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Quantitative phase-field lattice-Boltzmann study of lamellar eutectic growth
under natural convection
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The influence of natural convection on lamellar eutectic growth was determined by a comprehensive phase-
field lattice-Boltzmann study for Al-Cu and CBr4-C2Cl6 eutectic alloys. The mass differences resulting from
concentration differences led to the fluid flow and a robust parallel and adaptive mesh refinement algorithm was
employed to improve the computational efficiency. By means of carefully designed “numerical experiments”, the
eutectic growth under natural convection was explored and a simple analytical model was proposed to predict the
adjustment of the lamellar spacing. Furthermore, by alternating the solute expansion coefficient, initial lamellar
spacing, and undercooling, the microstructure evolution was presented and compared with the classical eutectic
growth theory. Results showed that both interfacial solute distribution and average curvature were affected by
the natural convection, the effect of which could be further quantified by adding a constant into the growth rule
proposed by Jackson and Hunt [Jackson and Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966)].
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I. INTRODUCTION

The presence of melt convection could greatly alter the
eutectic microstructure patterns during solidification, which
has been extensively studied since the pioneering work by
Jackson and Hunt [1–6]. It is well accepted that the flow (due to
convection) changes the eutectic morphology by altering local
solute and/or thermal distribution in the melt [7–9].

There are mainly two types of convection occurring during
the directional solidification, including the forced convection
caused by imposed external fields (e.g., stir or electromag-
netic field) and the natural convection driven by the solute
(or density) and/or thermal difference. The former has been
preliminarily studied by assuming a constant flow velocity
gradient Gu along the growth direction, as designated by the
dashed red lines in Fig. 1, in which a transverse flow is assumed
perpendicular to the lamellae [2–4]. The steady-state solute
field C(x, y) ahead of the assumed planar solid/liquid (S/L)
interface is controlled by the following equation.

DL∇2C + V
∂C

∂y
− yGu

∂C

∂x
= 0, (1)

where DL is the liquid solute diffusivity and V is the growth
velocity. The coordinate system (x, y) is defined and shown
in Fig. 1, in which y denotes the distance away from the
S/L interface and x starts from the midpoint of the α/L
interface. However, for the natural convection, related studies
are significantly limited. Ma et al. [4] proposed an approximate
solution of Eq. (1) under the assumption of weak convection,
and extended their results to the natural convection case.
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By assuming a heated vertical flat plate in a semi-infinite
body of liquid, they found that the lamellar spacing under
natural convection would increase with increasing Grashof
number, and their result was qualitatively consistent with that
by Baskaran and Wilcox [3].

However, in Eq. (1), the flow parallel to the lamellae was
actually neglected, which was inappropriate for natural convec-
tion. The fluid flow driven by the solute (or density) difference
will form semicircular streamlines with the triple point as the
center (see the dashed blue lines in Fig. 1) [10]. Furthermore,
related experiments on Al-Cu alloys by Lee et al. [5] indicated
that for eutectic and near-eutectic alloys, the lamellar spacing
would not have noticeable variations, but in nearly all available
studies, attention was focused on the effect of convection on
lamellar spacing, which mostly disagreed with experiments [5]
and neglected the microstructure evolution (e.g., the lamellar
width adjustment of coexisting solid phases). Therefore, a
more quantitative study is required to precisely elucidate
how natural convection affects eutectic growth. Considering
that there are many uncertainties in experiments, numerical
simulation has become an indispensable way to reproduce the
interaction of multiphysical fields during solidification. Wang
et al. [11] performed a Monte Carlo simulation of eutectic
growth with weak convection and found that the convection
induced more scattered lamellar spacing. Siquieri and Em-
merich [12] simulated the eutectic growth with convection
by coupling the Navier-Stokes equations into the phase-field
equations, and found that the convection would change the
lamellar spacing predicted by the Jackson-Hunt theory and
lamellar growth direction. Besides that, to our best knowledge,
there have been very limited numerical studies to investigate
the effect of convection on eutectic growth.

The numerical solution of the eutectic growth under natural
convection comprises two modules: solution of eutectic phase
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FIG. 1. Schematic illustration of lamellar eutectic growth with convection.

transition and calculation of coupled flow field. Great progress
has been made for the former case via phase-field modeling
[13–15]. For the latter, however, the conventional macroscopic
continuum-based Navier-Stokes (NS) solvers are significantly
limited in handling the discontinuity of flow velocity near
the moving S/L interface [16]. Beckermann et al. [17] first
performed coupled solute-convection phase-field study by
assuming that the solid phase was rigid and stationary. Tong
et al. [18] adopted the multigrid SIMPLE method to solve NS
equations during phase-field simulations of dendritic growth.
The current authors [19,20] employed a parallel-multigrid
approach to solve the conservation equations for flow when
simulating the dendritic growth with coupled multiphysical
fields. In all these numerical models, the solving process of NS
equations is rather complex and enormously time consuming.
Sun et al. [16] found that if the solid fraction was larger than
30%, the simulation would not converge due to the increasingly
complicated microstructure morphologies.

As a more appreciable approach, the lattice-Boltzmann
method (LBM) has emerged with great potential to solve
energy, momentum, and mass transport problems by relax-
ation to a local equilibrium [21]. The scheme is especially
prosperous in fluid flows encompassing interfacial dynamics
and complex boundaries with its attractive advantages of good
stability and high computational performance [16,22]. Several
attempts have been successfully combined with phase-field
models to simulate the dendritic growth with liquid convection
[23–26]. Therefore, it seems reasonable to couple the LBM
into the eutectic phase-field models to retrieve the interaction
of eutectic microstructure and fluid flow.

Although the phase-field method has been extensively
employed in primary [27–32] and eutectic [15,33–35] phase
transitions with its thermodynamic rigor [36–38], efficient
solution of the strongly coupled governing equations is still
a major challenge [39]. Several attempts have been devel-
oped to tackle the practical difficulties during the phase-field
simulation of eutectic growth, such as adopting simplified
models [40], setting the threshold to exclude the bulk phases
[41,42] and a moving window technique [43,44]. To efficiently
tackle this practical difficulty, the current authors [35,45,46]
developed a robust parallel-adaptive mesh refinement (para-

AMR) algorithm to recover the underlying physics without
compromising any accuracy. Results showed that this approach
could improve the computational efficiency by two to three
orders of magnitude.

In this work, we coupled the LBM with the para-AMR
algorithm to study the effect of natural convection on the
eutectic growth. In particular, the phase-field model was
employed to simulate eutectic evolution while the LBM was to
simulate the melt flow. Through carefully designed “numerical
experiments”, the eutectic growth under natural convection
was explored and a simple analytical model was proposed
to predict the adjustment of the lamellar spacing. Moreover,
several key mechanisms of eutectic growth were highlighted
and compared with the classical theory proposed by Jackson
and Hunt [1].

II. METHODS

In real cases, the thermal diffusivity is normally three to five
orders of magnitude larger than the liquid solute diffusivity, and
accordingly the thermal diffusion inside the domain could be
neglected [26]. A two-dimensional (2D) isothermal solidifica-
tion under the low-undercooling condition was assumed in the
present simulations. The computational domain was a square
filled with supercooled melt, in which four lamellar couples
were set at the bottom. To reproduce an infinite melt reservoir,
a periodic boundary condition was imposed along the direction
perpendicular to the growth direction for all variables including
phase field, solute, and flow. For the bottom and top sides, a
zero Neumann condition was applied for phase field and solute,
while a no-slip boundary condition was for flow. The natural
convection was induced by the concentration difference, and
the velocity near the diffusion interface was determined by
additional dissipative forces to recover the sharp-interface limit
[17,18].

A. Phase-field model

The phase-field model proposed by Kim et al. [33] was
extended by coupling the melt convection into the diffusion
equation [see Eq. (4)] (note that the phase field is not convective
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[12,18]). By introducing three order parameters φ1, φ2, and
φ3 to designate the liquid phase (L) and two solid phases (α
and β), the energy functional F and corresponding governing
equations become

F =
∫

V

⎡
⎣∑

j>i

∑
i

(
−ε2

ij

2
∇φi · ∇φj + ωijφiφj

)

+
∑

i

φif
i(Ci) + λL

(∑
i

φi − 1

)⎤
⎦dV, (2)

∂φi

∂t
= −2

n

n∑
j �=i

sisjMij

(
δF

δφi

− δF

δφj

)
, (3)

∂C

∂t
+ φ3�v · ∇C = ∇ · D

∑
i

φi∇Ci, (4)

where the coexisting three phases φi (i = 1, 2, 3) vary between
0 and 1, and maintain the sum to be 1 at any position of the
system, e.g., φ3 = 1 and φ1 = φ2 = 0 in the L phase. f i(Ci)
is the free energy density of the i phase with concentration
Ci , λL is the corresponding Lagrange multiplier, εij is the
gradient energy coefficient, ωij is the height of the double well
potential, and si is a step function, i.e., si(x,t) = 0 if φi = 0 and
si(x,t) = 1 otherwise. Mij is the phase-field mobility and
is determined by assuming a vanishing kinetic effect during
solidification. The concentration of the coexisting phases is
determined by a weighted average, i.e., C(x,t) = ∑

i φiCi .
�v is the intrinsic flow velocity induced by the concentration
difference, which is expanded as �v = (u,v) in the 2D case and
calculated using the LBM. D is the diffusivity dependent on
the phase field, i.e., D = φ3DL + (1 − φ3)DS , where DS is the
solute diffusivity in the solid phase. More details including the
parameters of the eutectic model and the discretization of the
phase-field equations can be found elsewhere [33,35,45].

B. Lattice-Boltzmann model

As a mesoscopic kinetic-based approach, the LBM assumes
that the flow field comprises a series of pseudoparticles repre-
sented by a distribution function [47]. The macroscopic flow is
characterized by the streaming and collision of these particles.
A generally employed approximation of the Boltzmann equa-
tions is the Bhatnagar-Gross-Krook (BGK) approach [48], in
which the collision term is expressed by a single relaxation
time scheme. In this lattice BGK (LBGK) model, the local
equilibrium distribution is chosen to recover the NS equations
by the Chapman-Enskog analysis [49,50].

In the current 2D case, a so-called two-dimensional nine-
velocity (D2Q9) model was employed to calculate the isother-
mal incompressible flow. The discrete velocities �ci along nine
different directions are defined as

�ci =

⎧⎪⎨
⎪⎩

(0,0) i = 0

c
{
cos

[
(i − 1)π

2

]
, sin

[
(i − 1)π

2

]}
i = 1,2,3,4√

2c
{
cos

[
(2i − 1)π

4

]
, sin

[
(2i − 1)π

4

]}
i = 5,6,7,8

,

(5)

where c = δx/δt is the lattice velocity; δx is the lattice spacing,
equal for both directions; and δt is the time step. Note that both
δx and δt are formally rescaled to 1, which are different from
those (i.e., �x and �t) in the phase-field part though they
are actually the same “material” quantities [25]. The evolution
equation with the discrete force Gi(�r,t) is expressed as

fi(�r + �ciδt,t + δt)

= fi(�r,t) − 1

τ

[
fi(�r,t) − f

eq
i (�r,t)] + Gi(�r,t)δt, (6)

where fi(�r,t) is the particle density distribution function at
position �r and time t in the ith direction. τ is the single
relaxation time related to the kinematic viscosity υ, i.e.,
υ = c2δt(2τ − 1)/6. f

eq
i (�r,t) is the equilibrium distribution

function and is determined by taking the expression of the
Maxwell-Boltzmann distribution up to O(v2) [22],

f
eq
i = ρwi

[
1 + 3�ci · �v

c2
+ 9(�ci · �v)2

2c4
− 3�v · �v

2c2

]
, (7)

where ρ = ∑
i fi is the local fluid density, �v = ∑

i fi �ci/ρ +
Gδt/(2ρ) is the flow velocity, where G is the forcing term,
and wi is the weight coefficient determined by the discrete
velocity model to ensure the mass and momentum conser-
vation, i.e., w0 = 4/9, w1−4 = 1/9, and w5−8 = 1/36 for the
D2Q9-lattice velocity model. The discrete force is given by

Gi =
(

1 − 1

2τ

)
wi

[
3

�ci − �v
c2

+ 9(�ci · �v)�ci

2c4

]
· G

with G = GD + GB, (8a)

GD(�r,t) = −2ρυhφ3

W 2
0

(1 − φ3)2�v, (8b)

GB(�r,t) = −ρ �gβc(C − C0)φ3, (8c)

where GD is the dissipative drag force in the vicinity of the
S/L interface to satisfy the no-slip boundary condition, which
serves as a distributed momentum sink that forces the liquid
velocity to vanish as the liquid fraction (i.e., φ3) approximates
0 [18]. h = 2.757 is a dimensionless constant obtained by an
asymptotic analysis of plane flow past the diffusive interface
[17]. W0 is the interface thickness, and is fixed at 7�xmin,
which is a good compromise between the minimization of the
grid anisotropy and the maximization of the computational
efficiency by preliminary computations. GB is the buoyancy
force induced by the concentration difference in the liquid [51].
�g = 9.8 m/s2 is the gravitational acceleration vector along the
negative y-axis direction, βc is the solute expansion coefficient,
and C0 is the initial liquid concentration. In addition, a bounce-
back scheme [52] is employed at the moving S/L interface
to ensure the conservation of the mass and momentum, i.e.,
fi(�r,t,�ci) = fi(�r,t,−�ci).

C. Numerical approach

The para-AMR algorithm with block structure adaptive
mesh refinement and parallel computing scheme was employed
to solve the phase-field lattice-Boltzmann equations. The detail
of this algorithm was illustrated elsewhere [45,46] and only
brief descriptions will be given here.
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TABLE I. Thermophysical parameters of Al-Cu and CBr4-C2Cl6 alloys.

Parameters Al-Cu CBr4-C2Cl6

DL [solute diffusivity in liquid, (m2/s)] 3 × 10−9 [51,57] 5 × 10−10 [33,58]
DS [solute diffusivity in solid (m2/s)] 3 × 10−13 [51,57] 5 × 10−14 [33,58]
mα [liquidus slope of α phase at eutectic temperature (K/mol frac)] –1050 [59,60] –81 [33,58]
mβ [liquidus slope of β phase at eutectic temperature (K/mol frac] 488 [59,60] 165 [33,58]
kα (partition coefficient in α phase to the liquid phase) 0.14 [51,57] 0.75 [33,58]
kβ (partition coefficient in β phase to the liquid phase) 1.85 [57] 1.6 [33,58]
TE [eutectic temperature (K)] 821 [59,60] 357.6 [33,58]
CE [eutectic concentration (mol frac)] 0.173 [59,60] 0.118 [33,58]
σαL [α/L interface energy (J/m2)] 160.01 × 10−3 [59] 6.6 × 10−3 [33,58]
σβL [β/L interface energy (J/m2)] 88.363 × 10−3 [59] 5.8 × 10−3 [33,58]
σαβ [α/β interface energy (J/m2)] 219.484 × 10−3 [59] 11.5 × 10−3 [33,58]
βc (solute expansion coefficient) –0.73 [61,62] 0.5 [33,58]

The refinement process was begun by tagging the potential
grids according to a predefined gradient criterion,

max
1�i�3

(|∇φi |) + Ec|∇C| + Ev(
√

|∇u|2 + |∇v|2) � ξ, (9)

where Ec and Ev are the weight coefficients for solute and
velocity, respectively, and ξ is a threshold value determined via
numerical tests. u and v are the two axial velocity components,
i.e., �v = (u,v). The S/L interface during solidification is
the position where the gradient reaches the local maximum
and thus mesh refinement is needed. On each grid level, a
cluster algorithm developed by Berger and Rigoutsos [53]
was adopted to separate the tagged points into clusters or
patch boxes. After constructing a hierarchical architecture with
different sets of patch boxes on each grid level, the local data
was then broadcast to all processors to realize the parallel
computation.

To achieve effective communication between neighboring
patch boxes, a layer of ghost cells was added at the external
boundaries of each patch box to receive the data from its
nearest neighbors. For interior boundaries, the restriction
(i.e., updating values on the coarse grid using those from
the fine grid) and interpolation (i.e., updating values on the
fine grid using those from the coarse grid) processes were
performed between different levels. Besides, to maintain the
fluid viscosity as a constant in different levels, the relaxation
time τ in Eq. (6) needed to vary with the grid size, i.e.,

τf = 2(τc − 1/2) + 1/2, (10)

where τf and τc are the relaxation time at the fine and
coarse grid level, respectively, and the spacing ratio of the
coarse to fine grid is 2. In addition to the restriction on
the relaxation time, the hydrodynamical variables and their
derivatives should also be continuous over the coarse/fine
interface [54,55]. Therefore, special attention was paid to the
distribution function, which was rewritten as the sum of the
equilibrium and nonequilibrium state.

fif (�r,t) = αf̃ic(�r,t) + (1 − α)f̃ eq
ic (�r,t), (11a)

fic(�r,t) = 1

α
fif (�r,t) +

(
1 − 1

α

)
f

eq
if (�r,t), (11b)

where α = 0.5 τf /τc is a weight coefficient and the subscripts
f and c denote the fine and coarse grid level, respectively. f̃ic

denotes the spatially and temporally interpolated values from
the coarse grid level.

D. Materials

Two typical eutectic alloys including Al-Cu and
CBr4-C2Cl6 alloys were simulated in this work. The initial
solute concentration C0 was set as the eutectic point, i.e.,
0.173 mole fraction (mol frac) for Al-Cu and 0.118 mol frac
for CBr4-C2Cl6, respectively, and related thermophysical
parameters are provided in Table I. The minimum mesh size
was 0.2 μm, and the number of the grid level was 3. The time
step was dependent on the liquid solute diffusivity. Taking the
Al-Cu alloy, for instance, the time step was 2.67 × 10−6 s due
to the stability limit of the explicit discretization scheme [45].
To investigate the effect of natural convection, as performed
by Takaki et al. [51], we changed the magnitude of the solute
expansion coefficient to predict the morphology evolution.

According to [56] [or see Eq. (A1) in the Appendix], the
minimum-undercooling lamellar spacing was computed as
6.84 μm for Al-Cu and 9.81 μm for CBr4-C2Cl6, respectively,
which were actually the reference values in our simulations.
Note that the two eutectic alloys have been widely investigated
by in situ observations and systematic experiments, and the
most remarkable difference is the interfacial width ratio of two
coexisting solid phases. Based on the lever rule, the ratio of
Al-Cu is 1:1, while that of CBr4-C2Cl6 is approximately 2:1
because the weight of the β phase is 0.29.

III. RESULTS

The eutectic model under the nonconvection condition
has been exhaustively studied by direct comparisons with
experimental observations in our previous work [35]. To test
the accuracy of the flow field, the lid-driven cavity flow was
used as a test benchmark [21]. The top boundary moves from
left to right with velocity U = 0.1, and related results are
shown in Fig. 2. The velocity profiles changed from curved at
a lower Reynolds (Re) number to linear at a higher Re number,
and the nearly linear velocity profiles in the central core of the
cavity indicated that the uniform vorticity region generated at
a higher Re number, e.g., Re = 1000, 2000, and 5000, which
agreed well with the classical test results [63–66]. Taking
Re = 1000, for instance, as shown at the upper-right corners of

053302-4



QUANTITATIVE PHASE-FIELD LATTICE-BOLTZMANN … PHYSICAL REVIEW E 97, 053302 (2018)

FIG. 2. Velocity components along the vertical (y) and horizontal (x) centerlines for the lid-driven cavity flow testing case. Different curves
represent cases with different Reynolds (Re) numbers, including 50, 100, 200, 400, 1000, 2000, 5000, and 10 000. The inset at the upper-right
corner of each figure shows the relative error between the current result and that from [66] for Re = 1000.

Fig. 2, it is clear that the simulated velocity values agreed quite
well with those from [66]. The largest relative error between
this work and [66] was about 2.31% for transverse velocity u

and 1.83% for longitudinal velocity v, respectively.
Figure 3 shows typical simulation results including the

solute field and velocity field for Al-Cu and CBr4-C2Cl6 alloys.
The eutectic growth direction was along the positive y-axis
direction, i.e., inverse to the gravitational direction. The solute
expansion coefficient was set to be −7.3 × 10−4 and 5 × 10−4,
respectively, i.e., 1000 times lower than the real magnitude.
Under that condition, the effect of convection on the eutectic
morphology could be neglected, and we focused on the velocity
direction and flow field. As shown in Figs. 3(a1) and 3(b1), the
velocity direction in front of the growing interface is from
the α to the β phase for the Al-Cu alloy and from the β

to the α phase for the CBr4-C2Cl6 alloy. The contour map
of the velocity �v = (u,v) is shown in Figs. 3(a2)–3(a4) and
3(b2)–3(b4), in which a darker color represents a larger value,
and the red arrows point to the direction of the increasing
velocity. For the Al-Cu alloy [see Fig. 3(a2)], the transverse
velocity contour map was almost symmetric about the triple

point due to the same interfacial width of the α and β phase,
while for the CBr4-C2Cl6 alloy [see Fig. 3(b2)], the outlines of
the transverse velocity contour map were offset to the center
of the α phase due to the larger width of the α phase. For the
longitudinal velocity, the contour map was symmetric about the
centerline of the solid phases for both alloys. Although the two
components of the velocity vector near the α/L interface had
opposite variation trends with those near the β/L interface, the
magnitude of the total velocity presented a similar decreasing
trend for both α/L and β/L interfaces.

Figure 4 shows the distribution of the solute concentration
along the given direction (i.e., V1 and V2) perpendicular to
the S/L interface for the Al-Cu alloy. CαL and CβL are the
liquid concentration in equilibrium with the α and β phase
at temperature T, respectively, as schematically illustrated in
the phase diagram at the upper-right corner. As the distance
away from the S/L interface increased, the solute concentration
changed monotonically until reaching a constant, i.e., 0.172 19
as indicated by the dotted line in Fig. 4. Such behavior could
be best described by an exponential fitting function, i.e., y =
y0 + Aexp(ωx), and detailed parameters are given in Table II.

FIG. 3. Simulation results including the solute field and velocity field for Al-Cu (a1)−(a4) and CBr4-C2Cl6 alloys (b1)−(b4). (a1), (b1)
Solute field. (a2)−(a4), (b2)−(b4) The isolines of the transverse, longitudinal, and total velocity, respectively.
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FIG. 4. Distribution of solute concentration along the direction
perpendicular to the S/L interface for Al-Cu alloy.

The solute concentration reached its equilibrium value at about
y = λ (λ is the lamellar spacing), indicating that the transition
to the equilibrium state only took about one lamellar spacing.

The concentration difference, i.e., C-C0, was converted
to the mass difference by multiplying the solute expansion
coefficient βc [see Eq. (8c)]. A negative βc indicates that the
larger the concentration, the heavier the liquid phase [51].
For instance, for the Al-Cu alloy with negative βc, a larger
concentration means that the liquid has more Cu atoms and
thus will be heavier. CαL is larger than CβL and thus the liquid
concentration near the α/L interface is heavier for the Al-Cu
alloy. Figure 5 shows the solute concentration distribution and
mass difference near the S/L interface. As the distance away
from the S/L interface increased, the concentration near the
α/L interface decreased while that near the β/L interface
increased until approaching the far-field concentration (i.e.,
the initial concentration C0). Accordingly, as the distance
increased, the liquid near the α/L interface will become
increasingly lighter due to fewer Cu atoms, which is just the
opposite for that near the β/L interface. It is noted that the
solute concentration near the α/L interface is always higher
than that near the β/L interface and thus the liquid near the α/L
interface is heavier for the Al-Cu alloy. Because the buoyancy
force induced by the mass difference will drive the liquid flow
into the lighter region, there will be an outflow from the α

phase and an inflow to the β phase for the Al-Cu alloy, as
shown in Figs. 3(a1) and 5. For the CBr4-C2Cl6 alloy, the solute
expansion coefficient is positive and thus the liquid phase with
larger concentration will be lighter. The corresponding velocity

vector will point to the α phase from the β phase, which is just
the opposite as shown in Figs. 3(b1) and 5.

Figures 6(a) and 6(b) show the distribution of the velocity
and solute concentration along the direction parallel to the S/L
interface at y = 0.05Sαβ (Sαβ = λ/2) away from the interface
for the Al-Cu and CBr4-C2Cl6 alloys, respectively, and the
minus velocity indicates that the velocity is along the negative
axis direction. The concentration-distance curves exhibited a
sinusoidal variation, i.e., y = y0 + Asin[π (x−xc)/ω], which
agreed with that derived by Jackson and Hunt [1], and de-
tailed parameters are given in Table II. The average solute
concentration was denoted by the horizontal dotted red line,
which deviated from the zero-velocity line (i.e., the horizontal
dotted black line). This is because the position of the average
concentration was not strictly on the triple point [7], though
the longitudinal velocity became zero at this position [see the
green circles in Figs. 6(a) and 6(b)]. Taking the CBr4-C2Cl6
alloy, for instance, the volume fraction of the minor phase
(i.e., β phase) is approximately 0.29, and thus the position
of the average concentration was not on the triple point but
significantly shifted towards the centerline of the α phase [see
the red triangles in Fig. 6(b)] [35]. When the width ratio of
the two solid phases is almost equal, e.g., the Al-Cu alloy,
the position of zero longitudinal velocity would overlap with
that of average concentration. Furthermore, if the velocity
sign was not considered, the velocity-x curves including
transverse velocity, longitudinal velocity, and total velocity
all presented symmetric patterns about the centerline of the
solid phase, which agreed well with the velocity contour map
in Figs. 3(a2)–3(a4) and 3(b2)–3(b4). Meanwhile, as discussed
before, the sign of the velocity including the transverse velocity
and longitudinal velocity was precisely the opposite in the
Al-Cu alloy compared to the CBr4-C2Cl6 alloy due to the sign
difference of the solute expansion coefficient. For the total
velocity, the values at the midpoint of the α/L and β/L
interfaces were almost equal for the Al-Cu alloy, while those
for the CBr4-C2Cl6 alloy were significantly different.

Figures 6(c) and 6(d) show a more quantitative description
of the two velocity components for the CBr4-C2Cl6 alloy. In
the half lamellar spacing, i.e., from the centerline of the α

phase to that of the β phase, the transverse velocity underwent
a maximum and then decreased as x increased. The maximum
occurred at the three-phase junction when y = 0.12Sαβ and
was 0.26 μm/s, which was approximately one half of the
maximum longitudinal velocity in Fig. 6(d). Wheny = 0.5Sαβ ,
the local maximum reduced to 0.1 μm/s and then decreased
rapidly as y increased. Away from the interface, the position
corresponding to the maximum of the transverse velocity first

TABLE II. Parameters of the fitting functions for the solute concentration near the interface.

Alloy Source Fitting function y0 A ω xc Reduced chi squarea Adj. R squareb

Fig. 4: V1 y = y0 + Aexp(ωx) 0.17219 7.6414×10−4 −0.92389 1.4139×10−11 0.99975
Al-Cu Fig. 4: V2 0.17219 −6.5533×10−4 −1.0600 2.1438×10−11 0.99945

Fig. 6(a) y = y0 + Asin[π (x−xc)/ω] 0.17219 7.3630×10−4 3.3557 4.8784 2.5740×10−10 0.99909
CBr4-C2Cl6 Fig. 6(b) 0.11825 2.0282×10−4 5.9242 −2.3017 1.9003×10−11 0.99916

aReduced chi square: equivalent to residual mean square in the analysis of variance and the smaller the value, i.e., closer to zero, the higher the
fitting degree [67].
bAdj. R square: an adjusted version of R square, which satisfies that the closer to 1, the more accurate the fitting function [67].
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FIG. 5. Schematic illustration of solute concentration distribution and mass difference near S/L interface.

moved to the three-phase junction and then the middle of
the α phase, as marked by the black arrows in Fig. 6(c).
The inset at the bottom-left corner of Fig. 6(c) shows the
velocity distribution in a lamellar spacing at the distance
y = 0.5Sαβ . Similar to that in Fig. 6(b), the absolute value of
the transverse velocity was symmetric about the centerline of
the solid phase, though the shape of the u-x curve was different.

For the longitudinal velocities in Fig. 6(d), after experiencing a
maximum, the velocities along the given directions (i.e., V1, V2,
V3, V4) started to decrease and then intersected at y = 1.25Sαβ ,
after which the longitudinal velocity remained at a relatively
low value. The position of its maximum was closer to the S/L
interface with decreasing distance away from the centerline of
the β phase, as marked by the black arrow in Fig. 6(d).

FIG. 6. (a),(b) show the distribution of velocity and solute concentration along the direction parallel to the S/L interface at y =
0.05Sαβ (Sαβ = λ/2) away from the interface for Al-Cu and CBr4-C2Cl6 alloys, respectively. (c),(d) show a more quantitative description
of two velocity components for the CBr4-C2Cl6 alloy. (c) shows the distribution of the transverse velocity along the direction parallel to the S/L
interface at different distances away from the interface. (d) shows the distribution of the longitudinal velocity along the direction perpendicular
to the S/L interface.
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FIG. 7. Schematic illustrations of the interfacial tempera-
ture compensation, curvature adjustment, and width adjustment,
respectively.

IV. DISCUSSION

A. Growth undercooling

The stability of the S/L interface is largely dependent
on the local undercooling, i.e., the difference between the
eutectic temperature TE and the actual temperature T. During
solidification, the kinetic undercooling could be normally
ignored because for most regular eutectic systems, the kinetic
undercooling is much smaller than either the constitutional
undercooling or the curvature undercooling [1,68]. Therefore,
as shown in Fig. 7(a), the temperature difference �T can be
expressed as

�T = TE − T = �Tc + �Tr, (12)

where the constitutional undercooling, i.e., �Tc =
m[CE − Cy=0(x)], denotes the departure of the local interfacial
composition Cy=0(x) from the eutectic composition CE , where
m is the liquidus slope. The curvature undercooling, i.e.,
�Tr = �κ(x), represents the effect of the interfacial curvature
on the equilibrium temperature, where � is the Gibbs-Thomson
coefficient, and κ(x) is the local interfacial curvature.

Assuming that the real interface shape is described by the
relation y = I (x), the average curvature of the α/L interface
is given by

〈κα(x)〉 = 1

2Sα

∫ Sα

−Sα

κα(x)dx

= 1

2Sα

∫ Sα

−Sα

−d2I/dx2

[1 + (dI/dx)2]
3/2 dx

= − 1

2Sα

sin tan−1

(
dI

dx

)∣∣∣∣
Sα

−Sα

= sin θα

Sα

, (13)

where 〈·〉 denotes the average operation, Sα is the half width
of the α phase. and θα is the contact angle at the α/L interface
as shown in Figs. 1 and 7(c). At the triple junction, the local
equilibrium requires that the surface tensions should satisfy

σαL sin θα + σβL sin θβ = σαβ, (14a)

σαL cos θα = σβL cos θβ, (14b)

where σαL, σβL, and σαβ are the surface tensions at the α/L,
β/L, and α/β interfaces, respectively, and θβ is the contact
angle at the β/L interface. Note that θα and θβ are uniquely
determined by the force balance at the triple junction, and
are constant if the surface tension anisotropy is neglected.
Accordingly, �Tr will be altered by adjusting Sα and Sβ from
Eq. (13).

The presence of the natural convection will change the
concentration field and thus the interfacial constitutional un-
dercooling. Figure 8(a) shows the solute concentration of the
Al-Cu alloy at the specific point (i.e., φ1 = φ3 = 0.5) of the
α/L interface varying with the solute expansion coefficient βc.
To investigate the effect of the natural convection, βc varied
from 10−4βc0 to 101βc0 in units of |βc0| = 7.3 × 10−1. The in-
crease of |βc| (i.e., the convection intensity) could significantly
alter the concentration near the α/L interface in contrast with
that under the nonconvection condition. Accordingly, �Tc was
changed to accommodate this variation.

However, the temperature field is imposed by the macro-
scopic heat fluxes, i.e., assumed to be isothermal with constant
undercooling �T in this work. To adapt to the changing

FIG. 8. (a) Solute concentration of the Al-Cu alloy at the specific point of the α/L interface (i.e., φ1 = φ3 = 0.5) versus solute expansion
coefficient. (b) Simulated width ratio versus solute expansion coefficient for Al-Cu and CBr4-C2Cl6 alloys.
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TABLE III. Parameters of the exponential fitting functions for the width ratio varying with the solute expansion coefficient.

Alloy Fitting function ζ0 A τ Reduced chi squarea Adj. R squareb

Al-Cu ζ = ζ0 + Aexp[ 1
τ

log10( βc

βc0
)] 1.0005 0.1139 0.4911 8.165 × 10−4 0.9929

CBr4-C2Cl6 2.4399 −1.0391 1.1376 4.190 × 10−3 0.9922

aReduced chi square: equivalent to residual mean square in the analysis of variance and the smaller the value, i.e., closer to zero, the higher the
fitting degree [67].
bAdj. R square: an adjusted version of R square, which satisfies that the closer to 1, the more accurate the fitting function [67].

difference between �T and �Tc, �Tr needs to be adjusted
by changing the shape of the S/L interface. Figures 7(b)
and 7(c) show the schematic illustrations of the adjustment
of the curvature and the lamellar width, respectively. Taking
the α/L interface of the Al-Cu alloy, for instance, when the
solute expansion coefficient was negative [i.e., the real value
βc < 0 in Fig. 8(a)], the flow direction was from the α to
the β phase [see Fig. 3(a1)]. Accordingly, large numbers of
solute atoms near α/L interface were transported into the
liquid in a timely manner, which contributed to the solute
precipitation of the α phase. As a result, the interfacial solute
concentration became larger [see Fig. 8(a)], as well as the con-
centration difference C-C0 and �Tc. To maintain an isothermal
α/L interface,�Tr needs to be decreased via adjusting the local
interfacial curvature. According to Eq. (13), such adjustment
was accomplished by increasing the half width of the α

phase in terms of average effects, i.e., from type I to type II
or III (κI > κII > κIII) while maintaining the contact angles
unchanged (θI = θII = θIII) [see Fig. 7(b)]. This adjustment
could actually attribute to the movement of the triple point,
as shown in Fig. 7(c). Taking the Al-Cu alloy, for instance,
when the convection increased �Tc of the α/L interface but
reduced �Tc of the β/L interface, �Tr needed to have the
opposite adjustment to compensate for the variation. It is noted
that �Tr is given in average by �isinθi/Si(i = α,β), which
led to a lower θα but larger θβ . To restore the contact angles
back to the equilibrium values, the two-phase width Si was
adjusted to regulate the interfacial concentration distribution
by the movement of the triple point. Once the correct contact
angles were established, the two-phase width reached steady

state, and then the eutectic lamellae solidified in a globally
equivalent mode with that of single phase [68].

To clearly illustrate the lamellar adjustment, the width
ratio ζ = Sα/Sβ was introduced, and Fig. 8(b) shows the
width ratio ζ varying with the solute expansion coefficient
βc in units of βc0 = −7.3 × 10−1 and 5.0 × 10−1 for the
Al-Cu and CBr4-C2Cl6 alloys, respectively. As |βc| increased,
ζ increased for the Al-Cu alloy, while it decreased for the
CBr4-C2Cl6 alloy. To reveal the mechanism of the lamellar
adjustment, the nonlinear variation of ζ versus βc was fitted
by an exponential function, i.e., ζ = ζ0 + Aexp[ 1

τ
log10( βc

βc0
)],

where βc/βc0 denotes the magnification of the convection
intensity; related fitting parameters are detailed in Table III.
The relaxation factor τ in the fitting function is used to predict
the extent to which the change of solute expansion coefficient
βc affects the lamellar width ratio. For the Al-Cu alloy, the
factor τ is 0.4911 and smaller than that of the CBr4-C2Cl6 alloy
(i.e., 1.1376), indicating that the Al-Cu alloy is more sensitive
to the change of the convection intensity. The amplitude A
denotes the variation amount under the same magnification
of the convection intensity. The amplitude of the CBr4-C2Cl6
alloy is about one order of magnitude larger than that of
the Al-Cu alloy, indicating that the width adjustment of the
CBr4-C2Cl6 alloy is more significant. As shown in Fig. 9,
the corresponding nephogram of the solute field presented
a different lamellar width ratio under different convection
intensity, the magnitude of which, i.e., the magnification of
βc, is marked at the upper-right corner of each subfigure.

The presence of natural convection changed the interfacial
concentration distribution, and then adjusted the lamellar width

FIG. 9. Distribution of the solute field under different convection intensities for Al-Cu (a1)−(a5) and CBr4-C2Cl6 (b1)−(b5) alloys. The
convection intensity, i.e., the magnification of solute expansion coefficient, is marked at the upper-right corner of each subfigure.
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FIG. 10. Eutectic lamellar spacing versus solute expansion coef-
ficient for Al-Cu and CBr4-C2Cl6 alloys.

ratio to maintain local thermodynamic equilibrium. Note that if
the solute expansion coefficient was too large, e.g., magnified
by 100 times for the Al-Cu alloy or 10 times for the CBr4-C2Cl6
alloy, the nearly planar S/L interface would become unstable,
and the lighter phase (e.g., the α phase for the Al-Cu alloy)
would protrude significantly into the liquid due to the enhanced
fluid flow.

It is noted that with increasing convection intensity, the
width of the two solid phases changed in the opposite direction,
e.g., increasing for the α phase but decreasing for the β phase
for the Al-Cu alloy, while the lamellar spacing λ, i.e., 2 (Sα +
Sβ), almost remained constant during all simulations, as shown

in Fig. 10. The effect of the natural convection on the eutectic
lamellar spacing was quite small in the eutectic alloy, which
agreed well with the experimental results of Lee et al. [5].

B. Thermodynamic equilibrium

Based on the steady-state eutectic growth theory established
by Jackson and Hunt [1], the growth undercooling without
convection could be deduced as a function of the growth
velocity V and the lamellar spacing λ.

�T = K1λV + K2/λ, (15a)

where K1 and K2 are given by

K1 = m̂C∗
0 (1 + ζ )2P

Dζ
, (15b)

K2 = 2m̂(1 + ζ )

(
�α sin θα

|mα|ζ + �β sin θβ

mβ

)
, (15c)

where m̂ = |mα|mβ/(|mα| + mβ) is the harmonic average of
the liquidus slopes |mα| and mβ . C∗

0 is the solubility limit
difference of two solid phases at the eutectic temperature.
P = ∑∞

n=1 ( 1
nπ

)
3
sin2( nπζ

1+ζ
) is a function of the width ratio ζ .

When the natural convection was considered in the mi-
crostructure evolution, the two-phase width needed to be
adjusted to maintain the thermodynamic equilibrium. From
Eqs. (15a)–(15c), this equilibrium, i.e., the competition be-
tween �Tc and �Tr , did not result in a fixed relation between
V and λ due to the change of ζ . To further investigate the

FIG. 11. Simulated growth velocity versus undercooling for (a) Al-Cu and (b) CBr4-C2Cl6 alloys. Simulated growth velocity versus the
inverse of the lamellar spacing for (c) Al-Cu and (d) CBr4-C2Cl6 alloys.
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TABLE IV. Parameters of the quadratic fitting functions for the growth velocity versus the inverse of the lamellar spacing.

Alloy Source Fitting function a b c Reduced chi squarea Adj. R squareb

Fig. 11(c): βc0 –1247.5 249.06 –1.3767 0.01248 0.95076
Al-Cu Fig. 11(c): 5βc0 y = ax2 + bx + c –1644.2 343.70 –3.3008 0.18703 0.94781

Fig. 11(c): −5βc0 –2235.9 438.27 –5.3051 0.04911 0.93715

Fig. 11(d): βc0 –243.06 51.475 –0.5398 0.00108 0.99138
CBr4-C2Cl6 Fig. 11(d): 2βc0 –547.33 118.04 –2.1504 0.06001 0.92099

Fig. 11(d): −2βc0 –328.24 61.079 –1.4704 0.00701 0.95679

aReduced chi square: equivalent to residual mean square in the analysis of variance and the smaller the value, i.e., closer to zero, the higher the
fitting degree [67].
bAdj. R square: an adjusted version of R square, which satisfies that the closer to 1, the more accurate the fitting function [67].

effect of the natural convection, a constant η was introduced to
reflect the width adjustment. The lamellar growth was simply
assumed to occur at λ = ηλnf , where λnf is the lamellar
spacing under the nonconvection condition. When η = 1, it
was restored to the classical Jackson-Hunt (JH) theory [1]. In
this respect, the eutectic growth could be described as

V = − K2

K1η2

1

λ2
nf

+ �T

K1η

1

λnf

. (16)

Figures 11(a) and 11(b) show the growth velocity V as a
function of the undercooling for two eutectic alloys. As the
undercooling increased, the lamellar spacing was reduced by
half, but the growth velocity continued to increase. Taking
the Al-Cu alloy, for instance, for two cases including βc0
and 5βc0, both lamellar spacings were reduced by half when
the undercooling reached 1.5 K, while for the case −5βc0,
the turning point was 1.6 K. When the lamellar spacing
remained unchanged, the growth velocity increased nearly
linearly with the undercooling, as indicated by Eq. (16). The
relation determined by the classical Jackson-Hunt theory is
plotted in solid red lines. The presence of natural convection
only affected the specific velocity magnitude, but kept the
variation trend unchanged. Note that when the solute expansion
coefficient of the CBr4-C2Cl6 alloy was magnified by −2
times, the two-phase width difference became remarkable [see
Fig. 9(b1)], and the growth velocity significantly slowed down
due to increasing difficulty of solute diffusion.

Figures 11(c) and 11(d) show the growth velocity versus
the inverse of the lamellar spacing for two eutectic alloys.
Such variation could be best described by a quadratic fitting
function, i.e., y = ax2 + bx + c; detailed parameters are pro-
vided in Table IV, in which the parameter c is close to 0. As
specified in Eq. (16), when K1, K2, η, and �T are determined
under the given convection condition, the velocity V changes
with 1/λ in a quadric relationship. However, in our limited
simulations, when the initial lamellar spacing became too large
(e.g., λ�19.2 μm or 1/λ � 0.052 μm−1 for the CBr4-C2Cl6
alloy), the eutectic couples would grow extremely slowly,
as designated by the blue circle in Fig. 11(d). Furthermore,
from the intercept (i.e., − K2

K1η2
1

λ2
nf

) and slope (i.e., 1
K1ηλnf

)

of the linear functions [see Figs. 11(a) and 11(b)] and the
position corresponding to the peak of the quadric functions [see
Figs. 11(c) and 11(d)], the constant η was smaller than 1, and
the greater the convection intensity, the smaller the constant.

V. CONCLUSIONS

The lamellar eutectic growth under natural convection for
Al-Cu and CBr4-C2Cl6 alloys was investigated by performing
phase-field lattice-Boltzmann simulations. A para-AMR algo-
rithm was employed to shorten the computation time. The sim-
ulation results were discussed and compared with theoretical
predictions, based on which the following conclusions could
be drawn:

(1) During the eutectic growth under natural convection,
the transverse and longitudinal velocity near the S/L interface
had different variation trends, but both presented symmetric
patterns about the centerline of the solid phases. There is an
outflow from the lighter phase and an inflow to the heavier
phase, e.g., from the Al-rich phase to the Cu-rich phase for
the Al-Cu eutectic alloy. The width ratio of two coexisting
solid phases has significant influence on the distribution of the
velocity field.

(2) The increase of the convection intensity would lead
to the adjustment of both solute distribution and interfacial
curvature, while the lamellar spacing remained constant. The
effect of the natural convection on the width ratio ζ could
be described by ζ = ζ0 + Aexp[ 1

τ
log10( βc

βc0
)], where βc/βc0

denotes the magnification of the convection intensity, τ reflects
the level of difficulty of the adjustment, and A denotes the
variation amount to the change of convection intensity.

(3) The existence of natural convection changed the growth
velocity, but had no influence on the steady-state eutectic
growth rule proposed by Jackson and Hunt. By introduc-
ing a constant η smaller than 1 into the growth rule, i.e.,
V = − K2

K1η2
1

λ2
nf

+ �T
K1η

1
λnf

, where λnf is the spacing under the

nonconvection condition, the eutectic growth under natural
convection could be revealed.
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APPENDIX: COMPUTATION OF THE
MINIMUM-UNDERCOOLING LAMELLAR SPACING

According to Ref. [56], the minimum-undercooling lamel-
lar spacing λm could be determined by

λm =
√

2Dl

V C∗
0P (ζ )

[
�α sin θαζ

mα

+ �β sin θβ(1 − ζ )

mβ

]
, (A1)

where Dl is the liquid diffusion coefficient and V is the growth
velocity. C∗

0 = Cβ − Cα is the solubility limit difference of two
solid phases (i.e., α and β phases) at the eutectic temperature.
P (ζ ) = ∑∞

n=1 ( 1
nπ

)
3
sin2( nπζ

1+ζ
) is a constant only dependent

on the width ratio ζ . �α and �β are the Gibbs-Thomson
coefficients of two solid phases. θα and θβ are the contact angles
at the α/L and β/L interface, respectively. mα and mβ are the
liquidus slopes.
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