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Exact hybrid Vlasov equilibria for sheared plasmas with in-plane and out-of-plane magnetic field

F. Malara, O. Pezzi,* and F. Valentini
Dipartimento di Fisica, Università della Calabria, 87036, Rende (Cosenza), Italy

(Received 21 March 2018; published 31 May 2018)

The hybrid Vlasov-Maxwell system of equations is suitable to describe a magnetized plasma at scales on the
order of or larger than proton kinetic scales. An exact stationary solution is presented by revisiting previous results
with a uniform-density shear flow, directed either parallel or perpendicular to a uniform magnetic field, and by
adapting the solution to the hybrid Vlasov-Maxwell model. A quantitative characterization of the equilibrium
distribution function is provided by studying both analytically and numerically the temperature anisotropy and
gyrotropy and the heat flux. In both cases, in the shear region, the velocity distribution significantly departs from
local thermodynamical equilibrium. A comparison between the time behavior of the usual “fluidlike” equilibrium
shifted Maxwellian and the exact stationary solutions is carried out by means of numerical simulations of the
hybrid Vlasov-Maxwell equations. These hybrid equilibria can be employed as unperturbed states for numerous
problems which involve sheared flows, such as the wave propagation in an inhomogeneous background and the
onset of the Kelvin-Helmholtz instability.
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I. INTRODUCTION

Shearing flows in plasma are found in many natural
contexts, like, for instance, the interface between the solar
wind and planetary magnetospheres (e.g., Refs. [1–3]), the
interaction region between fast and slow streams of the solar
wind [4], and astrophysical jets [5].

A magnetized plasma configuration with a shearing flow
is stable if the jump �u of the bulk velocity u across the
shear is lower than a certain threshold, which is typically
on the order of the background Alfvén velocity component
parallel to u [6]. In this case, waves possibly propagating
in the plasma are affected by the velocity shear through
different effects. In particular, small scales can be progressively
generated in the wave pattern in the direction of the bulk
velocity gradient by a phase-mixing mechanism; this effect is
similar to phase mixing of Alfvén waves which propagate in a
static background with an inhomogeneous Alfvén speed profile
(e.g., Refs. [7,8]). The formation of structures at increasingly
smaller scales can locally change the nature of waves [9–11],
for instance, converting an Alfvén wave into a kinetic Alfvén
wave [10–14]. Finally, the inhomogeneity associated with the
shear couples propagating modes, generating energy transfers
among different kind of waves [13].

In the opposite case of sufficiently large �u (or small
parallel magnetic field), a shearing flow in a plasma is unstable
and undergoes the Kelvin-Helmholtz (KH) instability [6],
which leads to the formation of vortices located at the shear
layer. The dynamics can be more complex in configurations
where one component of the magnetic field changes sign
across the shear layer [15–18], which generates an interplay
between KH instability and magnetic reconnection. When the
width of the shear layer becomes of the order of the ion
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inertial length, dispersive effects can modify the properties
of the KH instability [19]. The presence of KH vortices has
been revealed all along the flanks of the low-latitude Earth
magnetopause [3,20–22] (see also [23] for a review of the
KH instability in the magnetosphere context). Moreover, the
development of a mixed KH-tearing mode instability has been
considered to take place in cometary plasma tails [24]. At large
Reynolds numbers, KH instability can become a source of
turbulence through nonlinear interactions among vortices or
secondary instabilities [25–31]. As an observational example,
we can mention a turbulent layer observed in the Earth’s
magnetopause [32], where KH vortices form as a consequence
of the solar wind motion relative to the magnetosphere. It is
worth highlighting that, in this environment, the background
magnetic field of the Earth can be nearly perpendicular to the
sheared flow, due to the slipping of the solar wind over the
magnetosphere plasma.

From a theoretical point of view, prior to the study of either
wave evolution or KH instability in shearing-flow plasma, there
is the problem of setting up a stationary configuration with a
shear flow, where the above-mentioned phenomena can occur.
This topic does not present any difficulty in the framework
of magnetohydrodynamics (MHD), where a large variety of
stationary flows can be envisaged, provided that a null total
force acts on the magnetofluid at all positions. In contrast, the
situation is totally different in the framework of a kinetic theory.
In fact, building up a stationary particle distribution function
(DF) representing a shear flow in the presence of a background
magnetic field represents a nontrivial problem. Such an issue
is particularly relevant in contexts where the width of the
shear layer is of the order of typical kinetic scales, such as
the ion inertial length or Larmor radius. Indeed, in these cases,
kinetic aspects become relevant and can affect some properties
of the stationary configuration, like profiles of the bulk flow,
temperature, heat flux, etc., modifying them with respect to
what can be deduced from fluid approaches. For instance, this
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is the typical situation which is encountered when one tries to
model the shear flow at the Earth’s magnetopause [23].

The problem of deducing a stationary configuration with a
shear flow for a magnetized plasma within a kinetic description
has received certain attention in the literature. In the case of
uniform magnetic field, Cai et al. [33] have deduced a set
of stationary ion distribution functions giving origin to one-
dimensional (1D) shear flows directed perpendicularly to the
magnetic field. In particular, they have pointed out a different
behavior that is found according to the orientation of the flow
vorticity with respect to the magnetic field. A similar topic has
been treated by other authors: In the uniform B case, a form for
a stationary shearing kinetic configuration has been deduced
within the problem of calculating properties of ion-cyclotron
modes [34,35]; the same problem has been considered in the
nonuniform B case, deriving a set of specific profiles for bulk
velocity and magnetic field [36]. More recently, a form of
stationary distribution function has been considered in the case
of a nonuniform parallel magnetic field and bulk velocity [37].
In the above approaches, the fully kinetic problem has been
considered, calculating the distribution functions of both ions
and electrons.

Despite the existence of such results, in many studies of
the KH instability a shifted local Maxwellian distribution has
been considered as unperturbed plasma state (e.g., Ref. [38]). A
shifted Maxwellian has the advantage to be more manageable
because it allows us to easily choose profiles of density,
bulk velocity, temperature, and magnetic field. On the other
hand, at shear scales comparable with ion kinetic scales, a
shifted Maxwellian does not represent a stationary state. In
fact, initializing the system with a shifted Maxwellian leads to
the generation of oscillations [39], whose amplitude becomes
larger when decreasing the scale of the shear. Though this
aspect could be considered as not relevant in the formation of
the final turbulent state, it could somehow affect the linear stage
of the instability. Moreover, a shifted Maxwellian does not
describe the differences which arise in shears with a different
vorticity orientation with respect to the magnetic field [33],
as happens in the dusk or dawn flanks of the magnetopause,
where the vorticity to magnetic field orientation is reversed.

More importantly, when studying wave propagation in
shearing flows, the use of exact stationary states instead of
a shifted Maxwellian is crucial. In fact, spurious oscillations
associated with a nonexact stationary state would superpose to
waves, making it difficult to single out effects due to waves.

When one is interested in describing phenomena at scales
comparable with ion scales, a successful approach is rep-
resented by the so-called hybrid Vlasov-Maxwell (HVM)
model, in which ions are kinetically described while electrons
are treated as a massless fluid [40]. It represents a sort of
compromise between the usual “MHD-like” coarse-grained
fluid description and an exceedingly complex fully kinetic
approach. The HVM model has been adopted for describing
several phenomena occurring at scales where the kinetic
ion physics starts to play a significant role into the plasma
dynamics [41–47]. Within the HVM framework, a method to
derive ion distribution functions representing approximated
kinetic stationary solutions has been recently presented by
Cerri et al. [39]. It is based on the “extended fluid model
approach,” which considers finite Larmor radius effects in

the determination of the ion pressure tensor, and it has been
recently adopted to describe temperature anisotropies due to
the shear velocity [48,49]. However, it should be noticed that
the solutions proposed by Cerri et al. [39] are not exactly
stationary, even in the framework of the HVM theory. In fact,
oscillations are still present, even if with amplitudes definitely
smaller than those recovered in the shifted Maxwellian case.

In the present paper, we derive exact stationary solutions
for the set of the HVM equations describing a magnetized
plasma with an arbitrary shearing flow u profile in two
different configurations, namely, with a uniform magnetic
field B parallel or perpendicular to u. The derivation of
our solutions is inspired by full kinetic solutions previously
obtained in analogous configurations [34,35,37], which have
been adapted to the HVM model. In particular, an explicit
analytical expression for the solution is found in the parallel
B case, while in the case of perpendicular B the solution is
calculated by a numerical procedure which integrates single-
particle trajectories. The interest of these solutions is twofold:
First, they are exactly stationary, and thus can be safely used
as unperturbed states either in wave propagation models and in
instability studies; second, due to the properties of the HVM
model, they realistically represents situations in which the
width of shear layer is of the order of or larger than ion kinetic
scales, avoiding the complexity of a fully kinetic treatment.

The plan of the paper is the following: In Sec. II, we
introduce the equations of the HVM model; in Secs. III and
IV, we derive and discuss the stationary solution in the cases
of parallel and perpendicular magnetic fields, respectively; in
Sec. V, we present the results of numerical simulations where
we analyze the behavior of the solution in comparison with
that of a shifted Maxwellian; finally, in Sec. VI, we summarize
the results.

II. EQUATIONS OF THE MODEL

We consider a quasineutral magnetized plasma composed
of kinetic protons and a massless fluid of isothermal electrons
(the current analysis easily extends to heavier ions). We are
interested in describing shears occurring at scales larger or
comparable with proton kinetic scales, i.e., l � dp ∼ ρ

Lp
and

τ � �−1
cp , where dp = V

A
/�cp is the proton skin depth; ρ

Lp
=

vth,p/�cp is the proton Larmor radius; �cp = eB0/mpc is the
proton cyclotron frequency; V

A
= B0/

√
4πn0mp is the Alfvén

speed; and vth,p = (kBT0/mp)1/2 is the proton thermal speed.
Note that βp = 2v2

th,p/V 2
A

; mp, e, n0, and T0 are respectively
the proton mass, charge, density, and temperature; while B0,
c, and kB are the magnetic field typical value, the light speed,
and the Boltzmann constant.

At these scales, the proton dynamics is successfully mod-
eled by the hybrid Vlasov-Maxwell (HVM) equations:

∂f

∂t
+ v · ∇f + e

mp

(
E + v

c
× B

)
· ∂f

∂v
= 0, (1)

∂B
∂t

= −c∇ × E; j = c

4π
∇ × B, (2)

E = −1

c
(u × B) + 1

en

(
j × B

c

)
− 1

en
∇pe, (3)
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where f = f (x,v,t) is the proton distribution function in the
phase space (x,v). The electric E(x,t) and magnetic B(x,t)
fields are respectively determined by the generalized Ohm’s
law and by the Faraday and Ampere laws, by neglecting the
displacement current. In Eqs. (1)–(3), n(x,t) = ∫

d3vf (x,v,t)
is the proton number density, u(x,t) = ∫

d3v vf (x,v,t)/n(x,t)
is the proton bulk speed, and j(x,t) is the current density. Elec-
trons are a massless fluid, whose density is equal to that of ions
ne = n for the quasineutrality condition. The electron pressure
pe is determined by imposing a closure assumption for the elec-
tron dynamics (such as isothermal or adiabatic state equation).

Our goal is to build up a stationary hybrid equilibrium
state for a sheared flow in the presence of a homogeneous
background magnetic field. The shear is directed along y and
depends on x, i.e., u0 = u0(x)ey , and spatial variations occur
only along x. Two different cases are discussed: (i) magnetic
field B parallel to u0, i.e., B = B0ey ; and (ii) magnetic field B
perpendicular to u0, i.e., B = B0ez. These two cases will be
investigated separately in the rest of the paper.

In the parallel case, no electric field is needed to set the
initial equilibrium and electrons are a massless isothermal
fluid: Te = const → pe = kBnTe. In the perpendicular case,
an equilibrium electric field, directed along x, is needed to
equilibrate the u0 × B term in Eq. (3): E = E(x)ex . In this
case, we also need to relax the electrons’ closure, by treating
the electron pressure pe as a further independent quantity
determined by the following equation:[

∂

∂t
+ (ue · ∇)

](
pe

nγe

)
= 0, (4)

where γe is the electron adiabatic index and ue = u − j/n.
Last equation implies that the electron temperature is not
homogeneous. Therefore,

E(x) = −u0B0

c
− 1

ne

dpe

dx
. (5)

The presence of such electric field introduces a charge sep-
aration, which in principle is not taken into account within
the HVM model (ne = n). However, the discrepancy from the
quasineutrality condition is extremely small.

To conclude this section, we remark that the first attempts
for modeling a plasma configuration with a velocity shear at
kinetic scales essentially extend the fluid equilibrium at smaller
scales (e.g., Ref. [38]). These equilibria, based on the local
thermodynamical hypothesis [6], assume the following form
for the proton VDF (sheared Maxwellian):

fSM(x,v,t)

= n0

(2π )3/2v3
th,p

exp

{
−v2

x + [vy − u0(x)]2 + v2
z

2v2
th,p

}
, (6)

where v = (vx,vy,vz), n0 is the proton density, and u0 =
u0(x)ey is the bulk velocity, with u0(x) being a given function.
It can be easily verified that fSM is not a stationary solution
of HVM equations in both cases (parallel and perpendicular)
discussed above.

In the following, we will revisit and formalize, for the
HVM equations, the derivation of kinetic stationary equilibria
for a sheared flow by considering two different geometrical
configurations. We anticipate that our approach is easier with
respect to the ones adopted in previous works [33–37] and

implementing our equilibrium in the HVM code is hence quite
simple. This allows us to perform hybrid kinetic simulations
with a “proper” (and simple) hybrid kinetic equilibrium. We
also remark that the sheared Maxwellian DF is often adopted
also for analyzing phenomena occurring at kinetic scales in
sheared flows, such as KH instability. This choice can be easily
justified for the investigation of a particular class of phenom-
ena, where nonlinearities play a crucial role in developing
turbulence, such as KH instability (e.g., Ref. [38]). One can
correctly argue that, for these processes, the final difference
that would occur starting with the sheared Maxwellian or
with the “proper” equilibrium DF is minimal and does not
affect the final dynamical state. However, for another class of
processes (such as phase mixing of a linear wave in a velocity
shear [9–14]), starting from a correct equilibrium is crucial for
properly investigating the phenomenon itself. In this direction,
several works have been focused on extending the MHD-like
fluid equilibrium to the microphysics [39,48–51] and our work
gives a further contribution in this direction.

III. STATIONARY SOLUTION FOR
THE PARALLEL CASE: u0 || B

Here we revisit the derivation of the stationary solution
of Eqs. (1)–(3), in the case in which velocity shear and
homogeneous magnetic field are parallel and the electric field
is vanishing. The method we adopt is similar to the Harris
approach for deriving kinetic equilibria corresponding to lo-
calized current sheets [52] and it is based on the determination
of the proton DF as a function of the motion constants, derived
from the Lagrangian description of single-particle dynamics.
A similar derivation can be found in Ref. [37] in the framework
of fully kinetic theory; here, we reconsider the same problem
to adapt the solution to the HVM model. Moreover, we discuss
in deeper detail the properties of the derived stationary DF,
illustrating the spatial profiles of its moments (bulk velocity,
temperatures, heat flux).

For the present geometry, the Lagrangian of the single-
particle dynamics is

L = mp

2

(
v2

x + v2
y + v2

z

) − e

mp

vzB0x, (7)

where A = Azez = B0x ez is the vector potential associated
with the magnetic field. From the integrals of motion of L,
which are the generalized momenta Py , Pz and the energy E,
we can define three auxiliary constants:

k1 = Py = mpvy

k2 = −Pzc

eB0
= x − vz

�cp
(8)

k3 = E = mp

2

(
v2

x + v2
y + v2

z

)
.

To write the proton DF feq,||, we consider the following
combinations of the above constants, having the dimension of a

velocity, α1 = { 2
mp

[E − P 2
y

2mp
]}

1/2
and α2 = Py

mp
− U (x − vz

�cp
),

being U = U (k2) the arbitrary shear, function of the motion
integral k2.

Since α1 and α2 are motion integrals, each generic function
F (α2

1 + α2
2) is a stationary solution of the Vlasov equation [53].
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FIG. 1. Isosurface plot of the proton DF feq,|| in velocity space at x/dp = −2.34 (a), x/dp = 0 (b), and x/dp = 2.34 (c). In each panel, red,
green, and blue arrows refer to vx , vy , and vz, respectively. The red tube indicates the magnetic field direction.

The function F is determined by imposing that feq,|| reduces
to a Maxwellian with density n0 and thermal speed vth,p in the
absence of the shear (U = 0), and hence

feq,||(x,v) = n0

(2π )
3
2 v3

th,p

exp

[
− 1

2v2
th,p

{
v2

x

+
[
vy − U

(
x − vz

�cp

)]2

+ v2
z

})
. (9)

This solution is a stationary equilibrium for the HVM set of
equations Eqs. (1)–(3), for the case of a shear parallel to the
background magnetic field. Indeed, Eqs. (2) and (3) are also
exactly satisfied, since the zeroth-order moment of feq,|| gives
a homogeneous density n0 and the bulk speed u is along y

(see the next subsection for further details). The DF feq,|| is a
Maxwellian-like function shifted along vy , in which, however,
the amount of the shift depends on both the position x and the
velocity vz (through the argument of U , k2 = x − vz/�cp). For
the same reason, the bulk speed uy does not coincide with U

in the general case.

A. Properties of the stationary distribution function feq,||

To characterize the physical properties of feq,||, we focus
here on its shape in velocity space and on the evaluation of its
moments, in particular density, bulk velocity, temperature, and
heat flux.

To display the shape of feq,|| in the velocity space, we
choose the tanh-like shear profile of U , routinely adopted for
investigating the KH instability,

U (k2) = U0 tanh

(
k2

�x

)
, (10)

where we choose U0 = 2V
A
, βp = 2v2

th,p/V 2
A

= 4, and �x is
the width of the shear function U . The width of the sheared bulk
velocity u(x) can be different from �x. By using the latter ex-
pression of U , we compute feq,|| in Eq. (9), by discretizing the
four-dimensional phase space through Nx = 512 grid points
in the one-dimensional spatial domain (x ∈ [−L/2,L/2])
and Nv = 141 grid points in each velocity direction (vj ∈
[−vmax,vmax], being j = x,y,z and vmax = 7vth,p), while we
choseL = 50dp and�x = 2.5dp. Figure 1 show the isosurface
plots of feq,|| in velocity space at several spatial positions
across the shear: x/dp = −2.34 (a), x/dp = 0.0 (b), and

x/dp = 2.34 (c). The red tube in Fig. 1 indicates the magnetic
field direction. Far from the shear (not explicitly reported), the
distribution function is a shifted Maxwellian, while across the
shear it becomes significantly stressed, resembling potato-like
shapes with non-null heat flux, temperature anisotropy, and
agyrotropy with respect to its principal axes.

We also calculate the moments of the DF feq,||. We already
anticipated that the density associated with the DF given by
Eq. (9) is uniform, i.e., n(x) = n0. The bulk velocity can be
easily evaluated, starting from u(x) = ∫

d3v vfeq,||(x,v)/n0. It
can be easily shown that ux and uz are null, while uy is

uy(x) = 1

(2π )1/2vth,p

∫ ∞

−∞
U

(
x − v

�cp

)
exp

(
− v2

2v2
th,p

)
dv.

(11)

The bulk velocity uy(x) associated with feq,|| does not coincide
with the function U (x), but rather it is the result of the
convolution between U and a Gaussian function.

Despite the inverse process (i.e., the determination of U (x)
and of feq,|| for a given profile of the bulk velocity uy(x))
requires the inversion of the convolution in Eq. (11), it is still
possible to deduce some simple results. If �x is the character-
istic spatial length of U (x), then U (x − v/�cp) considered as a
function of v varies over the scale �v = �cp�x. The Gaussian
factor inside the integral of Eq. (11) represents a windowing
function selecting a v interval of width ∼vth,p; we indicate such
a windowing function by

WG(v) = 1

(2π )1/2vth,p

exp

(
− v2

2v2
th,p

)
. (12)

(a) In the large scale limit �x � ρLp, i.e., �v � vth,p, the
profile of the windowing function is relatively unimportant
and WG(v) can be successfully approximated with the simpler
square window WS(v), centered in v = 0, with width and
amplitude

√
2πvth,p and 1/

√
2πvth,p, respectively. WG(v) and

WS(v) have the same value at v = 0 and the same integral in
the interval (−∞,+∞). Within the approximation WG(v) �
WS(v), we obtain

uy(x) � Ū (x) = 1√
2πρ

Lp

∫ √
π
2 ρ

Lp

−
√

π
2 ρ

Lp

U (x − ξ )dξ, (13)
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FIG. 2. Initial shear U (black solid) and mean velocity uy (red
dashed), evaluated by the proton DF feq,||, as a function of x across
the shear.

which represents the running average of U (x) performed over
the interval [x − √

π/2ρ
Lp

,x + √
π/2ρ

Lp
]. In the large-scale

limit, the bulk velocity uy(x) is approximately given by
the function U (x) smoothed over an interval of amplitude√

2πρ
Lp

centered at the position x. This result can be easily
understood by thinking that the protons’ gyromotion in the
plane perpendicular to B mixes up the vy velocities of the single
protons, thus smoothing the profile of U (x) over a length scale
which is of the order of the Larmor radius.

(b) In the opposite small-scale limit, i.e., �x 	 ρ
Lp

,
Eq. (11) can be rewritten as follows:

uy(x) = 1

(2π )1/2

∫ ∞

−∞
U (ρ

Lp
ϕ) exp

[
−1

2

(
ϕ − x

ρ
Lp

)2
]
dϕ,

(14)

where ϕ = k2/ρLp
and U (ρ

Lp
ϕ) as a function of ϕ varies on

a scale much smaller than unity. If U (ρ
Lp

ϕ) describes a shear
layer corresponding to a bulk velocity which varies in the range
[−U0,U0], it can be approximated with the Heavyside function
H (ϕ):

U (ρ
Lp

ϕ) � U0H (ϕ) =
{
U0 if ϕ > 0

−U0 if ϕ < 0
. (15)

After some algebraic steps, Eq. (14) reduces to

uy(x) =
{
U0 if x � ρ

Lp

−U0 if x 	 −ρ
Lp

, for �x 	 ρ
Lp

, (16)

where, for simplifying the integrals, we considered that, for
x � ρ

Lp
(x 	 −ρ

Lp
), the Gaussian is essentially located in

the positive (negative) part of the ϕ axis, where H (ϕ) = 1
(H (ϕ) = −1). Hence, in spite of the small scale of variation of
the function U (x) (�x 	 ρ

Lp
), the bulk velocity uy(x) varies

on a scale comparable with the proton Larmor radius ρ
Lp

. It
is not possible to construct, in the current configuration, shear
layers with a width smaller than the proton Larmor radius.
This is again due to the proton gyromotion, which mixes up
the parallel velocity of single particles on a transverse scale of
the order of ρ

Lp
.

To directly display the shape of the bulk velocity, we
consider the shear function U (x) [Eq. (10)] and we numerically
compute uy(x), for �x = 2.5dp � 1.77ρ

Lp
. Figure 2 reports

the spatial profile of the function U (x) (black solid line) and

the corresponding bulk velocity uy (red dashed line). It is
clear to note that significant differences between U and uy

are recovered. We also verified that in the large-scale limit the
windowing function does not play a significant role and hence
uy(x) � U (x), while in the small-scale limit protons arrange
themselves to produce a bulk velocity uy(x) varying over a
scale comparable with the proton Larmor radius; nevertheless,
the shear function U varies over scales much smaller than ρ

Lp

(not reported here).
To further characterize the moments of feq,||, we consider

the variance matrix, defined by

σij (x) = 1

n(x)

∫
[vi − ui(x)][vj − uj (x)]feq,||(x,v)d3v;

i,j = x,y,z, (17)

which is related to the proton temperature by T0 =
mp

∑3
j=1 σjj /3kB . Since the magnetic field B is uniform

and directed along y, the proton temperatures parallel and
perpendicular to B, i.e., in the local B frame (LBF), are defined,
respectively, by T|| = mp

kB
σyy and T⊥ = mp

kB
(σxx + σzz)/2, so

that T0 = (T|| + 2T⊥)/3.
The analytical evaluation of anisotropy and agyrotropy at

the center of a symmetric shear, presented in Appendix A, indi-
cates that the equilibrium DF is anisotropic and agyrotropic. By
means of the numerical evaluations of the variance matrix ele-
ments, we can extend the analytical computation and consider
not only the center of the shear. We numerically diagonalize
the matrix σ , thus rotating the DF into the minimum variance
frame (MVF). The eigenvalues of σ , corresponding to the
temperatures in the MVF, are indicated by λ(3) < λ(2) < λ(1).

The top panel of Fig. 3 shows the temperature anisotropy
ratio η and η∗, while the bottom panel indicates the agy-
rotropy ratio ζ and ζ ∗, for the shear U (x) given by Eq. (10)
in the case �x = 2.5dp, both in the MVF (black solid)
and in the LBF (red dashed). Temperature anisotropy and
agyrotropy have been evaluated as follows: (a) temperature
anisotropy in the MVF η = (λ2 + λ3)/2λ1; (b) temperature
anisotropy in the LBF η∗ = (σxx + σzz)/2σyy ; (c) agyrotropy
in the MVF ζ = λ3/λ2; and (d) agyrotropy in the LBF ζ ∗ =
min(σxx,σzz)/ max(σxx,σzz). In the LBF, the DF is anisotropic
close to the shear, while no temperature agyrotropies are
recovered. On the other hand, in the MVF, the DF displays
strong anisotropies as well as agyrotropies close to the velocity
shear.

We finally characterize the DF feq,|| by computing the heat
flux for unit of mass:

qj (x) = 1

2

∫
[vj − uj (x])[v − u(x)]2feq,||(x,v)d3v;

j = x,y,z, (18)

where the shear function U (x) in Eq. (10), with �x = 2.5dp,
is adopted. Figure 4 reports the three components of the heat
flux qx (black solid line), qy (red dashed line), and qz (blue
dotted line), as a function of x/dp. The equilibrium DF feq,|| is
such that a nonvanishing heat flux is recovered at x/dp � 0 in
the two components qy and qz, which tends to zero away from
the shear.
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FIG. 3. Temperature anisotropy η, η∗ (top) and agyrotropy ζ , ζ ∗

(bottom) evaluated in the minimum variance frame (black solid) and
in the local magnetic field frame (red dashed), associated with the
proton DF feq,||.

IV. STATIONARY SOLUTION FOR
THE PERPENDICULAR CASE: u0 ⊥ B

We revisit here the derivation of the stationary solution of
Eqs. (1)–(3), in the case in which velocity shear and homo-

FIG. 4. Heat flux qx (black solid), qy (red dashed), and qz (blue
dotted), associated with the proton DF feq,||.

geneous magnetic field are perpendicular, while the electric
field is E = E(x)ex . The method here adopted is based on the
dynamics of a single proton in the electric E and magnetic B
fields. Particle trajectories have been already studied to build
up a stationary solution in a fully kinetic (ion + electron)
description in previous studies [33–35]. In particular, in the
analytical description of single-particle dynamics, we follow
the same method as Ganguli et al. [34], but deriving further
general results which are important for setting up our numerical
description of particle dynamics. We will also derive a form for
the proton distribution function which is different from that in
Ref. [34] (except in the particular case of linearly growing
electric field). In our case, the derived DF is furthermore
supplemented with a form for the electron pressure profile,
which allows us to obtain an exact stationary state for the whole
set of HVM equations.

Our derivation starts from considering the single-particle
motion. The proton motion along the parallel z direction is
decoupled from the motion in the transverse plane. Therefore,
we focus on the particle motion in the xy plane, described by

dvx

dt
= �cpvy + e

mp

E(x),
dvy

dt
= −�cpvx,

dx

dt
= vx. (19)

The particle motion depends on the electric field profile
E(x), which indirectly determines the profile u(x) of the bulk
velocity. We consider a situation where u(x) varies, crossing
one or more shear layers, but becomes essentially uniform
far from the shear layers: E(x) = E+∞ (E(x) = E−∞) for
large positive (negative) x. Thus, in the homogeneous region,
particles drift along y with a uniform drift velocity vd,±∞ =
c(E±∞ × B)/B2.

From Eqs. (19), it is easy to obtain

vy = −�cpx + W0, (20)

d2x

dt2
= −�2

cpx + e

mp

E(x) + �cpW0, (21)

where W0 is a constant determined by initial conditions and
Eq. (21) is a nonlinear oscillator equation for x(t). We integrate
Eq. (21) in the interval [x0,x], by considering that dvx/dt =
d/dx(v2

x/2) and by rewriting v0y = W0 − �cpx0 (being x0 an
arbitrary position corresponding to v0y):

1
2mpv2

x + eφ(x) + 1
2mp�2

cp(x − x0)2

−mp�cpv0y(x − x0) = e0, (22)

where φ(x) = − ∫ x

x0
E(x ′)dx ′ is the electrostatic potential,

which vanishes at x = x0, and e0 = mpv2
x0/2 is a constant,

vx0 being the value of vx at x = x0.
Equation (22) expresses the energy conservation for a

particle with mass mp following a 1D motion in the effective
potential energy Ueff (x) = UE(x) + U�(x), where UE(x) =
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eφ(x) is the electrostatic potential energy and

U�(x) = 1

2
mp�2

cp(x − x0)2 − mp�cpv0y(x − x0)

= 1

2
mp�2

cp

(
x − W0

�cp

)2

+ 1

2
mpv2

0y. (23)

The term U�(x) hence corresponds to an attractive force toward
the position W0/�cp.

For large |x − x0|, the term U�(x) dominates in the de-
termining the effective potential energy Ueff (x). Indeed, since
E(x) becomes constant for sufficiently large values of |x − x0|,
we have that UE � −E+∞(x − x0) [UE � −E+∞(x − x0)]
for large positive (negative) values of x − x0, while U�(x) is
quadratic with respect to (x − x0). The motion of the particle
along x is hence confined inside a potential well: xm � x(t) �
xM , where Ueff (xm) = Ueff (xM ) = e0 and the particle moves
back and forth in the interval [xm,xM ], with vanishing vx at xm

and xM . In other words, x(t) and vx(t) are periodic function
with period τ and, from Eq. (20), follows that vy(t) is also
periodic with period τ . Therefore, the particle follows a closed
trajectory in the vxvy plane. Notice that y(t) is not necessarily a
periodic function and the particle trajectory in the xy plane is,
in general, an open curve. The details of the motion alongx, like
the period τ , depend both on the specific form of the electric
field profile E(x) and on the particle initial conditions, which
determine the constant quantity W0. However, the periodicity
of variables x(t), vx(t), and vy(t) holds for any form of E(x)
and for any initial condition. This result is crucial for the setup
of the numerical method we employed to calculate a stationary
proton DF feq,⊥ for an arbitrary electric field profile.

Since the particle motion in the vxvy plane is periodic, the
time average of the velocity over the period τ provides the drift
velocity in the particle motion. Therefore, we define the guid-
ing center velocity vc as

vc = 〈v〉τ = 1

τ

∫ τ

0
v(t) dt. (24)

The x component of the guiding center velocity is trivially
vanishing; hence, vc = vcyey = 〈vy〉τ ey . We also define the
guiding center position xc as the position where the particle
velocity component vy is equal to the guiding center velocity:
vy = vcy ; hence, from Eq. (20), we find

xc = (W0 − vcy)/�cp. (25)

Note that (i) Eq. (25) implies that a single value is admitted
for xc and (ii) the guiding center position xc represents also the
time-averaged particle x position: xc = 〈x〉τ .

We point out that our particle guiding center definition
is different from that used in previous studies. In fact, in
Refs. [33,54], the guiding center position is defined as a point
where vy = uy , implying that a given particle can have more
than one guiding center (see Ref. [33] for a discussion). In
contrast, in our approach a single guiding center is defined
for each particle, regardless of the specific electric field profile
E(x) and the particle initial condition. In Ref. [34], the guiding
center position is defined as the position where the effective
potential energy is minimum. Also, this definition differs from
ours, except for particular profiles of the linearly growing
electric field (see Appendix B).

To build the stationary DF for the HVM Eqs. (1)–(3), we
consider the particle total energy, which is a constant of motion:

E = K + U ′
E = 1

2mp

(
v2

x + v2
y + v2

z

) + U ′
E, (26)

where the electric potential energy U ′
E(x) is redefined such that

U ′
E(xc) = 0; i.e., it vanishes at the guiding center position xc of

the considered particle U ′
E(x) = −e

∫ x

xc
E(x ′) dx ′. This choice

can be justified by the following argument. Let us consider
the particular case of a uniform electric field E(x) = E0,
corresponding to proton circular orbits in the vxvy plane, with
uniform drift velocity vcy = −cE0/B. In such a case, the
potential energy has the form U ′

E(x) = −eE0(x − xc). Since
xc = 〈x〉τ , it follows that 〈U ′

E〉τ = 0; i.e., it has the same
value for all particles, regardless of their average position
xc. This is in accordance with the macroscopic invariance
of fluid properties with x, which characterizes this particular
case. In contrast, a potential energy UE which vanishes at
a fixed position x0 (equal for all the particles) would give
〈UE〉τ = eE0(xc − x0), i.e., an average potential energy which
systematically varies with the average position xc of particles.

We define also the quantity E0 = E − mpv2
cy/2 which

represents the part of the particle energy not due to the drifting
motion. Of course, E0 is another motion constant. Since E is
constant, its value can be evaluated at x = xc, where U ′

E(xc) =
0 and where, by definition, vy = vcy . Thus,

E = 1
2mp

{
[vx(x = xc)]2 + v2

z

} + 1
2mpv2

cy, (27)

implying

E0 = 1
2mp

{
[vx(x = xc)]2 + v2

z

}
. (28)

To understand how to define the proton DF, we again
consider the particular case of constant electric field and we
require that, in this case, the DF is a shifted Maxwellian:

fSM(v) = C exp

[
−v2

x + (vy − vcy)2 + v2
z

2v2
th,p

]
, (29)

where vth,p is the thermal speed and C is a normalization
constant. The uniform-E case analyzed above can be also
reproduced in the local approximation description, whose
details are reported in Appendix B, by setting α0 = 0 (ω2 =
�2

cp), which implies that v2
x + (vy − vcy)2 = [vx(x = xc)]2.

Therefore, in this case, by comparing Eqs. (28) and (29), we
conclude that

fSM(v) = C exp

(
− E0

mpv2
th,p

)
. (30)

The above considerations lead us to the following “ansatz”: We
hypothesize that a stationary proton DF representing a shearing
flow for any electric field profile E(x) can have the following
implicit form:

feq,⊥(x,v) = C exp

[
−E0(x,vx,vy,vz)

mpv2
th,p

]
, (31)

where E0(x,vx,vy,vz) = E − mpv2
cy/2 is the single-proton en-

ergy not due to the drifting motion. As showed above, Eq. (31)
is a shifted Maxwellian for an uniform electric field.

Of course, such a conjecture must be verified a posteriori.
This can be done first in the particular case of the local
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approximation, reported in Appendix B, where we also derive
the explicit form of the equilibrium DF. Then, in the case of a
generic electric field profile E(x) the same quantities will be
calculated by employing a numerical technique. It is important
to highlight that, since the quantity E0 is a constant of the
particle motion, feq,⊥ is a stationary solution of the Vlasov
equation [Eq. (1)], provided that both the electric and magnetic
fields are temporally constant [53].

The numerical method employed to generate the equilib-
rium DF feq,⊥, for a generic electric field profile E(x), is
described in the following. We assume that feq,⊥ has the form
given by Eq. (31), being

E0(x,vx,vy,vz) = mp

2

(
v2

x + v2
y + v2

z

) + U ′
E(x,vx,vy)

− mp

2
v2

cy(x,vx,vy). (32)

Here, v2
cy(x,vx,vy) indicates the guiding center velocity of a

particle which is located at the position x, with velocity (vx,vy)
at a given time t , while U ′

E(x,vx,vy) is the electric potential
of the same particle. Since E0 is a motion constant, the time
t when E0 is evaluated can be arbitrarily chosen. Hence, in
Eq. (32), (x,vx,vy,vz) can be interpreted as the position and
velocity of a single particle at the initial time of its motion.
The evaluation of the last two terms in Eq. (32) requires us,
however, to integrate the single-particle motion in Eqs. (19).
This has been done by the following numerical procedure:

(i) We consider a 1D-3V phase space, composed of a
spatial coordinate x ∈ [0,L], discretized with Nx grid points,
and three velocity coordinates vm ∈ [−vmax,vmax] m = x,y,z,
discretized with Nv grid points along each direction. We
numerically integrateNx × N2

v particle motion Eqs. (19), using
each point (xi,vx,j ,vy,k) of the subgrid as initial condition:
x(t = 0) = xi , vx(t = 0) = vx,j , vy(t = 0) = vy,k (i,j,k are
indexes which span along x, vx , and vy , respectively). The
vz component, whose index is l, is neglected since the motion
is trivial along z. The time integration of Eqs. (19) has been
carried out through a third-order Adam-Bashforth scheme,
with the time step �t chosen to maintain the CFL condition.

(ii) Since the exact trajectories in the vxvy plane are neces-
sarily closed, each integration is stopped when the correspond-
ing orbit in the vxvy plane is completed. The corresponding
time T represents the orbit period.

(iii) We calculate, for each orbit, the velocity and x position
of the guiding center: vcy,ijk = 〈vy〉T and xc,ijk = 〈x〉T . The
electric potential associated with the particle initial position
is calculated as φijk = − ∫ xi

xc,ijk
E(x) dx, where the integral is

numerically evaluated. Then, the DF at a given point of the
phase space is evaluated as

feq,⊥(xi,vx,j ,vy,k,vz,l) = C exp

[
− 1

2v2
th,p

(
v2

x,j + v2
y,k + v2

z,l

−v2
yc,ijk

) − eφijk

mpv2
th,p

]
. (33)

From this expression, the moments of the distribution function
(density, temperatures, bulk velocity, and heat flux compo-
nents) are numerically evaluated. In particular, all the moments
vary only in the x direction and the bulk velocity u(x) is
directed in the y direction.

(iv) The resulting uy(x) depends on the chosen profile of
the electric field E(x). However, for an arbitrary electric field
profile E(x), the bulk velocity does not coincides with the
local E × B drift velocity. On the other hand, E and u appear
in the generalized Ohm’s law (3), which must be consistently
satisfied. This is obtained by choosing a profile for the electron
pressure pe(x) such that

dpe

dx
= −qn(x)

[
Buy(x)

c
+ E(x)

]
(34)

Then, in the general case the electron pressure pe is not
uniform, except in the case of a linear electric field profile
(see Appendix B). By adopting this closure for the electron
pressure, it is easy to show that the considered configuration
is a stationary solution of the whole set of HVM Eqs. (1)–(3)
supplemented by Eq. (4) for the electron pressure.

A. Properties of the stationary distribution function feq,⊥

To analyze the properties of the equilibrium DF feq,⊥, we
focus on the following shape for the electric field:

Ex(x) = −E0 tanh

(
x

�x

)
, (35)

representing a shear layers of amplitude E0 = 1 (in scaled
unit) and width �x = 2.5dp. By using the latter expression
of E0,x , we compute feq,⊥ in Eq. (31), by discretizing the
four-dimensional phase space through Nx = 512 grid points
in the one-dimensional spatial domain (x ∈ [−L/2,L/2])
and Nv = 141 grid points in each velocity direction (vj ∈
[−vmax,vmax], being j = x,y,z and vmax = 7vth,p), while we
chose L = 50dp and �x = 2.5dp. It is worth noting that the
difference between the electric field from which we compute
the equilibrium [Eq. (35)] and the term −u × B/c evaluated
using the equilibrium DF mean speed is of the order of 10−5.
Although this quantity is small at the initial time, one needs to
take care of it by self-consistently solving Eq. (4) to maintain
the equilibrium.

Figure 5 reports the isocontour of the proton DF feq,⊥ in the
velocity space. Figures 5(a) to 5(c) refer to different positions
across the shear: x/dp = −2.34 (a), x/dp = 0.0 (b), and
x/dp = 2.34 (c). The red tube in Fig. 5 indicates the magnetic
field direction. We note that, against the parallel case, here the
equilibrium DF is less stressed and exhibits a bi-Maxwellian-
like structure, elongated in a direction transverse to the mag-
netic field direction. As for the parallel case, far from the shear,
the DF feq,⊥ reduces to the shifted Maxwellian, while—across
the shear—it exhibits a clear temperature anisotropy.

Figure 6 reports the temperature anisotropy (top panel) and
agyrotropy (bottom panel) ratios both in the MVF (black solid)
and in the LBF (red dashed). Temperature anisotropy and
agyrotropy have been evaluated as follows: (a) temperature
anisotropy in the MVF η = (λ2 + λ3)/2λ1; (b) temperature
anisotropy in the LBF η∗ = (σxx + σyy)/2σzz; (c) agyrotropy
in the MVF ζ = λ3/λ2; and (d) agyrotropy in the LBF ζ ∗ =
min(σxx,σyy)/ max(σxx,σyy). Note that the definitions in the
LBF are different from the parallel case, since the orientation
of the magnetic field has been changed. If in the parallel
case the equilibrium distribution function was characterized by
stronger anisotropies in the MVF frame, here the situation is
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FIG. 5. Isosurface plot of the proton DF feq,⊥ in velocity space at x/dp = −2.34 (a), x/dp = 0 (b), and x/dp = 2.34 (c). In each panel,
red, green, and blue arrows refer to vx , vy , and vz, respectively. The red tube indicates the magnetic field direction.

the opposite. Indeed, in the MVF, the DF is strongly anisotropic
at the shear, but it does not present significant nongyrotropic
features. On the other hand, in the LBF frame, the DF is
significantly anisotropic as well agyrotropic.

Finally, we characterize the DF by evaluating the heat flux
[Eq. (18)]. Figure 7 reports the three components of the heat

FIG. 6. Temperature anisotropy η, η∗ (top) and agyrotropy ζ , ζ ∗

(bottom) evaluated in the minimum variance frame (black solid) and
in the local magnetic field frame (red dashed), associated with the
proton DF feq,⊥.

flux qx (black solid line), qy (red dashed line), and qz (blue
dotted line), as a function of x/dp. Clearly, a nonvanishing
heat flux is recovered at x/dp � 0 in the y component.

V. HYBRID VLASOV-MAXWELL SIMULATIONS
OF THE EQUILIBRIUM

In this section, we numerically test that distribution func-
tions derived in the previous sections feq,|| and feq,⊥ are
effectively stationary equilibria for the HVM set of equa-
tion, which are solved numerically in the so-called HVM
code [40,55–59], by also comparing these equilibria with the
sheared Maxwellian case fSM.

The HVM code solves numerically the set of Eqs. (1)–(4) in
dimensionless form through a Eulerian algorithm described in
detail in Ref. [40]. In the parallel case, since Te is homogeneous
and constant, Eq. (4) is trivial. Dimensionless HVM equations
are obtained by scaling velocities by the Alfvén speed V

A
,

lengths by the proton skin depth dp , and time by the inverse pro-
ton cyclotron frequency �−1

cp . Since the problem is intrinsically
one-dimensional in physical space, we restrict our numerical
runs to a phase space of reduced dimensionality (1D in physical
space and 3D in velocity space). The code assumes periodic
boundary conditions in the spatial coordinate x ∈ [0,L], while
the DF f (x,v,t) is set equal to zero for |v| > vmax in each
velocity direction and at each spatial position.

FIG. 7. Heat flux qx (black solid), qy (red dashed), and qz (blue
dotted), associated with the proton DF feq,⊥.
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FIG. 8. Top: Contour plot of δuy,%(x,t) for the S1 simulation (a)
and temporal profile of δuy,%(x = x∗,t) (b) for the S1 simulation
(black) and for the S2 simulation (red), with x = x∗ indicated in panel
(a) with the black dashed line. Bottom: contour plot of δT%(x,t) for
the S1 simulation (c) and temporal profile of δT%(x = x∗,t) (d) for
the S1 simulation (black) and for the S2 simulation (red), with x = x∗

indicated in panel (c) with the black dashed line.

A. Parallel case

For this case, we discretized the four-dimensional phase
space through Nx = 512 grid points in the one-dimensional
spatial domain and Nv = 141 grid points in each velocity
direction, while vmax = 7vth,p.

We performed two simulations (S1 and S2), keeping fixed
the background magnetic field B0 = B0ey (B0 = 1 in scaled
units) and βp = 2v2

th,p/V 2
A

= 4, but changing the initial proton
distribution function. In both simulations, the system dynamics
is followed up to a time tmax = 40�−1

cp and no perturbations are
introduced.

We first consider the SMDFfSM [Eq. (6)] as initial condition
for the simulation S1. In this case, we set

u0(x) = U0

[
tanh

(
x − L/4

�x

)
− tanh

(
x − 3L/4

�x

)
− 1

]
(36)

with U0 = 2V
A
, �x = 2.5dp, and L = 100dp.

Then, we performed a second simulation S2, using as initial
condition the stationary DF feq,|| [Eq. (9)], with

U (x − vz) = U0

[
tanh

(
x − L/4 − vz

�x

)

− tanh

(
x − 3L/4 − vz

�x

)
− 1

]
, (37)

and compared the results of the two simulations. We point out
that the expressions in Eqs. (36) and (37) describe a smooth
jump in velocity at the position x = L/4 along the x direction;

FIG. 9. Temporal evolution of L2(δuy,%) (top row) and L2(δT%)
(bottom row). In each panel, the black line refers to the fSM DF and
the red line to the feq,|| DF.

this jump has been mirrored at x = 3L/4, in order to satisfy
the periodic boundary conditions.

As expected, the simulation S1 clearly indicates that the
initial distribution SM DF is not an equilibrium and, as
a consequence, its velocity moments display an oscillatory
behavior with a period equal to the ion gyroperiod. The left
column of Fig. 8 displays the contour plots of δuy,%(x,t) =
[uy(x,t) − uy(x,0)]/U0 × 100 [Fig. 8(a)] and δT%(x,t) =
[T (x,t) − T (x,0)]/T ∞ × 100 [Fig. 8(c)] in the (x,t) plane, for
the simulation S1, where the x range has been set to focus on the
left half of the spatial box and where T ∞ = v2

th,p = βp/2 = 2
in dimensionless units. Significant oscillations (about 30%) are
recovered in both uy and T , localized around the shear.

On the other hand, in the simulations S2 with the DF feq,||,
the system remains at equilibrium (no significant oscillations
are visible). To better point out the differences between S1
and S2, we considered the temporal profiles of δuy,%(x,t) and
δT%(x,t), evaluated at a fixed spatial position x = x∗. The
point x∗ corresponds to the spatial point where each quantity
exhibits the largest amplitude oscillations in simulation S1
[vertical black dashed lines in Figs. 8(a) and 8(c)], with respect
to the initial condition, i.e., δuy,%(x∗,t) = maxx{δuy,%(x,t)}
and δT%(x∗,t) = maxx{δT%(x,t)}. These temporal profiles are
reported in Figs. 8(b) and 9(d), as black (fSM) and red (feq,||)
curves, respectively. Here, one can realize that no significant
oscillations in the signals are recovered in the case of the DF
feq,||, as compared to the case of the SMDF.
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To further characterize the differences between the two
cases S1 and S2, we also computed the L2 norm of δuy,%(x,t)

and δT%(x,t), defined as L2(g(x,t)) =
√∫

(g − g0)2dx/L,
with g being a generic function and g0 = g(x,0). Clearly
L2(g(x,t)) is a function of time t . In Fig. 9, we show, in
semilogarithmic plot, the temporal evolution of L2(δuy,%) (top
row) and L2(δT%) (bottom row). As can be appreciated from
the plots in this figure, significant oscillations with respect
to the initial configuration are present in the case of the
SMDF (black solid curves), confirming that this distribution
is not a HVM equilibrium. On the other hand, no oscillations
are visible for the case of the DF feq,|| (red solid curves),
in which the small departure from the initial configuration
(about 10−4%) is presumably due to the numerical error in
the calculation of the velocity moments of feq,||.

B. Perpendicular case

For this case, we discretized the four-dimensional phase
space through Nx = 512 grid points in the one-dimensional
spatial domain and Nv = 141 grid points in each velocity
direction, while vmax = 7vth,p. Two simulations have been
performed to compare the SM DF fSM (S3) and the equilibrium
DF feq,⊥ (S4), while the background magnetic field is B0 =
B0ez (B0 = 1 in scaled units) and βp = 2v2

th,p/V 2
A

= 4. In
both simulations, the system dynamics is followed up to a
time tmax = 40�−1

cp and no perturbations are introduced. The
initial electric field considered for these simulations is the one

FIG. 10. Top: contour plot of δuy,%(x,t) for the S3 simulation (a)
and the temporal profile of δuy,%(x = x∗,t) (b) for the S3 simulation
(black) and for the S4 simulation (red), with x = x∗ indicated in panel
(a) with the black dashed line. Bottom: contour plot of δT%(x,t) for
the S3 simulation (c) and the temporal profile of δT%(x = x∗,t) (d)
for the S3 simulation (black) and for the S4 simulation (red), with
x = x∗ indicated in panel (c) with the black dashed line.

given by

E(x) = E0

[
1 − tanh

(
x − L/4

�x

)
+ tanh

(
x − 3L/4

�x

)]
(38)

with E0 = 1 (in scaled units), �x = 2.5dp, and L = 100dp.
Note that the shear has been mirrored to hold periodic boundary
conditions.

As expected, the simulation S3 indicates that the initial
distribution SM DF is not an equilibrium. However, with re-
spect to the parallel case, its velocity moment does not display
an oscillatory behavior but some propagating structure is also
recovered. Left column of Fig. 10 displays the contour plots of
δuy,%(x,t) = [uy(x,t) − uy(x,0)]/U0 × 100 [Fig. 10(a)] and
δT%(x,t) = [T (x,t) − T (x,0)]/T ∞ × 100 [Fig. 10(c)] in the
(x,t) plane, for the simulation S3, where the x range has been
set to focus on the left half of the spatial box and where
T ∞ = v2

th,p = βp/2 = 2 in dimensionless units. Disturbances
from the equilibrium (about 1–2%) are recovered in both uy

and T , mainly localized around the shear but also showing a
propagating structure.

On the other hand, in the simulations S4 with the equi-
librium DF, the system remains at equilibrium (oscillations
significantly smaller than in S3 are in fact recovered in S4).
To better point out the differences between S3 and S4, we
considered the temporal profiles of δuy,%(x,t) and δT%(x,t),
evaluated at a fixed spatial position x = x∗. The point x∗

FIG. 11. Temporal evolution of L2(δuy,%) (top row) and L2(δT%)
(bottom row). In each panel, the black line refers to the fSM DF and
the red line to the feq,⊥ DF.
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corresponds to the spatial point where each quantity exhibits
the largest amplitude oscillations in simulation S3 [vertical
black dashed lines in Figs. 10(a) and 10(c)], with respect
to the initial condition, i.e., δuy,%(x∗,t) = maxx{δuy,%(x,t)}
and δT%(x∗,t) = maxx{δT%(x,t)}. These temporal profiles
are reported in Figs. 10(b) and 10(d), as black and red
curves, respectively. Here, one can realize that much smaller
oscillations in the signals are recovered in the case of the
DF feq,⊥ (red), as compared to the case of the SMDF
(black).

To further characterize the differences between the two
cases S3 and S4, we also computed the L2 norm of δuy,%(x,t)

and δT%(x,t), defined as L2(g(x,t)) =
√∫

(g − g0)2dx/L,
being g a generic function and g0 = g(x,0). Clearly L2(g(x,t))
is a function of time t . In Fig. 11, we show, in semilogarithmic
plot, the temporal evolution of L2(δuy,%) (top row) and
L2(δT%) (bottom row). As can be appreciated from the plots in
this figure, significant departures from the initial configuration
are present in the case of the SMDF (black solid curves),
confirming that this distribution is not a HVM equilibrium. On
the other hand, in the case of the DF feq,⊥ (red solid curves)
much small departures from the initial configuration (about
10−2%) are observed, presumably due to the numerical error
in the calculation of the velocity moments of feq,⊥.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have derived exact solutions for the
system of hybrid Vlasov-Maxwell equations which represent a
stationary shearing flow with a uniform magnetic field directed
either parallel or perpendicular to the plasma bulk velocity.
Plasmas supporting shearing flows are found in many situations
and a kinetic description is necessary whenever the shear width
is of the order of kinetic scales, like, for instance, in the case
of the Earth’s magnetopause [3,20,21,23].

The interest of building up stationary solutions can be
related to the problem of describing the propagation and
evolution of waves in a plasma with a stable shearing flow. The
interaction between waves and the background inhomogeneity
associated with the shearing flow moves the wave energy
toward small scales, where kinetic effects are more effective.
Moreover, the presence of a shearing flow can generate wave
coupling, with an energy transfer among different wave modes.
It is clear that, in order to properly study wave propagation, it
is necessary that the background structure remains stationary;
otherwise, a time evolution intrinsic of the background state
would superpose to waves, making difficult to single out
the wave contribution in the overall time evolution. Another
possible application of exact shearing flow solutions can be
found in the study of the Kelvin-Helmoholtz instability, which
takes place in unstable shearing velocity configurations. In fact,
though the turbulent stage following the instability saturation
should be quite insensitive to the details of the initial state, only
a stationary unperturbed configuration allows us to properly
describe the linear stage of the instability. Therefore, in both
cases an exact stationary distribution function is preferable to
the simpler shifted Maxwellian DF.

Stationary solutions in various configurations have been de-
scribed in previous studies of the fully kinetic case, i.e., involv-

ing the full set of ion and electron Vlasov-Maxwell equations.
However, the fully kinetic treatment is quite complex and such
solutions have rarely been employed in numerical simulations
like, for instance, in investigations of the KH instability. In this
respect, the set of hybrid Vlasov-Maxwell equations represents
a good compromise, because it correctly describes a plasma at
scales of the order of or larger than the ion scales but avoiding
the complexity of a fully kinetic treatment. In the framework
of Vlasov-Maxwell equations, Cerri et al. [39] have developed
a method to derive approximately stationary solutions. The
solutions presented here situate in the same framework but
have the advantage to be exactly stationary.

The starting point of our derivation are previous studies
where stationary DFs are derived in the fully kinetic framework
(Refs. [34,37]), which we revisited and adapted to the hybrid
Vlasov-Maxwell description. In particular, we have examined
the special cases in which the magnetic field is uniform and
either parallel or perpendicular to the bulk velocity. In the
former case, the stationary solution has a simple analytical
form which can be directly used in numerical simulations;
in the latter case, the explicit construction of the distribution
function is obtained through a simple numerical procedure
which integrates particle orbits throughout the relevant phase
space. In the case of parallel B, an isothermal electron fluid
have been assumed. In contrast, in the case of perpendicular
B, a nonuniform electron pressure pe is necessary in order
to satisfy the generalized Ohm’s law. As a consequence, an
adiabatic equation for the electron fluid has been added to the
set of equations. This aspect represents a novelty for the hybrid
Vlasov-Maxwell approach, in which an isothermal electron
fluid has been routinely assumed.

The main properties of these solutions have been examined,
calculating the associated profiles of bulk velocity, tempera-
tures, and heat flux. In the shear region, the ion distribution
functions are distorted with respect to shifted Maxwellians,
with stronger distortions for more localized shears. In particu-
lar, marked anisotropy and agyrotropy in the ion temperature
are generated, and none of the DF principal axes is aligned to
B. Moreover, a nonvanishing heat flux is present, directed in
the plane perpendicular to the inhomogeneity direction x. We
found that the width of the velocity shear cannot be smaller
than ion Larmor radius; this can be justified by considering the
ion gyromotion which mixes up single-particle velocities on
the scale of the Larmor radius.

The HVM code [40] has been employed to verify to what
extent the derived configurations remain stationary when
used as initial conditions in numerical simulations. The time
behavior has been compared with that obtained in the case
of a shifted Maxwellian distribution function. We found that
in the case of our solutions the deviation from the initial
condition remains much smaller (two orders of magnitude for
perpendicular B and more than three orders of magnitude for
parallel B) than in the case of the shifted Maxwellian. The
small deviation from exact stationarity of the former case
are probably due to numerical errors in the HVM code and,
for perpendicular B, also in the procedure integrating particle
orbits.

We are planning to use these results for studying the problem
of Alfvén wave evolution in a shearing flow plasma. Moreover,
we are currently working to extend them to the case of an
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obliquely directed magnetic field, a configuration commonly
observed in the Earth’s magnetosphere.
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APPENDIX A: ANISOTROPY EVALUATION AT THE
CENTER OF THE SHEAR IN THE PARALLEL CASE

In this Appendix, we analytically calculate, in the case of the
shear parallel to the background magnetic field, the variance
matrix for the equilibrium DF feq,|| of Eq. (9). We focus on
the case where U represents a shear layer across which the
bulk velocity varies from a value −U0 to U0. In the spatial
positions far from the velocity shear, feq,|| reduces to a shifted
Maxwellian and then the variance matrix becomes diagonal
σ∞

ij = v2
th,pδij and T ∞

0 = T ∞
|| = T ∞

⊥ , where the upper index
“∞” identifies values calculated far from the shear layer. We
focus the center x = 0 of a symmetric shear layer, i.e., U (k2)
is an odd function of k2, where we expect to find the strongest
departures from a Maxwellian. In this case, uy(x = 0) = 0,
while the variance matrix is

σij (x = 0) = 1

(2π )3/2v3
th,p

∫
vivj exp

(
− 1

2v2
th,p

{
v2

x

+
[
vy + U

(
vz

�cp

)]2

+ v2
z

}]
d3v. (A1)

In the large-scale limit �x � ρ
Lp

(�v � vth,p) and by con-
sidering that the typical value for the velocity vz is vth,p, we
can retain the first-order Taylor expansion term of U (vz/�cp):
U (vz/�cp) � ω0/�cpvz, being ω0 ≡ dU

dk2
|
k2=0

.
Within this approximation, all the integrals involved in

Eq. (A1) can be easily calculated and the resulting form is

σ (x = 0) =

⎡
⎢⎢⎣

v2
th,p 0 0

0
(
1 + ω2

0
�2

cp

)
v2

th,p − ω0
�cp

v2
th,p

0 − ω0
�cp

v2
th,p v2

th,p

⎤
⎥⎥⎦. (A2)

Diagonalizing σ (x = 0) implies rotating the DF into the
minimum variance frame (MVF). The eigenvalues of σ (x =
0), corresponding to the temperatures in the MVF, are λ(3) <

λ(2) < λ(1), whose explicit expressions are

λ(3) = v2
th,p

(
1 − ω0

�cp

√
1 + ω2

0

4�2
cp

+ ω2
0

2�2
cp

)
,

λ(2) = v2
th,p,

λ(1) = v2
th,p

(
1 + ω0

�cp

√
1 + ω2

0

4�2
cp

+ ω2
0

2�2
cp

)
. (A3)

The corresponding eigenvectors are given by

ξ (3) =
(√

1 + ω2
0

4�2
cp

− ω0

2�cp

)
ey + ez, ξ (2) = ex,

ξ (1) = −
(√

1 + ω2
0

4�2
cp

+ ω0

2�cp

)
ey + ez. (A4)

From the above expressions, we can deduce the following
information:

(i) At x = 0, σxx = σzz; therefore the two temperatures
in the directions orthogonal to B are equal, i.e., the DF is
gyrotropic in the LBF at x = 0.

(ii) By comparing σ∞
ij and σij (x = 0) in Eq. (A2), we

note that, at x = 0, σxx and σzz keep the same value of
σ∞

ij . Therefore, at the center of the shear, the perpendicular
proton temperature remains constant (T⊥(x) = T ∞

⊥ ), while
the parallel temperature increases (T||(x = 0) � T ∞

|| ). As a
consequence, at x = 0 the perpendicular to parallel proton
temperature ratio is

T⊥(x = 0)

T||(x = 0)
= 1

1 + ω2
0/
(
2�2

cp

) < 1, (A5)

i.e., the proton parallel temperature is larger than the perpen-
dicular one.

(iii) The eigenvectors ξ (m) (m = 1,2,3) give the directions
of the principal axes of the DF in the velocity space. Far
from the shear layer, the DF is isotropic and the directions of
principal axes are arbitrary. At x = 0, the principal axis ξ (2) is
in the vx direction, which corresponds to the direction of spatial
variation of the bulk velocity u, while the other two principal
axes ξ (1) and ξ (3) are in the vyvz plane. The angle γ between
ξ (1) and the vy axis, which gives the directions corresponding
to the maximum width of the DF, is

tan γ = − 1√
1 + ω2

0
4�2

cp
+ ω0

2�cp

. (A6)

In the limit of slowly varying bulk velocity (ω0 	 �cp), we
get γ � −45◦. Finally, it is worth noting that since the three
eigenvalues are all different at x = 0, the DF is not gyrotropic
with respect to any of the three principal axes in the MVF.

It is interesting to extend the results illustrated above
through the numerical evaluation of the temperature in the
MVF and in the LBF, for several values of the shear width �x,
where the shear function U (x) is given by Eq. (10). Table I
reports the values of λ(i) (with i = 1,2,3), T||, T⊥, and γ , at
the center of the shear x = 0. As expected, in the large-scale
limit �x � ρ

Lp
, the results obtained numerically are in good

accordance with the analytical predictions. By decreasing the
width of the shear function �x, the analytical calculations tend
to diverge from numerical evaluations. Note also that as the
shear width �x becomes smaller, stronger anisotropies in the
LBF (i.e., bigger T||) and in the MVF (i.e., larger ratios between
the eigenvalues λ(i)) are recovered at the center of shear.
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TABLE I. Temperatures and characteristic angle of the equilibrium distribution function feq,||.

�x/dp Evaluation λ1 λ2 λ3 T‖ T⊥ γ

25 Analytical 2.16 2.00 1.85 2.01 2.00 −43.9
25 Numerical 2.16 2.00 1.85 2.01 2.00 −43.9
2.5 Analytical 4.36 2.00 9.17 × 10−1 3.28 2.00 −34.1
2.5 Numerical 3.75 2.00 1.08 2.82 2.00 −36.0
0.25 Analytical 1.32 × 102 2.00 3.03 × 10−2 1.30 × 102 2.00 −7.02
0.25 Numerical 6.53 2.00 9.09 × 10−1 5.44 2.00 −26.1

APPENDIX B: STATIONARY SOLUTION IN THE LOCAL
APPROXIMATION IN THE PERPENDICULAR CASE

In the present Appendix, we report the evaluation of the
equilibrium DF, in the perpendicular case, within the so-called
local approximation, i.e., in the simplified case of linearly
growing electric field. The single-particle motion is calculated
by solving Eqs. (19), in the particular case in which the electric
field is linear E(x) = E0 + α0(x − x0), with E0 and α0 con-
stant. This profile for the electric field is not fully realistic, since
|E(x)| grows without limit for increasing |x − x0|. However, it
can be considered as a local approximation of an electric profile
E(x) around a given position x0, being α0 = (dE/dx)(x0).

In this case, Eq. (21) reads

d2x

dt2
+ ω2x = e

mp

(E0 − α0x0) + �cpW0, (B1)

where ω2 = �2
cp − eα0/mp. If �2

cp > eα0/mp, Eq. (B1) de-
scribes an harmonic oscillator of solution:

x(t) = R0 sin (ωt + ϕ) + 1

ω2

[
e

mp

(E0 − α0x0) + �cpW0

]
,

(B2)

with R0 and ϕ being the amplitude and the phase of the motion,
respectively. The constant term in Eq. (B2) represents the time-
averaged x position, i.e., the guiding center position xc,

xc = 1

ω2

[
e

mp

(E0 − α0x0) + �cpW0

]
, (B3)

and then

x(t) = R0 sin(ωt + ϕ) + xc,

vx(t) = R0ω cos(ωt + ϕ),

vy(t) = −�cpx(t) + W0 = −R0�cp sin(ωt + ϕ) + vcy,

(B4)

where vcy = 〈vy(t)〉t = −�cpxc + W0. Using Eq. (B3) into the
vcy expression, one obtains

vcy = − e

mp�2
cp

(�cpE0 + α0v0y), (B5)

where v0y = −�cpx0 + W0 is the particle streamwise velocity
component at the position x = x0. Note also that v0y = vcy +
�cp(xc − x0). By using these last expressions, one obtains

vcy = − e

mp�cp
[E0 + α0(xc − x0)] = −c

E(xc)

B
. (B6)

Hence, the guiding center moves along y with the local E × B
drift velocity calculated at the guiding center position xc.
Then, in the local approximation case, the particle orbit in
the vxvy plane is an ellipse elongated along vx (vy) for α0 < 0
(0 < α0 < mp�2

cp/e), while it reduces to a circle in the case
of uniform electric field α0 = 0. In the case α0 � mp�2

cp/e,
x(t) increases linearly or exponentially in time, causing the
breakdown of the local approximation, as already noticed in
Ref. [35].

Note that if α0 = 0 (i.e., ω2 = �2
cp), then v2

x + (vy −
vcy)2 = R2

0ω
2. Indicating by tn = (nπ − φ)/ω (n integer)

an instant of time when x(tn) = xc, then vx(x = xc) =
vx(t = tn) = ±R0ω [Eqs. (B4)]. Hence, v2

x + (vy − vcy)2 =
[vx(x = xc)]2. The same argument shows that vx(x = xc) =
±R0ω also when the electric field is nonuniform (α0 �= 0).
Then, the energy E0 [Eq. (27)] is

E0 = mp

2

(
R2

0ω
2 + v2

z

)
. (B7)

In order to explicitly write the form for feq,⊥(x,v) [Eq. (31)],
we manipulate Eq. (B7) by using Eqs. (B4) and Eq. (B6) and
by expressing xc in terms of the particle position and velocity
through Eqs. (B4):

E0 = mp

2

[
v2

x + ω2(
�cp − cα0/B

)2

[
vy + c

B
E(x)

]2
+ v2

z

]
.

(B8)

This expression, which is the argument in the exponential of
the DF feq,⊥, suggests that feq,⊥ is a shifted bi-Maxwellian
with different temperatures Tu = Ty and T⊥u = Txz parallel to
and in the plane perpendicular to the bulk flow, respectively.
The temperature ratio is Tu/T⊥u = (�cp − cα0/B)2/ω2; using
the explicit expression for ω we find

Tu

T⊥u

= 1 − 1

�cp

cα0

B
= 1 − eα0

mp�2
cp

. (B9)

Therefore, Tu > T⊥u (Tu < T⊥u) when E(x) decreases (in-
creases) with increasing x. Note that, in order to have a positive
temperature Tu, the spatial derivative of the electric field has
an upper limit: α0 < mp�2

cp/e. This condition is the same
which avoids the breakdown of the local approximation in
the single-ion dynamics, as found in the previous section. Of
course, for a uniform electric field (α0 = 0), we have Tu = T⊥u.
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By requiring that the uniform density nLA(x) = n0, it can
be easily shown that

f LA
eq,⊥(x,v) = n0

(2π )3/2v3
th,p

(
T⊥u

Tu

)1/2

× e
− 1

2v2
th,p

{v2
x+ T⊥u

Tu
[vy+ c

B
E(x)]2+v2

z },
(B10)

which depends on two arbitrary constants n0 and vth,p, while
the ratio Tu/T⊥u is given by the equation (B9).

The bulk velocity associated with the DF is uLA =∫
v f LA

eq,⊥ d3v/nLA. The bulk velocity components uLA
x and uLA

z

are both vanishing, while the component uLA
y = −cE(x)/B,

indicating that the bulk velocity coincides with the local E × B
drift velocity.

The considered DF is an exact stationary solution of the
HVM equations, Eqs. (1)–(3), with Eq. (4) for the pressure
closure. The DF f LA

eq,⊥ is a stationary solution of the Vlasov
equation [Eq. (1)], because it is a function only of the motion
constant. The electric field profile is linear and its profile is cor-
rectly given by the u × B term in Eq. (3) (then the stationarity
holds for an electron pressure pe constant and uniform). Since
the electric field is irrotational, the magnetic field is stationary.
Therefore, the considered configuration is an exact stationary
solution of the whole set of the HVM equations.
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