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Single-mode nonlinear Langevin emulation of magnetohydrodynamic turbulence
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Based on the Langevin equation of Brownian motion, we present a simple model that emulates a typical mode
in incompressible magnetohydrodynamic turbulence, providing a demonstration of several key properties. The
model equation is consistent with von Kármán decay law and Kolmogorov’s symmetries. We primarily focus
on the behavior of inertial range modes, although we also attempt to include some properties of the large-scale
modes. Dissipation scales are not considered. Results from the model are compared with results from published
direct numerical simulations.
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I. INTRODUCTION

Turbulence, whether in a hydrodynamic, magnetohydrody-
namic (MHD), or weakly collisional plasma, is characterized
by nonlinear effects that produce complex observable signa-
tures. In strong turbulence the dynamics recorded in individual
measurements become sufficiently complex that the underly-
ing degrees of freedom are often treated as random variables.
This type of behavior would be expected, for example, in
pointwise measurements of velocity, in strong turbulence, and
increasingly so at large mechanical or magnetic Reynolds
numbers. Much of turbulence theory proceeds through a
statistical characterization of this behavior. Dissipation and
linear effects such as waves may act to attenuate, organize, and
modify the intensity of the nonlinear effects, thus modifying the
statistical characterization. Here we are concerned with the par-
ticular problem of modeling statistics of magnetoydrodynamic
turbulence in the presence of an externally supported mean
magnetic field. We employ a simple model to demonstrate
stochastic behavior of an inertial range Fourier mode, while it
also engages in wavelike couplings associated with the mean
magnetic field. Rather than attempting a formal analysis, we
develop a model starting with a simple stochastic differential
equation, the Langevin equation. After suitable modifications,
we arrive at a model with two real degrees of freedom and a
nonlinear damping force. The results validate the model design
and reproduce several basic features of the MHD turbulence
cascade. We view the purpose of a simple model such as the
present one as demonstrating salient statistical properties of
MHD turbulence rather than either predicting or explaining
physical effects. In this way the purpose parallels that of the
Langevin formalism, which is well known to demonstrate
properties of Brownian motion.

II. BACKGROUND

The Langevin equation provides a reasonable starting point
to represent certain stochastic properties of turbulence and
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turbulent transport. A classical result [1] is that the Langevin
equation demonstrates the relaxation of a particle with an initial
peculiar velocity to a state consistent with thermal equilibrium,
and a Maxwellian (Gaussian) distribution. It follows that the
displacements represent an instance of Brownian motion. The
statistics of solutions to the Langevin equation formally obey
a Fokker -Planck equation [1], which links this approach to
many possible applications in diffusion and turbulence theory.
It has been shown that even the linear damping Langevin
formulation can form the basis for representation of the more
complex physics occurring in turbulence. For example, Beck
[2] showed that a linear Langevin formulation with chaotic
forcing can describe the turbulence statistics of inertial range
velocity increments. Analysis of a linear Langevin model
incorporating oscillations associated with an applied magnetic
field was carried out by Balescu et al. [3] for application to
charged particle diffusion. TenBarge et al. [4] employed such
a damped, driven linear oscillator as a method for driving
plasma simulation. These studies represent antecedents to the
approach and goals of the present work.

The random behavior of turbulent fields in real space is
mirrored by the random behavior of its Fourier modes. This
relationship becomes direct in a simple spatially periodic
model representation of homogeneous turbulence. Relying in
each case on an assumption of ergodicity, Gibbsian statistical
mechanics [5] has been fruitfully applied to the ideal, finite-
dimensional (truncated) Galerkin model of both hydrodynamic
and MHD turbulence [6–8]. The impressive accuracy of the
Gibbsian predictions for various wave-number spectra in these
models provides affirmative support to the assumption of
ergodicity of the real and imaginary parts of the Fourier
amplitudes of velocity and, where applicable, magnetic fields.1

The stochastic behavior of individual Fourier degrees of
freedom survives into the regime of driven, dissipative high
Reynolds number MHD turbulence (e.g., [12]). However, when

1Long-wavelength modes sometimes exhibit broken ergodicity
[9,10] associated with degeneracy of very large-scale degrees of
freedom. Analysis of longer simulations has led to the suggestion
that over very long timescales, ergodicity is restored [11].
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FIG. 1. Phase plane trajectories over time of two Fourier modes.
Left: Mode with a high degree of wavelike behavior; right: mode
exhibiting very stochastic behavior and no indication of wavelike
behavior. (Adapted from Dmitruk et al., 2009 [12].)

MHD turbulence evolves in the presence of an externally sup-
ported dc magnetic field, wave motions are induced, including
the Alfvén wave, which survives to the incompressible limit.
Wave propagation itself does not cause stochastic behavior,
but rather induces an orderly rotation in the complex (Re,Im)
phase plane. This contrast in behavior is illustrated in Fig. 1,
which shows the time history- of the real and imaginary parts
of the Fourier amplitude of a single Cartesian magnetic-field
component, in a driven, dissipative MHD simulation [12].
It is apparent that one of these trajectories acts more like a
constrained random walk, while the other admits a stronger
sense of rotation as it is more dominantly influenced by the
dc magnetic field. Demonstrating the balance and transition
between these two types of behavior by varying control
parameters for inertial range modes is a major goal in the
present paper.

Stochastic behavior of a dynamical system motivates the
development of statistical theories that invoke ergodicity, e.g.,
the property that permits replacement of ensemble averages
by time averages. The stochastic aspects of MHD or plasma
dynamics might become less prominent for certain modes
when an applied magnetic field of sufficient strength is present.
In applications that invoke “critical balance,” wave and non-
linear timescales are often set equal to one another, as a
reflection of this balance. In some related approaches, wave
activity is presumed to be the dominant feature, and nonlinear
effects are computed using perturbation theory. In formal weak
turbulence theory, the leading order behavior is that of a wave,
and nonlinearities that give rise to turbulence occur as next
order corrections. Variations of this idea, often less formally
implemented, include the “wave turbulence” approach [13–17]
that models finite amplitude plasma turbulence by approximat-
ing turbulent fluctuations as superposition of randomly-phased
linear wave modes. This “quasilinear premise” performs well
in the case of weak turbulence, and it is argued to remain
somewhat valid even in strong turbulence (as in the case of
Goldreich and Sridhar’s critical balance theory).

For linear waves, the dynamics of a specified Fourier
mode is expected to be that of a stochastic oscillator rather
than of a simple harmonic oscillator with a characteristic
frequency, e.g., as pointed out by Matthaeus et al. [18]. For
Alfvénic turbulence, TenBarge et al. [4] attempted to model
the effect of large-scale modes, greater than the simulation

system size, by coupling individual Fourier modes z±(k) to an
oscillating Langevin antenna. Dmitruk et al. [19] constructed a
phenomenological model based on reduced MHD to describe
the driving of turbulence in the open line regions of the corona,
incorporating both wave propagation effects, and models for
strong nonlinearity. More complex turbulence models such
as these may clearly benefit from improved simple schemes
to drive them at large scales or even in the inertial range.
This provides a practical motivation for development in the
present paper of an elementary model designed to emulate the
statistics of MHD turbulence. Clearly there are a wide range of
models and applications in which the relative balance between
wave activity and stochastic behavior become very important.
Besides these two disparate qualitative behaviors, one might
expect the relative influence of driving and dissipation to enter
as well. Our motivation in developing the present model is to
provide a tractable simple dynamical model that demonstrates
these effects quantitatively with some level of consistency with
turbulence solutions obtained by much more demanding direct
numerical simulation (DNS) approaches.

The outline of the paper is as follows: in Sec. III, we build
up the basic equations. In Sec. IV A, we model the nonlinear
dissipation and Alfvénic wave term. In Sec. IV B, we normalize
the equations. In Sec. IV C, we enforce Kolmogorov’s sym-
metries for inertial scale modes. In Sec. IV D, we build in
some scaling rules for the large-scale modes. In Sec. V, we
discuss the numerical details. Section VI contains our results.
We discuss some of the previous similar schemes and conclude
in Sec. VII.

III. LANGEVIN AND SINGLE-MODE MODELS

The one-dimensional Langevin equation describing the
Brownian motion of a particle is given by

du

dt
= −αu + g(t), (1)

where u is the velocity of the particle. A systematic linear drag
term −αu represents the friction and a fluctuating part g(t)
models the random kicks experienced by the particle from the
surrounding medium. A Gaussian white noise is usually used
for g(t) [1,20].

The Langevin equation and its solutions have many inter-
esting properties and applications. Of historical importance is
that its solutions provide a useful description of Browninan
motion [1,21,22]. One may also readily show that its solutions
are equivalent to solutions of a Fokker-Planck equation [20],
and as such it can be related to various problems in diffusion
theory and in approaches to equilibrium distributions. The
addition of an oscillatory degree of freedom is quite relevant to
the present model, and was introduced [3] to describe charge
particle collisional diffusion including gyration in a uniform
large-scale magnetic field.

Our specific goal is to model the dynamical behavior of a
single Fourier mode in the inertial range of MHD turbulence.
As such, the physical structure and appropriate normalization
of the basic incompressible model will be relevant. The
equations of incompressible MHD can be expressed in terms
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of the Elsässer variables, z± = u ± b/
√

4πρ, as

∂z±

∂t
= ±vA · ∇z± − z∓ · ∇z± − ∇P

ρ0
− μ∇2z±, (2)

where u and b are velocity and magnetic-field fluctua-
tions, respectively. vA is the Alvén velocity defined as vA =
B0/

√
4πρ0, where B0 is the mean magnetic field. P is the

total pressure (thermal+magnetic), ρ0 is the constant density,
and μ is the viscosity, assumed to be equal to the resistivity.
The quadratic nonlinear term, z∓ · ∇z± and pressure term,
∇P/ρ0 are responsible for transferring energy from large
scales, into and through the inertial range. The plasma also
responds to the linear term, vA · ∇z±, which induces wavelike
dynamics. The last term, μ∇2z±, is responsible for dissipation,
and for large Reynolds numbers, this term is negligible except
at very small scales. For description of inertial range scales
(� dissipation range scales), the explicit dissipation makes
no contribution; its influence is manifested in the continual
transfer of energy toward the smaller scales. In quasisteady
conditions the transfer due to eddy motions will balance the
viscous effects at the dissipation scales, and therefore it is
natural to suppose that inertial range eddies provide a kind
of effective dissipation, or eddy viscosity.

A simple model was introduced by Dmitruk et al. [23] to
approximate the average damping experienced by a typical
mode in the inertial range, due to the net effect of all smaller
scale modes. Writing the MHD equations for a typical or
representative mode at a selected scale �, the model proceeds
to account for nonlinear effects in a way that involves only the
amplitude at scale � in accord with Kolmogorov’s scale locality
hypothesis. The nonlinearity takes the form of a quadratic drag
force that is consistent with a Taylor–von Kármán decay law
for MHD [24], and is a close relative of an eddy viscosity. This
approach will be incorporated below.

IV. DEVELOPMENT OF THE MODEL

We begin with the assumption that the effects of nonlinearity
are principally local in scale. Then a single Fourier mode (ve-
locity or magnetic) residing in the inertial range, experiences
a random net input of energy from the larger scales, while it
dissipates by transferring energy to smaller scales. On average,
the input and dissipation balance, so that there is no secular
pileup of energy at any scale (no buildup of spectral amplitude
at any wave number). Therefore, in analogy with the Langevin
equation, Eq. (1), we write a model equation for the velocity
(and magnetic) fluctuation at length scale l,

∂ul

∂t
= −αul + gl(t). (3)

Here, we represent both velocity and magnetic fluctuation
at length scale l by ul for convenience. Note that unlike Eq. (1),
the fluctuating part gl(t) in Eq. (3) is not Gaussian white noise,
but a chaotic force changing on a typical timescale tc (see
Sec. V for more discussion). The amplitude of gl(t) as well as
the timescale tc are expected to change with length scale l. In
steady-state MHD turbulence, usually a forcing function acts
at some large-scale L which excites the nearby modes. A mode
deep in the inertial range does not feel the same driving force.
Rather, the influence of the force is cascaded by the larger

scale couplings, through many intermediate modes, down to
the scale of interest l. Here, we represent the driving felt at
length scale l by the term gl(t).

We remark that Eq. (3), which remains formally a Langevin
equation, was also adopted by Beck [2] for describing (or, as
here, emulating) properties of turbulence. In contrast to the
present case, Beck’s Langevin model [Eq. (3)] is written for
the evolution of an inertial range velocity increment, and the
focus is on constructing a model that can reproduce scaling of
higher-order structure functions in the inertial range. Scaling
(i.e., intermittency) is introduced in the model through use of
a forcing function based on a logistic map scheme. As shown
presently, our approach is quite different.

A. Modeling of nonlinearity and Alfvén waves

To modify the classical Langevin equation, Eq. (1), we start
with the dissipative term −αul . From the von Kármán similar-
ity hypothesis, extended to MHD, we expect that [24,25]

du2
l

dt
∝ u3

l

l
. (4)

Accordingly, we modify the linear drag term in Eq. (3) so that
it becomes nonlinear, as

αul → C

l
|ul|ul, (5)

and the model equation, Eq. (1), becomes

∂ul

∂t
= −C

l
|ul|ul + gl(t). (6)

In this equation, if we set the forcing term to zero, the energy
goes as

∂|ul|2
∂t

∼ −C

l
|ul|3. (7)

The constant C appearing in Eqs. (19) and (27), is expected
to be close to the Taylor–von Kármán decay constant, extended
to MHD [24,26]. The value of C has been measured to be
around 0.5 for hydrodynamic turbulence [27]. In MHD and
kinetic plasmas, recent studies show hints of a universal decay
rate at large Reynolds number, with a decay constant close to
unity [28,29]. We use a value of C = 0.5 in this study.

MHD turbulence also supports Alfvén waves, most easily
described by introducing a uniform mean magnetic field B0.
When present, the Alfvén wave frequencies are ω ∼ k · VA ∼
kB0 cos θ . To accommodate the physics of these incompress-
ible MHD waves in the present model, we introduce a new
term to the model equation, Eq. (6), which becomes

∂ul

∂t
= iωul − C

l
|ul|ul + gl(t). (8)

Here i = √−1, and since l ∼ 1/k, we have ω ∼ B0 cos θ/ l.
Here B0 is the characteristic magnetic-field strength in Alfvén
speed units. Note that the dependent variable ul in Eq. (6) has
become complex, and represents a typical Fourier amplitude,
and not simply a typical speed at scale �. This is commensurate
with the interpretation of a typical Fourier mode in Dmitruk
et al. [19].

Using this interpretation and our notation, |ul|2 can be
equated to (twice) the energy per unit mass in fluctuations at a
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scale l in turbulence. To make this correspondence we view |ul |
as a contribution to a full (omnidirectional) spectrum E(k) that
varies over wave number k. By construction, with k → 1/l,

|ul|2 = kE(k), or E(k) = l|ul|2 (9)

and therefore we can directly obtain a spectrum from ul by
varying l.

B. Normalization

In order to compare the results from our model equation
with other systems like DNS, we normalize our equations
in a physically revealing way. In the process, we shall also
specify the characteristic timescale (correlation timescale) that
associated with gl(t). The following treatment will also enable
us to specify an appropriate scale dependence of gl , i.e.,
gl(t) = g(l,t).

To normalize Eq. (8), we select a large-scale length λ,
associated with which, we have a typical velocity (or magnetic)
fluctuation u0λ. This establishes the characteristic timescale τ0λ

through

τ0λ = λ

u0λ

. (10)

The scale λ will represent the energy containing scale, and
so τ0λ is the system eddy turnover time. Similarly, at another
length scale of interest l, where for the inertial range, l < λ,
there is typical velocity u0l and an implied timescale τ0l such
that

u0l = l

τ0l

. (11)

We would like to emphasize the difference between ul and u0l

or τl and τ0l . ul and τl are the instantaneous velocity fluctuation
and timescale at length scale l, while u0l and τ0l are the typical
velocity and timescale at same length scale l. With this, we
normalize different quantities as follows:

ul = u0λũl, t = τ0λ̃t , l = λ̃l. (12)

Further, we write gl as

gl =
(

u0l

τ0l

)
g̃, (13)

where g̃ is a dimensionless order-one random function of time.
The quantities with ˜ in the overhead are all dimensionless,
with ũl the dependent variable, t̃ the independent variable, and
l̃ a fixed constant during time integration.

Plugging Eqs. (12) and (13) into Eq. (8),

u0λ

τ0λ

∂ũl

∂ t̃
= iωu0λũl − C

l̃λ
u2

0λ |̃ul |̃ul + u0l

τ0l

g̃, (14)

∂ũl

∂ t̃
= i(ωτ0λ )̃ul − C

l̃
|̃ul |̃ul +

(
u0lτ0λ

τ0lu0λ

)
g̃. (15)

Now, we note that the wave timescale can also be written
in eddy turnover time units as

ωτ0λ = k‖B0τ0λ = (k‖λ)

(
B0

u0λ

)
= k̃‖B̃0 = ω̃.

Therefore, we have

∂ũl

∂ t̃
= iω̃ũl − C

l̃
|̃ul |̃ul +

(
u0lτ0λ

τ0lu0λ

)
g̃. (16)

C. Inertial range modes

In this section we aim to recover the Kolmogorov scaling
E(k) ∼ k−5/3 for the inertial range in a systematic way. For l

in the inertial range, following Kolmogorov [30], we enforce
the following symmetries in Eq. (16):

(
τ0l

τ0λ

)
=

(
l

λ

)2/3

, (17)(
u0l

u0λ

)
=

(
l

λ

)1/3

. (18)

So, Eq. (16) becomes

∂ũl

∂ t̃
= iω̃ũl − C

l̃
|̃ul |̃ul + l̃−1/3g̃. (19)

This is the equation we propose for emulation of inertial range
modes.

From Eq. (19) we can write

∂ |̃ul|2
∂t̃

= −2
C

l̃
|̃ul|3 + l̃−1/3(g̃ũ∗

l + g̃∗ũl). (20)

In the steady state, ∂ |̃ul |2
∂t̃

= 0 and |̃g| ∼ 1. So,

C

l̃
|̃ul|3 ∼ l̃−1/3 |̃ul|, (21)

|̃ul|2 ∼ l̃2/3, (22)

which is consistent with Kolmogorov’s theory [see Eq. (18)]
The random term g̃ fluctuates randomly in time and it has a

correlation time tc associated with it. For a particular mode to
be driven efficiently, one expects that the correlation time, tc,
has to be of the same order of the local turbulence timescale
(τl) (see [4,31,32]). Therefore we equate the correlation time
with the local turbulence timescale,

t̃c = τ0l

τ0λ

. (23)

D. Large-scale modes

Large-scale modes do not exhibit universal scaling in three-
dimensional MHD turbulence. Still, there are some common
characteristics observed in large-scale modes in MHD turbu-
lence. One such feature is the presence of 1/f or “flicker
noise” in the lowest wave-number mode. The presence of a
low-frequency 1/f signal in turbulent systems was investigated
in some detail by Dmitruk and Matthaeus [33], and Dmitruk
et al. [34]. A heuristic reasoning was proposed in [33] and [34]
to explain the occurrence of low-frequency 1/f noise in the
lowest wave-number mode. The lowest wave-number mode,
say k = 1, interacts with other modes via triadic interaction of
the (schematic) form

∂b(k = 1)

∂t
∼ i

∑
p+q=1

u(q)b(p), (24)
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where b(k = 1) represents the first mode, and u(p),u(q) are
generic Fourier mode amplitudes. If the interaction is nonlocal,
p,q � k = 1, p ∼ q, the timescale from the right-hand side of
Eq. (24) is [u(q)b(q)/b(k = 1)]−1, which is much longer than
the local eddy turnover timescale since u(q),b(q) � u(k = 1),
b(k = 1). It is worth mentioning here that a 1/f signal has
also been observed in other turbulent plasma systems such
as interplanetary magnetic field [35], solar corona [36], and
photosphere [37], although the source of the 1/f signal in
these systems may be (at least partially) different from the
above heuristic reasoning.

One might anticipate the emergence of low-frequency 1/f

noise in a Langevin model such as Eq. (19), if, for the case
in question, one imposes a timescale (tc) of the stochastic
forcing g̃, that is much greater than the local eddy turn over
time (l/|ul|). We demonstrate this in the following way. We
postulate (in an ad hoc fashion) that for the large-scale modes
with l > λ, the timescale goes as the square of length scale.
So, we have (

τ0l

τ0λ

)
=

(
l

λ

)2

. (25)

We further assume that in this range of scales, the characteristic
speeds are simply proportional to the respective characteristic
lengths, i.e., (

u0l

u0λ

)
=

(
l

λ

)
. (26)

So, for large-scale modes, Eq. (16) becomes

∂ũl

∂ t̃
= iω̃ũl − C

l̃
|̃ul |̃ul + l̃−1g̃. (27)

Also, we equate the correlation time of the forcing, tc, with the
timescale in Eq. (25),

t̃c = τ0l

τ0λ

=
(

l

λ

)2

. (28)

We choose λ = the length scale which separates the large-
scale modes from the inertial modes. So, for l < λ, we use
Eq. (19) and for l > λ, we use Eq. (27). Note that in this
notation, the nondimensional wave number k̃ = 1/̃l = λ/l can
be greater (inertial scales), equal, or less (large scales) than
1. From now on, for convenience, we will use the variables
without the˜in the overhead.

V. NUMERICAL DETAILS

For numerical implementation, Eqs. (19) and (27) are
advanced in time using the fourth-order Runge-Kutta (RK4)
scheme. The nondimensional wave number k varies loga-
rithmically from 0.3 to 30. The total number of points in
wave-number space is 128. The variables used in Eq. (19) have
a real and an imaginary component. Numerically, we determine
the random forcing term g as

g(t) = mg(t − �t) +
√

(1 − m2)r(t). (29)

The value of g at the (n + 1)th step, i.e., at time t = (n + 1)�t ,
is generated from the previous value (at the nth step) of g and
a random number, r . The constant m is a memory constant that

relates how the sequence “remembers” the past values. The
random number r satisfies the following properties:

〈r〉 = 0, (30)

〈r(t)r(t ′)〉 = δ(t − t ′). (31)

These are satisfied by a normalized Gaussian random number
generator. With these properties one can derive the correlation
function for g (see [38]),

Gc(τ ) = 〈g(t)g(t + τ )〉 = e−τ/tc , (32)

and tc = �t

1 − m
. (33)

These results are valid in the appropriate limit, with, e.g.,
�t → 0, and n → ∞, such that τ = n�t remains constant,
t similarly defined, m → 1 with tc constant, and Eqs. (30) and
(31) enforced. Also note that the real and imaginary parts of
the random term g̃ in Eq. (19) are independent of each other.
That is, at each time step the real and imaginary components
are determined from Eq. (29) with same memory function m,
but employing different random numbers.

We choose a time step �t = 10−3, and we run the simula-
tion for 109 time steps, i.e., 103 units of nondimensionalized
time.

For calculating frequency spectra, we use an ensemble
average of ten independent time series with random initial
conditions. This helps eliminate unwanted noise in the Fourier
spectrum.

VI. RESULTS

A. Isotropic case

Following the numerical method described in the preceding
section, we obtain solutions for varying length scale l (recip-
rocal of the wave number k). For the results shown, kλ ranges
from 0.3 to 30. In this section, we consider the case ω = 0,
which corresponds to the situation of globally isotropic MHD
with no mean magnetic field, B0 = 0.

As a first step, we examine the relationship between the
imposed correlation timescale tc of the forcing g, with the local
eddy turnover time (τeddy ∼ l/|ul|), since we control the former
while the latter is determined from the solution. Figure 2
shows this comparison. For the τeddy calculation, we use the
time-averaged value of |ul|. At smaller scales associated with
the inertial range, the characteristic local nonlinear time was
chosen to follow a Kolmogorov scaling [Eq. (17)] and the
forcing correlation time and computed eddy turnover time are
found to be almost equal. However, for the long-wavelength
modes with l > λ the imposed scaling was modified [Eq. (25)]
to favor longer timescales, and we find from the solutions
that tc � τeddy for the lowest wave number kλ = 0.3. This
establishes the long-wavelength conditions that have been
argued [33] to favor generation of a 1/f signal in the frequency
spectra, an issue we address below.

The distribution of energy over wave number (inverse
length scale) is a central issue in turbulence, and our simple
model is designed to reproduce this basic result. In contrast
to hydrodynamics, the energy spectra in MHD is perennially
debated and there have been a number of proposed phenomeno-
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FIG. 2. Plot of correlation timescale of the stochastic forcing, tc,
along with the calculated eddy turnover time τeddy ∼ l/|ul |, obtained
from the model. For the τeddy calculation, we use the time-averaged
value of |ul |. All the variables are dimensionless as discussed in the
text.

logical models (see [39] for a review). As an example, using
a renormalization-group technique, Verma [40] showed that
isotropic MHD should follow a −5/3 energy spectrum in the
inertial range. Solar wind observation and DNS results also
favor Kolmogorov-like spectra. In the present model, wave
number k and length scale l are related simply by k ∼ 1/l and
the energy spectrum corresponds to E(k) → l〈ul

2〉.
Figure 3 shows the spectrum E(k) as function of wave

number k using our model. Kolmogorov k−5/3 scaling is
evident at large k. At small wave numbers, k < 1, the spectrum
scales approximately as k−1; this is a consequence of the
particular choice of long-wavelength timescales Eq. (25) and
should not be viewed as of essential import. For each k, we
have time-averaged |ul|2 to obtain E(k).

The scale-dependent two-time correlation function for a full
Fourier representation of the Elasässer variables is defined as

R(k,τ ) = 〈z±(k,t) · z±∗(k,t + τ ) + c.c.〉
〈|z±(k)|2〉 , (34)

where 〈· · · 〉 represents the average over all time t , c.c. stands
for complex conjugate, k is a specified wave vector, τ is the
time lag, and z±(k,t) is the Fourier amplitude of z± at wave
vector k at time t . Scale-dependent time correlations are well

FIG. 3. Energy spectra E(k) obtained from the model with ω = 0.
Kolmogorov scaling, ∼k−5/3 scaling, is shown as reference.

FIG. 4. Correlation function R(τ ) as a function of the time lag τ

for different wave numbers k.

recognized as essential elements of turbulence theory [41]
including closures [42].

For our model equation, we calculate the two-time autocor-
relation function as

R(k,τ ) = 〈uk(t)u∗
k(t + τ ) + c.c.〉
〈|uk|2〉 , (35)

where it is understood that k = 1/l and uk = ul . Numeri-
cally, for computing the autocorrelation function, we use the
Blackman-Tukey technique [43], which gives a consistent
approximation based on the formula

〈|uk|2〉R(n) = 1

M − n

M−n∑
P=1

[uk(P )u∗
k(P + n) + c.c.]

n = 0,1,2, . . . ,N. (36)

Here, N is the maximum lag for which R is calculated and M

is the total number of data points. Data points are separated by
time step �t . We computed the two-time correlation function
obtained from solutions of the model equation for varying
scale size l. The results are shown in Fig. 4. Previously,
Servidio et al. [44] and Lugones et al. [45] calculated the two-
point (scale-dependent) temporal autocorrelation functions
for isotropic MHD turbulence. These studies found that the
correlation function R(k,τ ) approaches zero with different
rates for different wave vector k. The higher k’s decay at a
faster rate compared to lower k’s. Similar behavior can be seen
from plots in Fig. 4. Once the calculation of R(τ ) is done, we
can also calculate the correlation time τ (k) as a function of
effective wave number k = 1/l,

τ (k) =
∫ ∞

0
R(τ )dτ. (37)

In practice, the upper limit of the integral extends to the final
time in the data record. The plots of correlation time as a
function of k is shown in Fig. 5. Servidio et al. [44] used
a best fit of six data points and found that the scaling of
τ (k) with k is closer to the sweeping time τsw, which goes as
k−1, than the local nonlinear time τnl, which scales like k−2/3.
Lugones et al. [45] used more dense data points in k space
and showed that, for the isotropic case, the correlation time
τ (k) is close to the sweeping time τsw ∼ k−1 for small k and
it is close to the nonlinear time τnl ∼ k−2/3 at large k values.
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FIG. 5. Correlation time τ as a function of wave number k from
the model equation. For comparison, nonlinear time, ∼k−2/3 is shown.

In Fig. 5, we see that in the inertial range, the correlation time
τ (k) scales like k−2/3, rather than k−1, as observed in isotropic
MHD simulations [45]. This indicates that our model does not
capture the sweeping effects properly. We discuss this issue
more elaborately later in the paper.

Complementary views are provided by alternative analyses
of the space-time correlations. For example, scale-dependent
correlation functions, as in Eq. (34), or more specific to our
model, Eq. (35), may also be Fourier analyzed in time. This
leads to scale (or wave-vector) -dependent frequency spectra,
examples of which are shown for model results in Fig. 6. In
this figure, P (f ) is the square absolute value of the complex
fast Fourier transform (FFT) of the time series uk(t),

ûk(f ) = FFT[uk(t)], (38)

P (f ) = |ûk(f )|2. (39)

In three-dimensional, isotropic MHD, a 1/f signal is
observed in the frequency spectra, in the largest mode, while
in three-dimensional hydrodynamics, 1/f noise is absent, or at
least weaker than MHD [33]. In Fig. 6 we show the ensemble-
averaged compensated frequency space spectrum for k = 0.3,
which is the largest mode in our system, and for one of the
large modes, k = 0.6. We have plotted the product of frequency
by spectral power, f P (f ), to facilitate identification of 1/f

power. Both axes are in nondimensional units as discussed
in Sec. IV B. For the k = 0.3 mode, 1/f noise appears to be

FIG. 6. Ensemble-averaged compensated frequency power spec-
trum. A horizontal bar in panel (a) indicates the region of approximate
1/f spectral behavior. No such region is prominent in panel (b).

FIG. 7. Phase-space plots of k = 0.3 and k = 0.6 modes with
ω = 0 as obtained from the model equation. Panels (a) and (b) show
the trajectory of the k = 0.3 mode at time t = 0–100 and t = 0–200,
respectively. Panels (c) and (d) show the trajectory of the k = 0.6
mode at time t = 0–100 and t = 0–200, respectively.

present for more than one decade, while it is absent or at least
less clear for the k = 0.6 mode. This is a consequence of the
timescales that we imposed on the large-scale modes, given in
Eq. (25). However, the result does demonstrate the plausibility
of the explanation for 1/f noise advanced by Dmitruk et al.
[33], as further discussed below.

Dmitruk et al. [34] argued that the emergence of 1/f

fluctuations in the frequency spectra of the largest modes in
MHD is related to the long-range interaction between the
largest mode and the small-scale modes. The largest mode
spends more time in clusters of phase space before jumping to a
different region and thereby covers less area in the phase space
in a given time interval, compared to the large-scale modes.
This phenomenon is a manifestation of broken ergodicity
[10,11] and is thought to be related to the appearance of 1/f

noise. We analyze the phase-space diagram for the k = 0.3 and
k = 0.6 modes in Fig. 7. The left and right panels in each set
of figures show the evolution of the phase-space trajectory in
the same intervals of time for the two modes. It is clear that in
the same interval of time, the k = 0.3 mode covers less area of
the phase space compared to the k = 0.6 mode. The k = 0.6
mode covers the phase space more uniformly compared to
the k = 0.3 mode which mostly remains limited to the left
quadrants during the time considered.

B. Anisotropic case: Effect of the imposed dc magnetic field

We perform a set of simulations of the model equation
with ω = 0.5,1.0,2.0. This may be related to MHD turbulence
in the presence of a dc mean magnetic field B0. It is well
known that turbulence in MHD with a dc field B0 has a strong
tendency to become anisotropic, the cascade producing gra-
dients stronger in the two directions perpendicular to B0, and
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weaker in the parallel direction [46,47]. Physically this occurs
because Alfvén wave-like couplings destructively interfere
with correlations that establish nonlinear spectral transfer. This
suppresses parallel spectral transfer but has no direct effect on
perpendicular transfer.

The present model is in effect one-dimensional, so it
is not possible to fully represent the anisotropic dynamics
anticipated for a full MHD representation. However, from the
developments leading to the model equation above, we can
compare the frequency-dependent wave term to the nonlinear
term, for example in Eq. (16). The ratio is k‖VA

ul/ l
= cos θ VA

ul
.

Consequently, if we choose a scale l, a turbulence level, and a
mean magnetic-field strength, then the strength of the Alfvén
wave effect is controlled only by the angle θ between B0 and k.

While we again emphasize that a simplified one-
dimensional model cannot capture the full physics of
anisotropic MHD, by varying ω we can examine how changing
the applied field strength (or, equivalently, the angle θ ) affects
the solutions.

There is another, more subtle way that wave activity
may enter. Consider modes that have wave vector purely
perpendicular to the direction of B0, so that k‖ = 0. One
might naively expect that these k⊥ modes (also called “2D
modes”) would not experience wave signatures since their
intrinsic Alfvén frequency ω = k‖B0 = 0. However, through
nonlinear interactions, the 2D/k⊥ modes are coupled to modes
with nonzero k‖ modes. Dmitruk and Matthaeus [12] studied
this phenomena in some detail, finding the presence of wave
activity in certain k‖ = 0 modes manifested by the appearance
of Alfvén frequency peaks in the frequency spectrum of k⊥
modes. Howes and Nielson [48] derived some elementary
nonlinear couplings of this type by considering collision of
Alvén waves in the weakly nonlinear limit. One concludes
that the effective value of the Alfvén frequency ω for a mode
with specified wave vector k⊥ depends on which k‖ mode
interacts most dominantly. This may vary in different systems
with different setups.

In principle, a Fourier mode with wave vector perpendicular
to the mean magnetic-field direction can feel a frequency value
anywhere in the range 0 < ω < ∞. However, for direct wave
couplings, the increasing values of ω are qualitatively similar
to the effect of increasing dc field while holding k‖ constant
or keeping the dc field constant while increasing k‖, up to a
maximum value of k‖ = k = 1/l. Indirect wave couplings may
be qualitatively studied by judiciously selecting a nonzero ω

for any chosen k⊥ mode.
Figure 8 shows the energy spectrum plots obtained from

the model for the three cases, ω = 0.5,1,2. One may interpret
this as an illustration of the anisotropic spectrum E(k‖,k⊥)
plotted as functions of k⊥, for a series of three values of k‖. A
spectral form E(k⊥) ∼ k

−5/3
⊥ is clearly present in the inertial

range.
Following the same procedure as mentioned for the ω = 0

case, we calculate the two-time autocorrelation function from
the model for different values of ω. Results are shown in Fig. 9.
Similar to theω = 0 case, the correlation functionR(k,τ ) drops
faster for larger k, but the disparity becomes less prominent
with larger ω. This is consistent with the DNS results as found
in [44,45].

FIG. 8. Energy spectra E(k‖,k⊥) vs k⊥ obtained from the model
with ω = 0.5, 1, and 2. Kolmogorov scaling, ∼k

−5/3
⊥ , is shown for

reference.

An interesting observation can be made from Fig. 10. In
Figs. 10(a)–10(c) we have plotted the decorrelation time τ

as a function of wave number k⊥, for ω = 0.5, 1.0, and 2.0,
respectively, as obtained from the model equation. We fit
the data with nonlinear time τnl ∼ (k⊥ + k‖)−1/3, for k‖ in
the ratio of 1 :2 :4 for the three cases ω = 0.5,1.0,2.0. We

FIG. 9. Correlation function R(τ ) as a function of the time lag τ

for different k modes with nonzero ω. In each panel, ω is constant;
(a) ω = 0.5, (b) ω = 1, and (c) ω = 2.
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FIG. 10. Correlation time τ as a function of perpendicular wave
number k⊥ for different values of ω; (a) ω = 0.5, (b) ω = 1, (c) ω = 2.
The dashed curves show a fitted nonlinear time, ∼ (k2

⊥ + k2
‖ )−1/3 for

comparison. (a) k‖ = 2.0, (b) k‖ = 4.0, and (c) k‖ = 8.0.

found reasonably good fit for k‖ = 2, 4, and 8 for (a), (b),
and (c). The fitting curves have been scaled by multiplying
a constant to align with the data. Like the ω = 0 case, we
can compare Fig. 10 with the findings of Lugones et al. [45]
where it was found that, for the anisotropic case, the effect of
Alfvén frequency enters the decorrelation time τ (k) in a way
that τ (k) follows the sweeping timescale τsw more closely than
the nonlinear time τnl. As mentioned before, since we do not
consider the effects of sweeping eddies in the present model,
we expect the decorrelation time to scale like local nonlinear
time as found in Fig. 10. We come back to the discussion on
sweeping effects in Sec. VII.

Dmitruk and Matthaeus [33] showed that the 1/f signal
appears at low frequencies in the frequency spectrum and the
signal becomes stronger with increasing mean field. In Fig. 11
we show the compensated frequency spectrum obtained from
the model for ω = 1. Again, a clear presence of 1/f power can
be seen in the k = 0.3 mode in the left panel, while the k = 0.6
mode shows no such scaling. Also, comparing Figs. 6(a) and
11(a), the range of 1/f power for the ω = 1.0 case is somewhat
larger than the ω = 0.0 case. Therefore, it can be concluded
that the 1/f signal becomes stronger with increasing ω, as seen
in MHD simulations [33].

FIG. 11. Ensemble-averaged compensated frequency power
spectrum. A horizontal bar in panel (a) indicates the region of
approximate 1/f spectral behavior. No such region is prominent in
panel (b).

We also show the phase-space diagram of the largest mode
for the two cases ω = 0.5 and ω = 1.0 in Fig. 12. It is evident
from the panels that the wave nature of the trajectory becomes
stronger with increasing ω (compare Figs. 7 and 12). One way
of quantifying the wave versus turbulent nature of a time series
is through analogy to the signal-to-noise ratio (SNR) defined
as [12,49]

SNR = log10

[
P (f0)

P0(f0)

]
. (40)

Here f0 is the frequency at the peak (center), corresponding to
the applied frequency in the model [Eq. (16)], and P0(f0) is a
background value of the power spectrum, if the power law were
continued through f0, ignoring the peak at the wave frequency.

The meaning of this parameter is illustrated in Fig. 13.
The SNR values for the k = 0.3 mode for different ω, are

reported in Table I. The SNR is 0 for the ω = 0 case and
increases monotonically for the increasing values of ω. The

FIG. 12. Phase-space plot of the mode k = 0.3 for ω = 0.5 and
ω = 1. Panels (a) and (b) show the trajectory of the k = 0.3 mode
for ω = 0.5 at time t = 0–100 and t = 0–200, respectively. Panels
(c) and (d) show the trajectory of the k = 0.3 mode for ω = 1 at time
t = 0–100 and t = 0–200, respectively.
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FIG. 13. Scheme for illustrating the calculation of SNR. Variable
w, used in the figure, and the frequency f are related by w = 2πf .
(Adapted from [12].)

fact that the phase-space trajectories become more wavelike
(see Figs. 7 and 12) with noticeable peak at corresponding
ω [see Fig. 11(a)] is reflected through this observation. This
is again consistent with the findings based on full MHD
simulations [33].

VII. DISCUSSION

In this paper, we have modified the Langevin equation of
Brownian motion and the equation of Kubo-type oscillator to
mimic some properties of MHD turbulence. By a systematic
conglomeration of the von Karman similarity decay hypoth-
esis, Kolmogorov symmetries, and the Langevin process of
Brownian motion, the model is shown to produce some results
well in agreement with DNS results. A number of similar
“map” models have been proposed in the past to model
hydrodynamic turbulence. Bak et al. [50] suggested a discrete
“cellular automata” may be thought of as a “toy” turbulence
model. Quantitative agreement with experimental results has
been shown using Langevin-type models (see [51]). Beck
proposed a series of simple cascade models based on an
extension of Langevin theory to recover scaling and intermit-
tency properties of hydrodynamic turbulence [2,52,53] (also
see [54]). Similar Langevin models with complex variables
with a linear term have also been used to study simple models
for quantum turbulence [55,56]. However, apart from subtle
differences, our model is different from the earlier models in
at least two ways:

TABLE I. SNR for the k = 0.3 mode for different values of ω.

ω SNR

0.0 0.0
0.5 0.44
1.0 1.64
2.0 2.30

(1) We do not introduce any cascade in our model. Different
length scales evolve independently of each other, while the
cascade is modeled by a correlated random forcing.

(2) For the anisotropic case, we introduce a wave term which
models the Alfvén waves in MHD. This property is absent in
incompressible hydrodynamic turbulence.

Due to the structure that we have imposed, the present
model is able to reproduce a number of important and realistic
features of MHD turbulence, at extremely low computational
cost:

(i) the model obtains a Kolmogorov inertial range spectrum;
(ii) at long wavelengths, modifying a parameter to generate

long correlation times, the model obtains a range of modes
with 1/f frequency spectra; and

(iii) introduction of wave activity in the model gives rise to
expected effects on correlation times, 1/f spectra, and phase-
space behavior.

While the model is not constructed to emulate sweeping
time decorrelation, it is evident that introducing wave activity
has the expected effect on the time decorrelations in the
computed solutions, in absence of sweeping (see Fig. 10),
although the energy spectra maintain Kolmogorov scaling
in the inertial range even after introducing the wave term
(see Fig. 8).

We remark that this kind of approach is not entirely new in
plasma physics and our scheme is similar to that described in
TenBarge et al. [4]. Our model validates and generalizes the
scheme even further. Plasma systems with system sizes much
larger than kinetic scales show MHD-like behavior at large
scales but small-scale properties like dissipation are described
by kinetic physics. Even with state of the art computational
resources, Particle In Cell (PIC) kinetic simulations with some
of the largest system sizes only begin to probe near the edge of
inertial range. The study presented in this paper may be useful
to couple kinetic simulations to large-scale fluid driving.

The arguments presented here do not capture the sweeping
effects properly. The smaller eddies in a turbulent system
are swept away by the larger eddies before any significant
deformation takes place. As a consequence, a sweeping or
advection timescale (τs ∼ k−1) comes into play apart from
the local nonlinear time [57] (viscous dissipation timescale
becomes important only in dissipation range). This effect
induces a profound difference in the Eulerian statistics and
the Lagrangian statistics (following fluid elements). Of course
the present model, having only a single independent complex
degree of freedom at each scale, is too simple to distinguish
such Lagrangian effects [58]. A more complete model would
be required to incorporate this level of realism. Whether this
can be done with a relatively simple model remains to be
established. Further, the arguments presented here do not
produce the intermittency effects as observed in MHD. We are
in the process of including such effects into a more advanced
model like [2].

Here we concentrate mostly on turbulent plasma systems.
The ideas presented here may be extended to other turbu-
lent systems such as convective turbulence, stably stratified
flows, rotating turbulence, etc. Our approach may be use-
ful to model other chaotic phenomena such as stock mar-
ket exchange, earthquake intensities, prices of commodities,
etc.

053211-10



SINGLE-MODE NONLINEAR LANGEVIN EMULATION OF … PHYSICAL REVIEW E 97, 053211 (2018)

ACKNOWLEDGMENTS

The authors thank Debanjan Sengupta and Sergio Ser-
vidio for fruitful discussions during the initial stage of the
project, and Aadya Parashar for assistance with the manuscript.
The authors are grateful to the two anonymous referees
whose input helped to substantially improve the quality of

the manuscript. This research is supported in part by NSF
AGS-1063439 and AGS-1156094 (SHINE) and by NASA
Grants No. NNX15AB88G (L.W.S.), No. NNX14AI63G (He-
liophysics Grand Challenges), and No. NNX17AB79G (Helio-
physics GI Program), and the Solar Probe Plus project under
Subcontract No. SUB0000165 from the Princeton University
ISOIS project.

[1] G. Uhlenbeck and L. Ornstein, Phys. Rev. 36, 823 (1930).
[2] C. Beck, Phys. Rev. E 49, 3641 (1994).
[3] R. Balescu, H. Wang, and J. H. Misguich, Phys. Plasmas 1, 3826

(1994).
[4] J. TenBarge, G. Howes, W. Dorland, and G. Hammett,

Comput. Phys. Commun. 185, 578 (2014).
[5] T. Lee, Q. Appl. Math. 10, 69 (1952).
[6] R. H. Kraichnan, J. Fluid Mech. 59, 745 (1973).
[7] U. Frisch, A. Pouquet, J. Leorat, and A. Mazure, J. Fluid Mech.

68, 769 (1975).
[8] R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547

(1980).
[9] J. V. Shebalin, Physica D 37, 173 (1989).

[10] J. V. Shebalin, Geophys. Astrophys. Fluid Dyn. 107, 411 (2013).
[11] S. Servidio, W. H. Matthaeus, and V. Carbone, Phys. Rev. E 78,

046302 (2008).
[12] P. Dmitruk and W. H. Matthaeus, Phys. Plasmas 16, 062304

(2009).
[13] S. R. Cranmer and A. A. van Ballegooijen, Astrophys. J. 594,

573 (2003).
[14] B. D. G. Chandran, Phys. Rev. Lett. 95, 265004 (2005).
[15] B. D. G. Chandran, Phys. Rev. Lett. 101, 235004 (2008).
[16] G. G. Howes, K. G. Klein, and J. M. TenBarge, arXiv:1404.2913.
[17] K. G. Klein, G. G. Howes, J. M. TenBarge, S. D. Bale, C. H. K.

Chen, and C. S. Salem, Astrophys. J. 755, 159 (2012).
[18] W. H. Matthaeus, S. Oughton, K. T. Osman, S. Servidio, M.

Wan, S. P. Gary, M. A. Shay, F. Valentini, V. Roytershteyn, H.
Karimabadi, and S. C. Chapman, Astrophys. J. 790, 155 (2014).

[19] P. Dmitruk, L. J. Milano, and W. H. Matthaeus, Astrophys. J.
548, 482 (2001).

[20] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[21] M. von Smoluchowski, Phys. Z. 17, 585 (1916).
[22] A. Einstein, Ann. Phys. (NY) 322, 549 (1905).
[23] P. Dmitruk, W. H. Matthaeus, L. J. Milano, S. Oughton, G. P.

Zank, and D. J. Mullan, Astrophys. J. 575, 571 (2002).
[24] M. Hossain, P. C. Gray, D. H. Pontius, W. H. Matthaeus, and S.

Oughton, Phys. Fluids 7, 2886 (1995).
[25] T. de Kármán and L. Howarth, Proc. R. Soc. London, Ser. A 164,

192 (1938).
[26] M. Wan, S. Oughton, S. Servidio, and W. H. Matthaeus, J. Fluid

Mech. 697, 296 (2012).
[27] B. R. Pearson, P.-A. Krogstad, and W. van de Water, Phys. Fluids

14, 1288 (2002).
[28] P. Wu, M. Wan, W. H. Matthaeus, M. A. Shay, and M. Swisdak,

Phys. Rev. Lett. 111, 121105 (2013).
[29] T. N. Parashar, W. H. Matthaeus, M. A. Shay, and M. Wan,

Astrophys. J. 811, 112 (2015).

[30] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941)
[reprinted in Proc. R. Soc. London, Ser. A 434, 9 (1991)].

[31] P. Dmitruk and W. H. Matthaeus, Astrophys. J. 597, 1097
(2003).

[32] T. N. Parashar, S. Servidio, M. A. Shay, B. Breech, and W. H.
Matthaeus, Phys. Plasmas 18, 092302 (2011).

[33] P. Dmitruk and W. H. Matthaeus, Phys. Rev. E 76, 036305
(2007).

[34] P. Dmitruk, P. D. Mininni, A. Pouquet, S. Servidio, and W. H.
Matthaeus, Phys. Rev. E 83, 066318 (2011).

[35] W. H. Matthaeus and M. L. Goldstein, Phys. Rev. Lett. 57, 495
(1986).

[36] A. Bemporad, W. H. Matthaeus, and G. Poletto, Astrophys. J.
677, L137 (2008).

[37] W. H. Matthaeus, B. Breech, P. Dmitruk, A. Bemporad, G.
Poletto, M. Velli, and M. Romoli, Astrophys. J. Lett. 657, L121
(2007).

[38] B. A. Breech, Topics in Solar Wind Turbulence, Ph.D. thesis,
University of Delaware, 2008.

[39] M. K. Verma, Phys. Rep. 401, 229 (2004).
[40] M. K. Verma, Phys. Plasmas 6, 1455 (1999).
[41] S. A. Orszag and G. S. Patterson, Phys. Rev. Lett. 28, 76 (1972).
[42] W. D. McComb, The Physics of Fluid Turbulence (Clarendon

Press, Oxford, 1990).
[43] W. H. Matthaeus and M. L. Goldstein, J. Geophys. Res. 87, 6011

(1982).
[44] S. Servidio, V. Carbone, P. Dmitruk, and W. H. Matthaeus,

Europhys. Lett. 96, 55003 (2011).
[45] R. Lugones, P. Dmitruk, P. D. Mininni, M. Wan, and W. H.

Matthaeus, Phys. Plasmas 23, 112304 (2016).
[46] J. V. Shebalin, W. H. Matthaeus, and D. Montgomery, J. Plasma

Phys. 29, 525 (1983).
[47] S. Oughton, E. R. Priest, and W. H. Matthaeus, J. Fluid Mech.

280, 95 (1994).
[48] G. G. Howes and K. D. Nielson, Phys. Plasmas 20, 072302

(2013).
[49] A. R. Bulsara and L. Gammaitoni, Phys. Today 49 (3), 39 (1996).
[50] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364

(1988).
[51] C. Beck, Physica A 233, 419 (1996).
[52] C. Beck, Physica D 103, 528 (1997).
[53] C. Beck, Physica A 295, 195 (2001).
[54] A. Hilgers and C. Beck, Europhys. Lett. 45, 552 (1999).
[55] C. Beck and S. Miah, Phys. Rev. E 87, 031002 (2013).
[56] S. Miah and C. Beck, Europhys. Lett. 108, 40004 (2014).
[57] S. Chen and R. H. Kraichnan, Phys. Fluids A 1, 2019 (1989).
[58] H. Tennekes, J. Fluid Mech. 67, 561 (1975).

053211-11

https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRevE.49.3641
https://doi.org/10.1103/PhysRevE.49.3641
https://doi.org/10.1103/PhysRevE.49.3641
https://doi.org/10.1103/PhysRevE.49.3641
https://doi.org/10.1063/1.870855
https://doi.org/10.1063/1.870855
https://doi.org/10.1063/1.870855
https://doi.org/10.1063/1.870855
https://doi.org/10.1016/j.cpc.2013.10.022
https://doi.org/10.1016/j.cpc.2013.10.022
https://doi.org/10.1016/j.cpc.2013.10.022
https://doi.org/10.1016/j.cpc.2013.10.022
https://doi.org/10.1090/qam/51081
https://doi.org/10.1090/qam/51081
https://doi.org/10.1090/qam/51081
https://doi.org/10.1090/qam/51081
https://doi.org/10.1017/S0022112073001837
https://doi.org/10.1017/S0022112073001837
https://doi.org/10.1017/S0022112073001837
https://doi.org/10.1017/S0022112073001837
https://doi.org/10.1017/S002211207500122X
https://doi.org/10.1017/S002211207500122X
https://doi.org/10.1017/S002211207500122X
https://doi.org/10.1017/S002211207500122X
https://doi.org/10.1088/0034-4885/43/5/001
https://doi.org/10.1088/0034-4885/43/5/001
https://doi.org/10.1088/0034-4885/43/5/001
https://doi.org/10.1088/0034-4885/43/5/001
https://doi.org/10.1016/0167-2789(89)90127-9
https://doi.org/10.1016/0167-2789(89)90127-9
https://doi.org/10.1016/0167-2789(89)90127-9
https://doi.org/10.1016/0167-2789(89)90127-9
https://doi.org/10.1080/03091929.2011.589385
https://doi.org/10.1080/03091929.2011.589385
https://doi.org/10.1080/03091929.2011.589385
https://doi.org/10.1080/03091929.2011.589385
https://doi.org/10.1103/PhysRevE.78.046302
https://doi.org/10.1103/PhysRevE.78.046302
https://doi.org/10.1103/PhysRevE.78.046302
https://doi.org/10.1103/PhysRevE.78.046302
https://doi.org/10.1063/1.3148335
https://doi.org/10.1063/1.3148335
https://doi.org/10.1063/1.3148335
https://doi.org/10.1063/1.3148335
https://doi.org/10.1086/376777
https://doi.org/10.1086/376777
https://doi.org/10.1086/376777
https://doi.org/10.1086/376777
https://doi.org/10.1103/PhysRevLett.95.265004
https://doi.org/10.1103/PhysRevLett.95.265004
https://doi.org/10.1103/PhysRevLett.95.265004
https://doi.org/10.1103/PhysRevLett.95.265004
https://doi.org/10.1103/PhysRevLett.101.235004
https://doi.org/10.1103/PhysRevLett.101.235004
https://doi.org/10.1103/PhysRevLett.101.235004
https://doi.org/10.1103/PhysRevLett.101.235004
http://arxiv.org/abs/arXiv:1404.2913
https://doi.org/10.1088/0004-637X/755/2/159
https://doi.org/10.1088/0004-637X/755/2/159
https://doi.org/10.1088/0004-637X/755/2/159
https://doi.org/10.1088/0004-637X/755/2/159
https://doi.org/10.1088/0004-637X/790/2/155
https://doi.org/10.1088/0004-637X/790/2/155
https://doi.org/10.1088/0004-637X/790/2/155
https://doi.org/10.1088/0004-637X/790/2/155
https://doi.org/10.1086/318685
https://doi.org/10.1086/318685
https://doi.org/10.1086/318685
https://doi.org/10.1086/318685
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1086/341188
https://doi.org/10.1086/341188
https://doi.org/10.1086/341188
https://doi.org/10.1086/341188
https://doi.org/10.1063/1.868665
https://doi.org/10.1063/1.868665
https://doi.org/10.1063/1.868665
https://doi.org/10.1063/1.868665
https://doi.org/10.1098/rspa.1938.0013
https://doi.org/10.1098/rspa.1938.0013
https://doi.org/10.1098/rspa.1938.0013
https://doi.org/10.1098/rspa.1938.0013
https://doi.org/10.1017/jfm.2012.61
https://doi.org/10.1017/jfm.2012.61
https://doi.org/10.1017/jfm.2012.61
https://doi.org/10.1017/jfm.2012.61
https://doi.org/10.1063/1.1445422
https://doi.org/10.1063/1.1445422
https://doi.org/10.1063/1.1445422
https://doi.org/10.1063/1.1445422
https://doi.org/10.1103/PhysRevLett.111.121105
https://doi.org/10.1103/PhysRevLett.111.121105
https://doi.org/10.1103/PhysRevLett.111.121105
https://doi.org/10.1103/PhysRevLett.111.121105
https://doi.org/10.1088/0004-637X/811/2/112
https://doi.org/10.1088/0004-637X/811/2/112
https://doi.org/10.1088/0004-637X/811/2/112
https://doi.org/10.1088/0004-637X/811/2/112
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1086/378636
https://doi.org/10.1086/378636
https://doi.org/10.1086/378636
https://doi.org/10.1086/378636
https://doi.org/10.1063/1.3630926
https://doi.org/10.1063/1.3630926
https://doi.org/10.1063/1.3630926
https://doi.org/10.1063/1.3630926
https://doi.org/10.1103/PhysRevE.76.036305
https://doi.org/10.1103/PhysRevE.76.036305
https://doi.org/10.1103/PhysRevE.76.036305
https://doi.org/10.1103/PhysRevE.76.036305
https://doi.org/10.1103/PhysRevE.83.066318
https://doi.org/10.1103/PhysRevE.83.066318
https://doi.org/10.1103/PhysRevE.83.066318
https://doi.org/10.1103/PhysRevE.83.066318
https://doi.org/10.1103/PhysRevLett.57.495
https://doi.org/10.1103/PhysRevLett.57.495
https://doi.org/10.1103/PhysRevLett.57.495
https://doi.org/10.1103/PhysRevLett.57.495
https://doi.org/10.1086/588093
https://doi.org/10.1086/588093
https://doi.org/10.1086/588093
https://doi.org/10.1086/588093
https://doi.org/10.1086/513075
https://doi.org/10.1086/513075
https://doi.org/10.1086/513075
https://doi.org/10.1086/513075
https://doi.org/10.1016/j.physrep.2004.07.007
https://doi.org/10.1016/j.physrep.2004.07.007
https://doi.org/10.1016/j.physrep.2004.07.007
https://doi.org/10.1016/j.physrep.2004.07.007
https://doi.org/10.1063/1.873397
https://doi.org/10.1063/1.873397
https://doi.org/10.1063/1.873397
https://doi.org/10.1063/1.873397
https://doi.org/10.1103/PhysRevLett.28.76
https://doi.org/10.1103/PhysRevLett.28.76
https://doi.org/10.1103/PhysRevLett.28.76
https://doi.org/10.1103/PhysRevLett.28.76
https://doi.org/10.1029/JA087iA08p06011
https://doi.org/10.1029/JA087iA08p06011
https://doi.org/10.1029/JA087iA08p06011
https://doi.org/10.1029/JA087iA08p06011
https://doi.org/10.1209/0295-5075/96/55003
https://doi.org/10.1209/0295-5075/96/55003
https://doi.org/10.1209/0295-5075/96/55003
https://doi.org/10.1209/0295-5075/96/55003
https://doi.org/10.1063/1.4968236
https://doi.org/10.1063/1.4968236
https://doi.org/10.1063/1.4968236
https://doi.org/10.1063/1.4968236
https://doi.org/10.1017/S0022377800000933
https://doi.org/10.1017/S0022377800000933
https://doi.org/10.1017/S0022377800000933
https://doi.org/10.1017/S0022377800000933
https://doi.org/10.1017/S0022112094002867
https://doi.org/10.1017/S0022112094002867
https://doi.org/10.1017/S0022112094002867
https://doi.org/10.1017/S0022112094002867
https://doi.org/10.1063/1.4812805
https://doi.org/10.1063/1.4812805
https://doi.org/10.1063/1.4812805
https://doi.org/10.1063/1.4812805
https://doi.org/10.1063/1.881491
https://doi.org/10.1063/1.881491
https://doi.org/10.1063/1.881491
https://doi.org/10.1063/1.881491
https://doi.org/10.1063/1.881491
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1103/PhysRevA.38.364
https://doi.org/10.1016/S0378-4371(96)00254-3
https://doi.org/10.1016/S0378-4371(96)00254-3
https://doi.org/10.1016/S0378-4371(96)00254-3
https://doi.org/10.1016/S0378-4371(96)00254-3
https://doi.org/10.1016/S0167-2789(96)00283-7
https://doi.org/10.1016/S0167-2789(96)00283-7
https://doi.org/10.1016/S0167-2789(96)00283-7
https://doi.org/10.1016/S0167-2789(96)00283-7
https://doi.org/10.1016/S0378-4371(01)00073-5
https://doi.org/10.1016/S0378-4371(01)00073-5
https://doi.org/10.1016/S0378-4371(01)00073-5
https://doi.org/10.1016/S0378-4371(01)00073-5
https://doi.org/10.1209/epl/i1999-00199-0
https://doi.org/10.1209/epl/i1999-00199-0
https://doi.org/10.1209/epl/i1999-00199-0
https://doi.org/10.1209/epl/i1999-00199-0
https://doi.org/10.1103/PhysRevE.87.031002
https://doi.org/10.1103/PhysRevE.87.031002
https://doi.org/10.1103/PhysRevE.87.031002
https://doi.org/10.1103/PhysRevE.87.031002
https://doi.org/10.1209/0295-5075/108/40004
https://doi.org/10.1209/0295-5075/108/40004
https://doi.org/10.1209/0295-5075/108/40004
https://doi.org/10.1209/0295-5075/108/40004
https://doi.org/10.1063/1.857475
https://doi.org/10.1063/1.857475
https://doi.org/10.1063/1.857475
https://doi.org/10.1063/1.857475
https://doi.org/10.1017/S0022112075000468
https://doi.org/10.1017/S0022112075000468
https://doi.org/10.1017/S0022112075000468
https://doi.org/10.1017/S0022112075000468



