

Once the training is finished, we then generate a sequence of
reconstructed configurations as in Eq. (30) using the methods
in Sec. IIC. For this, we prepare two different sets of initial
configurations. One is a set of configurations at 7 = 0, and
another at 7 = 6. These initial configurations are not used for
the training of the RBM. Then by using the supervised NN in
Sec. IIT A, we measure temperature and translate the flow of
configurations to a flow of temperature distributions.

In Figs. 6 and 7, we plot temperature distributions of config-
urations that are generated by iterating the RBM reconstruction
in Sec. IIC. The “itr” in the legends means the numbers of
iterations n by the unsupervised RBM. Fig. 6 shows a flow
of temperature distributions starting from spin configurations
generated at 7 = 0. Fig. 7 starts from 7 = 6. In all of the
figures, the solid lines are the measured temperature distri-
butions of the initial configurations.!" The other lines show
temperature distributions of the reconstructed configurations
{v?”)} after various numbers of iterations. Figs. 6(a) and 7(a)
show the temperature distributions at small iterations (up to
10 in Fig. 6 and 50 in Fig. 7), while Figs. 6(b) and 7(b) are
at larger iterations up to 1000. These results indicate that the
critical temperature 7, is a stable fixed point of the flows in
type-V RBM. Itis apparently different from a naive expectation
that the RBM flow should show the same behavior as the RG

"' As discussed in Footnote 9, these distributions are not sharply
peaked at the temperature at which the configurations are generated.
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FIG. 6. Temperature distributions after various numbers of iterations of type-V RBM, which is trained by the configurations at 7' =
0,0.25, ...,6. The original configurations are generated at T = 0. After only several iterations, the temperature distribution peaks around 7,

and stabilizes there: 7, is a stable fixed point of the flow.

flow. Indeed it is in the opposite direction. From whichever
temperature 7 = 0 or T = 6 we start the RBM iteration, the
peak of the temperature distributions approaches the critical
point (T = 2.27). A reason for this behavior is discussed in
Summaries and Conjectures at the end of this section.

In order to further confirm the above behavior, we provide
another set of configurations at 7 = 2.25 as initial config-
urations and generate the flow of temperature by using the
same trained RBM. The flow of temperature distributions is
shown in Fig. 8. We can see that the temperature distribution
of the reconstructed configurations remains near the critical
point and never flows away from there.!> If the process
of the unsupervised RBM corresponds to coarse graining
of spin configurations, the temperature distributions of the
reconstructed configurations must flow away from 7,.. Though
the direction of the flow is opposite to the RG flow, both flows
have the same property in that the critical point 7 = T, plays
an important role in controlling the flows.

So far, in obtaining the above results of Figs. 6-8, we
used an unsupervised RBM with 64 neurons in the hidden
layer. We also trained other RBMs with different sizes of
the hidden layer (N, = 16,36,81,100,225,400), but by the
same set of spin configurations. When the size of the hidden
layer is smaller than (or equal to) that of the visible layer
N, = 100, namely, N, = 100, 81, 64, 36, or 16, we find that
the temperature distribution approaches the critical point. A
difference is that for smaller N}, the speed of the flow to
approach T, becomes faster (i.e., the flow arrives at 7. by
smaller numbers of iterations).

In contrast, when the RBM has more than 100 neurons in
the hidden layer, N, > N,, we obtain different results. Fig. 9
shows the case of N, = 225 neurons. Until about ten iterations,
the measured temperature distribution behaves similarly to the
case of N, < 100; i.e., it approaches the critical temperature.
However, afterward it passes the critical point and flows away

12We also trained the RBM using configurations of a wider range of
temperatures: 7' = 0,0.25,...,10,00. The results are very similar,
and the temperature distributions of reconstructed configurations
always approach the critical point 7, = 2.27.

to higher temperature. In the case of 400 neurons, it moves
toward high temperature at faster speed. This behavior suggests
that, if the hidden layer has more than a “necessary” size, the
NN tends to learn a lot of noisy fluctuations specific to higher
temperature configurations. We come back to this conjecture
in later sections.

2. Type-H or -L RBM: Trained by configurations
at higher or lower temperatures

Next we construct another type of RBM, which is trained
by configurations at higher temperatures 7 = 4,4.25,...,6
than 7, ~ 2.25. We call it type-H RBM. The results of the
flows of temperature distributions in type-H RBM are drawn
in Fig. 10. In this case, the measured temperature passes the
critical point and goes away toward higher temperature. The
behavior is understandable since the RBM must have learned
only the features at higher temperatures. We also find that, if
the number of neurons in the hidden layer is increased, the flow
moves more slowly.

Finally, we construct type-L RBM, which is trained by
configurations only at the lowest temperature 7 = 0. Fig. 11
shows the numerical results of flows in the type-L RBM.
Similarly to the type-H RBM, the measured temperature passes
the critical point, but flows toward lower temperature instead
of higher temperature. It is, of course, as expected because
the type-L RBM must have learned the features of spin
configurations at T = 0. In the type-L RBM, as far as we have
studied, the flow never goes back to higher temperature even
for large N,,. It will be because the T = 0 configurations used
for training do not contain any noisy fluctuations specific to
high temperatures. This also suggests that the RBM does not
learn features that are not contained in the configurations used
for the trainings.

3. Summaries and conjectures

Here we summarize the numerical results. For the type-V
RBM,

(i) When N, < 100 = N,, the measured temperature 7'
approaches T, (Figs. 6-8).
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FIG. 7. Temperature distributions after various numbers of iterations of the same RBM as Fig. 6. The original configurations are generated

at T = 6. After ~50 iterations, the distribution stabilizes at T,.

(ii) However, for N > 100 = N,, the flow eventually goes
away toward T = oo (Fig. 9).

(iii) The speed of flow is slower for a larger Ny,.

For the type-H or -L RBM,

(i) The temperature 7 flows toward 7 = oco/T = 0, re-
spectively (Figs. 10 and 11).

(i1) The speed of flow is slower for a larger Ny,.

These behaviors are, of course, controlled by the properties
of the weights and biases that the unsupervised RBMs have
learned in the process of trainings.

Understanding the above behaviors is nothing but answer-
ing the question of what the unsupervised RBMs have learned
in the process of training. The most important question will
be why the temperature approaches 7. in the type-V RBM
with N, < N,, instead of, e.g., broadening over the whole
region of temperature from 7 =0 to 7 = 6. Note that we
did not teach the NN about the critical temperature or the
presence of phase transition. We just have trained the NN
by configurations at various temperatures, from 7 =0 to
T = 6. Nevertheless, the numerical simulations show that the
temperature distributions are peaked at T, after some iterations
of the RBM reconstruction. Thus, we are forced to conclude
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FIG. 8. Temperature distributions after various numbers of itera-
tions of the same RBM as Figs. 6 and 7. The original configurations
are generated at 7 = 2.25. The distribution is stable at around 7.

that the RBM has automatically learned features specific to the
critical temperature 7.

An important feature at 7, is the scale invariance. We have
generated spin configurations at various temperatures by the
Monte Carlo method, and each configuration has typical fluctu-
ations specific to each temperature. At very high temperature,
fluctuations are almost random at each lattice site and there
are no correlations between spins at distant positions. At lower
temperature, they become correlated: the correlation length
becomes larger as T — T, and diverges at 7.. On the other
hand, at T <« T, spins are clustered and in each domain all
spins take oy , = +1 or —1. Atlow temperature configurations
have only big clusters, and as temperature increases small-
sized clusters appear. At T, spin configurations begin to have
clusters of various sizes in a scale-invariant way.

Now let us come back to the question of why the type-V
RBM generates a flow approaching 7. and does not broaden
the temperature distribution over the whole region. We have
trained the type-V RBM by using configurations at various
temperatures with different-sized clusters, and in the process
the machine must have simultaneously acquired features at
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FIG. 9. Temperature distribution after various numbers of iter-
ations of type-V RBM with 225 neurons in the hidden layer; i.e.,
Nj, > N,. The original configurations are generated at 7 = (. The

distribution has a peak at T = T, after ten iterations, but then moves
toward T = oo.
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FIG. 10. Flow of temperature distributions starting from 7 = 0 in type-H RBM that is trained by configurations at only 7' = 4,4.25, ... ,6.
The NN has (a) N, = 64 neurons and (b) N, = 225 neurons, respectively, in the hidden layer. Both flows move to higher temperature, and the

speed is slower for the larger N,,.

various temperatures. Consequently the process of the RBM
reconstruction adds various features that the machine has
learned to a reconstructed configuration. If only a single
feature at a specific temperature was added to the recon-
structed configuration, the distribution would have a peak
at this temperature, just as in the type-L RBM. But in the
type-V RBM it cannot happen because various features of
different temperatures will be added to a single configuration
by iterations of reconstruction processes. Then one may ask if
there is a configuration that is stable under additions of features
at various different 7'.

Our first conjecture about this question is that a set of
configurations at 7, is a stabilizer (and even more an at-
tractor) of the type-V RBM with N, < N,. It must be due
to the scale-invariant properties of the configurations at 7.
Namely since these configurations are scale invariant, they
have all the features of various temperatures simultaneously,
and consequently they can be the stabilizer of this RBM.
This sounds plausible since the scale invariance means that
the configurations have various different characteristic length
scales. However, we notice that this does not mean that the
RBM has forgotten the features of configurations away from
the critical point. Rather it means that the RBM has learned
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features of all temperatures simultaneously. This does not mean
either that the configurations at 7 = T, have had a particularly
strong influence on the machine in the process of training. It can
be confirmed as follows. Suppose we have trained an RBM by
configurations at temperatures excluding 7' = T, e.g., trained
it by configurations at all temperatures except T = 2.25 and
2.5. We found in the numerical simulations that such an RBM
also generates a flow toward the critical point though we did not
provide configurations at T = T, for the process of training.'3
Therefore, we can say that the type-V RBM has learned the
features at all the temperatures and that configurations at 7,
are special because they contain all the features of various
temperatures in the configurations.

Our second conjecture, which is related to the behavior
of the type-V RBM with N, > N,, is that RBMs with un-
necessarily large-sized hidden layers tend to learn lots of

3Even when an RBM has learned configurations only at tempera-
tures excluding those around 7, (e.g., T =0, ...,1and4,...,6), the
flow again approaches T = T..
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FIG. 11. Flow of temperature distributions starting from 7' = 6 in type-L. RBM. Type-L RBM is trained by configurations at only 7" = 0.

(a) N, = 64 and (b) N;, = 225.
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irrelevant features.'* In the present case, they are noisy fluctua-
tions of configurations at high temperatures. High-temperature
configurations have only short distance correlations, whose
behavior is similar to the typical behavior of noise.
The conjecture will be partially supported by the similarity
of the RBM flows between the type-V RBM with N, > N,
and the type-H RBM. Namely, both RBM flows converge on
T = oo. The similarity indicates that the NN with a larger
number N, may have learned too many noiselike features of
configurations at higher temperatures. The above considera-
tions will teach us that the moderate size of the hidden layer,
N < Ny, is the most efficient to properly extract the features
of input configurations.

IV. ANALYSIS OF THE WEIGHT MATRIX

In the previous section, we showed our numerical results
for the flows generated by unsupervised RBMs, and pro-
posed two conjectures. One is that the scale-invariant T = T,
configurations are stabilizers (and attractors) of the type-V
RBM flow. Another conjecture is that the RBM with an
unnecessarily large-sized hidden layer N, > N, tends to learn
too many irrelevant noises. In this section, to further understand
the theoretical basis of the feature extractions and to give
supporting evidence for our conjectures, we analyze various
properties of the weight matrices and biases of the trained
RBMs. In particular, we study properties of WWT by looking
at spin correlations in Sec. IV B, magnetization in Sec. IVC,
and the eigenvalue spectrum in Sec. [V D.

A. Why WWT is important

All the information that the machine has learned is con-
tained in the weights W;, and the biases bf”),bfl”). Since the
biases take smaller values than the weights (at least in the
present situations), we concentrate on the weight matrix W;,
G=1,....,Ny=L*a=1,...,N,)inthe following.

Let us first note that the weight matrix W;, transforms as

Wia = Wia =Y Uy Win(V ) (41)
jb

under transformations'> of exchanging the basis of neurons
in the visible layer (U;;) and in the hidden layer (V). Since
the choice of basis in the hidden layer is arbitrary, relevant
information in the visible layer is stored in a combination of
Wi, thatis invariant under transformations of V,;,. The simplest
combination is a product:

WWT)ij =" WigWaj. (42)

Itis an N, x N, = 100x 100 matrix, and independent of the
size of N,. But its property depends on N, because the rank
of WWT must be always smaller than min(N,, Ny,). Thus, if

14Ref. [26] points out that a similar phenomenon occurs in the deep
belief network.

15Since spin variables on each lattice site are restricted to take values
+1, the matrices, U;; and V,,, are elements of the symmetric group,
not the orthogonal Lie group.

Nj < Ny, the weight matrix is strongly constrained; e.g., a unit
matrix WW7T = 1 is not allowed.

The product (42) plays an important role in the dynamics of
the flow generated by the RBM. It can be shown as follows. If
the biases are ignored, the conditional probability (15) and the
expectation value (17) for A, in the background of v; become

ez; v Wiah,

osh (Zz v; Wia) ’
(hy) = tanh (Z i W,-a). (43)

p{ha}l{vi}) = 7a

In p({hs}|{v:}), a combination ), v; W;, =: B, can be re-
garded as an external magnetic field for 4,. Thus, these two
variables, B, and h,,, tend to correlate with each other. Namely,
the probability p({h,}|{v;}) becomes larger when they have the
same sign. Moreover, for | B,| < 1, (h,) is approximated by B,
and we can roughly identify these two variables:

(ha) ~ By := Y viWi. (44)

It is usually not a good approximation since weights can have
larger values. For a large value of |B,| > 1, (h,) is saturated
at (h,) = B,/|B.|, which is further strongly correlated to B,,.
For simplicity let us assume Eq. (44) for the moment.

Suppose that the input configuration is given by { v}o)} =
{aiA}. If Eq. (44) is employed, we have hgl) = Béo) =
> vfo) Wi;,. Then the conditional probability (16) in the back-
ground of A) with b = 0,

1) eZa vi Wiahy
e _ , 45
p({v }|{ }) ll_[ 2 cosh (Za Wiahg])) ( )
can be approximated as [27,28]
20 viWia 225 Wia U;O)
: h(l) ~ ¢
p({v }|{ a }) U 2 cosh (Za Wig Zj Wjal);o))
e v (WWT); ”5’0)
(46)

B H 2 cosh (X ;(WWT);v)

The RBM learns the input data {v(jo)} so that the probability
distribution p reproduces the probability distribution of the
initial data, g({v;}) = + >, 8(v; — 0;*). Therefore, training
of the RBM will be performed so as to enhance the value
A(0) T A(0) . .
ZAM o (WW )ijoj . This means that W is chosen so
that (WWT)U- will reflect the spin correlations of the input
configurations {aiA} atsite i and j. The tendency is not spoiled
by a large value of |B,]|.

In this simplified discussion, learning of the RBM is
performed through the combination WW7. Of course, we
neglected the nonlinear property of the neural network and
the above statement cannot be justified as it is. Nevertheless,
we find below that the analysis of WW7 is quite useful to
understand how the RBM works.
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FIG. 12. Elements of WW7T when the hidden layer has (a) 16, (b) 100, and (c) 400 neurons.

B. Spin correlations in WWT

In Fig. 12, we plot values of matrix elements of the
100x 100 matrix WWT. These three figures correspond to
the RBMs with different sizes of N,. We can see that
they have large values in the diagonal and near diago-
nal elements. Note that the spin variables in the visible
layer, o,, with x,y=1,...,L =10, are lined up as
(0‘1'1,0'1,2, «.301,L,0215++-,02 1,031, ... ,O‘L,L), and named
(01,02, ...,0n). Hence, lattice points i and j of o; (i =
1,...,L?%) are adjacent to each other when j =i £ 1 and
j =1i=£L. In the following, we mostly discuss the type-V
RBM unless otherwise stated.

As discussed above, the product of weight matrices WW7
must reflect correlations between spin variables of the input
configurations used for the training of the RBM. The strongest
correlation in vi(o)(WWT),- jvg.o) is of course the diagonal com-

ponent, i = j. Thus, we expect that the matrix WWT will
have large diagonal components. Indeed, such behavior can
be seen in Fig. 12. In particular, for N, = 400 > N, = 100
[Fig. 12(c)], WWT is clearly close to a diagonal matrix. It
is almost true for the case of N, = 100 = N, [Fig. 12(b)].
However, for N, = 16 < N, = 100 [Fig. 12(a)], it is different
from a unit matrix, and off-diagonal components of (WWT),-_,-
also have large values, particularlyat j =i + land j =i + 2.
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FIG. 13. Averaged values of the off-diagonal components of
WWT (normalized by the diagonal components). The solid line (the
most middle line) is the behavior of the type-V RBM that has learned
all the temperatures T = 0, . .. ,6. Each of the other lines corresponds
to the RBM that has learned configurations at a single temperature
T =0, 2, 3, or 6, respectively.

This behavior must be a reflection of the spin correlations of
the input configurations.' It is also a reflection of the fact
that the rank of WW?7 is smaller than N, and WW7 cannot
be a unit matrix if N, < N,. Thus, even though only less
information can be stored in the weight matrix for a smaller
number of hidden neurons, the relevant information of the spin
correlations is well encoded in the weight matrix of the RBM
with N, < N, compared with the RBM with larger Nj,. Then
we wonder why such relevant information is lost in the RBM
with N, > N,. This question might be related to our second
conjecture proposed at the end of Sec. IIIB that the RBM
with very large N, will learn too much irrelevant information,
namely, noises of the input configurations. It is interesting and
a bit surprising that the RBM with fewer hidden neurons seems
to learn more efficiently the relevant information of the spin
correlations.

In order to further confirm the relation between the corre-
lations in the combination of the weight matrix W WT and the
spin correlations of the input configurations, we study struc-
tures of the weight matrices of other types of RBMs. In Fig. 13,
we plot behaviors of the off-diagonal components of WW T
for various RBMs. Each RBM is trained by configurations at a
single temperature T =0 (type L), T =2, T =3,and T =6
respectively. The size of the hidden layer is set to N, = 16.
For comparison, we also plot the behavior of the off-diagonal
components for the type V RBM.

Fig. 13 shows that the correlation of WW7 decays more
rapidly at higher temperature, which is consistent with the
expected behavior of spin correlations. Therefore, the RBM
seems to have learned correctly about the correlation length,
or the size of clusters, which becomes smaller at higher
temperature. Furthermore, we find that, for the type-V RBM
that has learned all temperatures T = O, . . . ,6, the off-diagonal
elements decrease with the decay rate between the 7 =2
case and the 7 = 3 case. This indicates that the type-V RBM
has acquired similar features to those of the configurations
around 7, = 2.27. It is consistent with the numerical results of
Figs. 6-8, and gives another circumstantial evidence support-
ing the first conjecture in Sec. IIIB.

160ff-diagonal components of j =i + L or j =i + 2L are also
large, which corresponds to correlations along the y direction.
Large off-diagonal components at j =i + 1 and j =i + 2 mean
correlations along the x direction.
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FIG. 14. Averaged values of v@TWWTv©@ over the 1000 input
configurations at each temperature. Different lines correspond to type-
V RBMs with different numbers of hidden neurons N,,. In this figure,
the values at T = 6 are subtracted for comparison between different
RBMs.

C. Magnetization and singular value decomposition (SVD)

Information of the weight matrix W can be inferred by using
the method of the singular value decomposition.!” Suppose
that the matrix WW7 has eigenvalues A, (@ = 1, ...,N,) with
corresponding eigenvectors u,:

WWhu, = ru,. (47)
Decomposing an input configuration vector v in terms of
the eigenvectors u, as v = >4 Calty With a normalization
condition y_,(c,)* = 1, we can rewrite vOT WWTv©® as

vOTWW©@ =", (48)

"In Refs. [29-31] and references therein, Matsueda found vari-
ous interesting properties of snapshot images, including Ising spin
configurations, based on the method of SVD of image data. He
especially found that the snapshot entropy changes drastically at
T=T.,.
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FIG. 16. Eigenvalues of WWT for type-V RBM (a smooth line)

and type-L RBM (a steplike line). Both RBMs have 64 neurons in the
hidden layer.

Thus, if a vector v® contains more components with larger
eigenvalues of WW7, the quantity vOT WW7 v becomes
larger.

Fig. 14 shows averaged values of vOTWWTv©@ over the
1000 configurations {v®} at each temperature. For comparison
between different RBMs, we subtracted the values at 7 = 6.
The figure shows a big change near the critical point, which is
reminiscent of the magnetization of the Ising model. Since
vOTWWTy©® should contain more information than the
magnetization itself, the behavior cannot be exactly the same.
But it is quite intriguing that Fig. 14 shows similar behavior
to the magnetization.'"® It might be because the quantity
contains much information about the lower temperature after
subtraction of the values at higher temperature. '

13The behavior indicates that the principal eigenvectors with large
eigenvalues might be related to the magnetization, and information
about the phase transition is surely imported in the weight matrix.
Thus, we investigated properties of the eigenvectors but so far we
have not gotten any physically reasonable pictures. We want to come
back to this problem in future work.

Tt suggests that the subtraction may correspond to removing the
contributions of the specific features at higher temperature.

1400 (b)

1200 1

vOTWW TV
=
o
o
o

800 -

600 A

0 1 2 3 a 5 6
temperature

FIG. 15. Averaged values of v@T WWTv©® over the 1000 configurations {v®} at each temperature. Quantities shown for the type-V RBM

with (a) N}, = 64 and (b) N, = 225.
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FIG. 17. Eigenvalues of WWT for type-V RBM. The legend shows the number of hidden neurons, Nj,.

In order to see the properties of v@7 W W7 v©® more than
the magnetization in Fig. 14, we plot the same quantities but
without subtracting the values at T = 6. Fig. 15 shows two
cases for N, = 64 and N; = 225. These figures show that,
at high temperature, the RBM with large N, in Fig. 15(b)
has larger components of the principal eigenvectors compared
to the RBM with small N, in Fig. 15(a). The difference
must have caused the different behaviors in the RBM flows
shown in Fig. 6 (N, = 64) and Fig. 9 (N, = 225). Namely,
the former RBM flow approaches the critical temperature 7,
while the latter eventually goes towards higher temperature.
The difference of two figures in Fig. 14 indicates that the
RBM with larger Nj, seems to have learned more characteristic
features at high temperatures than the RBM with fewer Nj,.
Then, does the RBM with small N, fail to learn the features of
high temperatures? Which RBM is more adequate for feature
extractions? Although it is difficult to answer which is more
adequate without specifying what we want the machine to
learn, we believe that the RBM with N, < N, properly learns
all the features of various temperatures while the RBM with
Nj > N, has learned too many irrelevant features of high
temperature. This is nothing but the second conjecture in
Sec. III B, and it is supported by the behaviors of correlations
in WWT discussed in Sec. IV B.

D. Eigenvalue spectrum and information stored in W

Finally we study the eigenvalue spectrum A, of the matrix
WWT. Figs. 16 and 17 show the eigenvalues in descending
order. In Fig. 16, the smooth dotted line shows the eigenvalues
of the type-V RBM trained by configurations at all the tem-
peratures (7 = 0,0.25, ...,6), while the steplike dotted line
denotes the eigenvalues of the type-L RBM (only 7 = 0).

These are obviously different. For the type-L RBM, only
several eigenvalues are especially large, and the rest are
apparently smaller. On the other hand, for the type-V RBM,
the eigenvalues decrease gradually and there are no jumps
or big distinctions between larger and smaller eigenvalues.
The behavior indicates that, in the type-L RBM, the weight
matrix holds only small relevant information and only a small
number of neurons is sufficient in the hidden layer. In the
type-V RBM, however, since it is trained by configurations at

various different temperatures, all the eigenvectors are equally
utilized to represent relevant features of spin configurations
at various temperatures. Namely, in order to learn features of
a wide range of temperatures, larger number of neurons in
the hidden layer are necessary.”’ Using such larger degrees
of freedom, the weight matrix has learned configurations with
various characteristic scales at various temperatures so that the
RBM can grasp the rich properties of these configurations.

The difference of the eigenvalues between type V and type
L is also phrased that type V has a scale-invariant eigenvalue
spectrum.?! In contrast, the eigenvalues of the type-L RBM
are separated into distinct regions in which the corresponding
eigenvalues might represent features with different scales. It
might be related to our previous numerical results, shown in
Figs. 6-8, that the type-V RBM generates a flow toward the
critical point where the configurations have scale invariance.

Finally in Figs. 17 and 18 we show differences in eigenvalue
spectrum between RBMs with different numbers of hidden
neurons, Ny,.

As shown in Fig. 17, in the type-V RBM with N, > N, =
100 [Fig. 17(b)], there are no gaps in the eigenvalue spectrum
and most eigenvalues have similar values. In contrast, for a
smaller N; [Fig. 17(a)], large and small eigenvalues are very
different and the spectrum has a hierarchical structure. The
type-L RBM shows similar behaviors as shown in Fig. 18. It
might indicate that the RBM with larger N;, (> N,) has learned
too many details of the input configurations and the most
relevant features are weakened. In other words, it has learned
too many irrelevant features which are especially specific to
configurations at higher temperature. This view is consistent
with the discussion at the end of Sec. IV C and supports the
second conjecture in Sec. III B.

To summarize, we find that the type-V RBM with smaller
Nj, (<N,) can adequately learn configurations at a wide range

20However, too many hidden neurons (N, > N,) are not appropriate
because lots of irrelevant features are acquired.

2Exactly speaking, it is not completely scale invariant, but com-
pared to type L, at least there is no jump between larger and smaller
eigenvalues. Such power law behavior is also seen in the SVD of Ising
model configurations [30].

053304-14



SCALE-INVARIANT FEATURE EXTRACTION OF NEURAL ...

PHYSICAL REVIEW E 97, 053304 (2018)

(a)

51 =, . dimh=16
" \ s+ dimh=36
O | % «  dimh=64
244 5" dimh=81
S =
C .

&
.6 3_ :;‘A..
% °°5AA.
"y
s 2 "%':Q%
1 y v y v .
0 20 40 60 80

Number of eigenvalues (in descending order)

(b)

5] . dimh=100
" « dimh=225
0 o dimh=400
3
c 4
é ‘a
&
.O_J 3_
fra
(o]
< 2]
0 20 40 60 80 100

Number of eigenvalues (in descending order)

FIG. 18. Eigenvalues of WW?7 for type-L RBM. The legend shows the number of hidden neurons, N,.

of temperatures, without learning too many features at higher
temperature. All the neurons in the hidden layer are efficiently
used to represent features of various temperatures in a scale-
invariant way. As aresult, the RBM flow approaches the critical
temperature 7.. The RBM flow is the same as the RG flow in
that 7 is a fixed point, but the direction is opposite. Thus, a
naive analogy between them does not hold.

V. DISCUSSIONS

In this paper, in order to see what the RBM learns in the
process of training, we investigated the flow of configurations
generated by the weight matrices of the RBM. In particular, we
studied the Ising model and found that, if the RBM is trained by
spin configurations at various different temperatures (we call it
type-V RBM), the temperature of an initial configuration flows
toward the critical point 7 = T, where the system becomes
scale invariant. The result suggests that the configurations at
T = T, are attractors of the RBM flow. In order to understand
the numerical results of the RBM flows and to find a clue of
what the machine has learned, we explored properties of the
weight matrix W;,, especially those of the product WWT, by
looking at the eigenvalue spectrum.

There are still many unsolved issues left for future investi-
gations. Eigenvectors of WW 7 must represent “features” that
the RBM has learned, and the magnitude of the corresponding
eigenvalue is an indicator of how much influence the feature
affects. It will be interesting to pursue this analogy further
and to extract more information from the eigenvalue spectrum,
such as the amount of information stored in the NN [30]. As
we saw in the present paper, the RBM flow gives an important
clue of what the machine has learned. If an RBM is trained by
configurations at a single specific temperature, it generates a
flow toward that temperature, which confirms the hypothesis
that the unsupervised RBM indeed extracts relevant features of
the configurations at the temperature. The RBM flow should
be described by the Langevin equation, whose drift term is
controlled by the relevant features of the configurations that
the machine has learned. We want to come back to this in
future investigations.

In the present paper, we studied the Ising model, the simplest
statistical model with the second order phase transition, and

found that the critical point is an attractor of the RBM flow.
Then we wonder what happens in the case of the first order
phase transition. A simple example is the Blume-Capel model
on a two-dimensional lattice. The Hamiltonian is given by
BH = —J3 ;sisj +AY s?, where s; = £1,0 is a spin at
site i. The model undergoes the first order phase transition
that separates the parameter space (J,A) and the tricritical
point at (J.,A.). If we train an RBM by configurations at
various different parameters (such as the type-V RBM of
the Ising model), the flow of parameters will be attracted
to the tricritical point. On the other hand, if we use only a
restricted set of configurations for training, e.g., various J with
afixed A (<A,), where is the RBM flow attracted? It is under
investigation and we want to report the numerical results in
future publications.

Finally we would like to comment on a possible relation
between structures of RBM flows and how we recognize the
world around us. Our finding is that there is an attractor of
the RBM flow which characterizes the relevant feature that
machine has learned before. We human beings also meet
similar phenomena, namely, we can recognize more easily and
comfortably what we have already learned many times than
what we first experience. We here propose a conjecture that
cognition at higher levels might be also related to fixed points
of neural networks to which the input images are attracted. Our
conjecture is the following:

(1) In the process of training, multiple fixed points are
formed in the neural network.

(2) Input data (images) are attracted to one of them in the
process of RBM flow.

(3) Each fixed point of RBM flow will correspond to what
the NN “recognizes.”

As a simple toy model, we have trained a neural network
(RBM) by teaching various sizes of circles. Then we found
that random input images are attracted to a circle with a typical
radius. More interestingly, when we trained the network using
circles and triangles, two fixed points of RG flow are formed:
a circle and a triangle [32]. It would be interesting to further
investigate wide varieties of examples in the scope of RBM
flows and their fixed points to understand nature of cognition
(e.g., the category recognition [33]). More systematic studies
are under investigations.
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