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Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation
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Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as
quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact.
This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear
wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed
by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly
known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes
unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly
model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the
zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey
oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that
full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation;
(ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained,
the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We
also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave
turbulence, emerges from the WME.
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I. INTRODUCTION

Drift waves (DWs) in plasma physics and mathematically
similar Rossby waves in geophysics can spontaneously gener-
ate coherent nonlinear structures in the form of banded shear
flows, which are commonly known as zonal flows (ZFs). In-
teractions between ZFs and DW turbulence are a fundamental
problem that has been actively studied for decades, particularly
due to its importance for turbulent transport in magnetic-fusion
devices [1]. A common model for studying these interactions is
the wave-kinetic equation (WKE) [2–13], which relies on the
geometrical-optics (GO) approximation, i.e., the characteristic
DW wavelength is assumed small compared to the ZF scales.
However, this assumption is not always justified [14–17], and
essential physics is lost in the GO limit [18,19]. (Additional ev-
idence is also presented below.) This stimulated formulations
of full-wave statistical theories, which remain manageable
within the quasilinear approximation, i.e., when eddy-eddy
interactions are ignored. A particularly notable example is the
second-order cumulant expansion (CE2), which has been used
in both geophysics and plasma physics [20–23]. However,
the CE2 is formulated in terms of the two-point correlation
function, so it is not an obvious generalization of the WKE,
which describes the DW dynamics in the ray phase space.
Thus, an alternative theory is needed to unify the WKE and
the full-wave approach to inhomogeneous turbulence.

Recently, it was noticed [19] that DWs can be viewed as
effective quantum particles for which the ZF velocity serves
as a collective field. Then the DW Wigner function serves
as a quasiprobability distribution of DW quanta (driftons) in
phase space. It fully determines the ZF dynamics and satisfies

a kinetic equation of the Wigner-Moyal (WM) type [24,25].
This leads to a complete model of DW turbulence in the same
quasilinear approximation that underlies the CE2 (and was
also extended recently beyond the quasilinear approximation
[26]). However, unlike the CE2, the WM model describes the
dynamics in phase space; thus, it leverages the existing Hamil-
tonian formalism and provides a connection with the WKE,
which is subsumed as the GO limit. Previous applications of
this full-wave phase-space approach to classical turbulence
have been restricted to manifestly quantumlike systems such as
those governed by the nonlinear Schrödinger equation [27–33]
(e.g., optical turbulence in Kerr media) and the Klein-Gordon
equation [34,35]. In those cases, the WM equations are ba-
sically borrowed from quantum mechanics and reduce to the
commonly known WKEs in the GO limit. In contrast, driftons
have Hamiltonians very different from those of conventional
quantum particles and are also subject to dissipation even
in a collisionless plasma. This causes unusual phase-space
dynamics and makes the GO approximation a subtle matter.
In particular, it was found that the GO limit of the WM
equation for driftons is not quite the traditional WKE (TWKE)
but includes corrections that reinstate the conservation of the
DW-ZF total enstrophy. Applications of this “improved” wave-
kinetic equation1 (IWKE) were contemplated in Refs. [18,19],
but the utility of full-wave WM modeling of DW turbulence
has not been explored yet.

1The IWKE was originally derived using CE2 in Ref. [18], where
it was termed CE2-GO, and rederived using the WM formalism in
Ref. [19], where it was termed WKE.
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Here we report the full-wave phase-space modeling of
inhomogeneous DW turbulence as an effective quantumlike
drifton plasma. The general mathematical formulation of the
WM equation is taken from Ref. [19] and the plasma is
assumed collisionless for simplicity. We simulate the ZF
formation [zonostrophic instability (ZI) [4,5,20–22]], the de-
terioration [tertiary instability (TI) [10,17,36–39]], and the
DW-ZF predator-prey-type oscillations [6–9]. We also show
how the WM approach facilitates analysis of these effects.
Our specific findings are the following. (i) For the linear
stage of the ZI, when the TWKE dynamics is simulation-box
dependent, the WM model predicts physical rates that account
for full-wave effects and agree with the CE2. The accuracy
of the corresponding IWKE predictions is, in general, only
qualitative. (ii) The IWKE predicts three types of drifton phase-
space trajectories. Our analysis of these trajectories shows that
adequate modeling of the ZI nonlinear stage and saturation
requires accounting for full-wave effects, which is impossible
within both the TWKE and the IWKE. (iii) When full-wave
effects are retained, predator-prey oscillations do not require
ZF collisional damping, contrary to previous studies. More-
over, we find that these oscillations occur in our simulations
only outside the validity domain of their TWKE-based existing
theory. (iv) The TI cannot be described by the TWKE or the
IWKE in principle, but it is captured by the WM analysis. We
calculate the TI growth rate and compare our results with sim-
ulations. (v) The famous Rayleigh-Kuo criterion [40], which is
known from geophysics yet has been missing in TWKE-based
theories, emerges after full-wave corrections are reinstated.

Overall, our work corrects and extends previous efforts in
phase-space studies of inhomogeneous DW turbulence such as
in Ref. [12]. Hence, it serves as a step toward revising basic
physics of DW turbulence (and, potentially, its impact on turbu-
lent transport) from a different perspective. The specific find-
ings reported here are only intended to illustrate the utility of
the general WM formulation in application to inhomogeneous
DW turbulence. Likewise, the specific turbulence model used
below is just an example chosen for its simplicity and relevance
to the existing TWKE and CE2 models. Wigner-Moyal studies
of DW turbulence within more realistic models is something
that this work seeks to stimulate in the future.

II. BASIC EQUATIONS

The plasma model adopted in this paper is as follows. We
assume cold ions, electrons with temperature Te, and a uniform
magnetic field B0 = B0ẑ, where ẑ is a unit vector along the z

axis. The equilibrium density gradient ∇n0 is in the y direction.
The electrostatic potential ϕ is described by the generalized
Hasegawa-Mima equation (GHME) [4,5,41,42]

∂tw + (ẑ × ∇ϕ) · ∇w + β∂xϕ = 0, w = (∇2 − â)ϕ

for the generalized vorticity w(t,x) on the x ≡ (x,y) plane
transverse to B0. Here time is measured in units �−1

i , where
�i is the ion gyrofrequency; length is measured in units
ρs

.= cs/�i (
.= denotes definitions), where cs is the ion sound

speed; ϕ is measured in units Te/|e|, where e is the electron
charge; also,β is proportional to ∂yn0 and is treated as a positive
constant. The operator â models the electron response to ϕ such
that â = 1 for DWs and â = 0 for ZFs [42]. External forcing

and dissipation are not included because they are not directly
relevant to the effects discussed below. (If the stochastic forcing
were retained, ergodicity in the x direction would have to be
assumed, like in the CE2 [22].) For any given f , we introduce
its zonal average 〈f 〉 .= ∫

f dx/Lx (Lx is the system length
in the x direction) and fluctuations f̃

.= f − 〈f 〉. Zonal flows
are described by the average velocity U (t,y)

.= −〈ϕ′〉. (Primes
denote derivatives with respect to y.) Assuming the quasilinear
approximation, DWs are governed by i∂t w̃ = Ĥ w̃, where Ĥ

serves as the drifton Hamiltonian [19]. We also introduce the
zonal-averaged Wigner function W (t,y,p)

.= 〈∫ e−ip·sw̃(t,x +
s/2)w̃(t,x − s/2)d2s〉. Then the WM formulation is [19]

∂tW = {{H,W }} + [[�,W ]], (1)

∂tU = ∂y

∫
p−2

D � pxpyW � p−2
D d2p/(2π )2. (2)

Here H and � are the Weyl symbols of the Hermitian and
anti-Hermitian parts of Ĥ ,

H = −βpx

p2
D

+ pxU + 1

2

[[
U ′′,

px

p2
D

]]
, � = 1

2

{{
U ′′,

px

p2
D

}}
,

where p2
D

.= 1 + p2
x + p2

y . Also, � is the Moyal star
A � B

.= AeiL̂/2B, where L̂ .= ←−
∂x · −→

∂p − ←−
∂p · −→

∂x with the ar-
rows indicating the directions in which the derivatives act. For
example, AL̂B is the canonical Poisson bracket {A,B}. Also,
{{A,B}} .= 2A sin(L̂/2)B and [[A,B]]

.= 2A cos(L̂/2)B. We
solve these equations numerically in the spectral representation
[19]. This model is equivalent to the CE2 [20–23] but repre-
sents the dynamics of DWs in different (phase-space) variables.

For comparison, we introduce the GO limit, which cor-
responds to max(λDW/λZF,ρs/λZF) 	 1. (Here λDW is the
characteristic DW wavelength and λZF is the ZF spatial scale.)
Then Eqs. (1) and (2) become

∂tW = {H,W } + 2�W, (3)

∂tU = ∂y

∫
pxpyp

−4
D W d2p/(2π )2, (4)

which is called the IWKE model. Here W is understood as
the phase-space distribution of driftons, H serves as their GO
Hamiltonian, and � serves as their damping rate. Specifically,

H = pxU + px(U ′′ − β)/p2
D, � = −U ′′′pxpy/p

4
D. (5)

The TWKE has the same general form as (3), but with
H = pxU − βpx/p

2
D and � = 0 [2–7,10–13]. [As mentioned

previously, in contrast with the IWKE, the TWKE does
not conserve the total energy and enstrophy of the DW-ZF
system [18,19].] We solve these equations numerically using
discontinuous Galerkin methods implemented in the GKEYLL

code [19,43].

III. ZONOSTROPHIC INSTABILITY

A. Linear ZI

First, we study the linear ZI, which is the formation of ZFs
out of homogeneous DW turbulence with a given equilibrium
Wigner function W(p). Within the WM approach, the ZI
growth rate is found just like the kinetic dispersion of linear
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FIG. 1. Plots of γZI(q) at β = 1 for two equilibria: (a) W1 with
N = 50 and pf = 1 and (b) W2 with kx = 2, ky = 1, and N =
100/(2π )2. Shown are the analytical results obtained from the WM
(blue line), IWKE (red line), and TWKE (dashed line) models and
the corresponding numerical results obtained from the WM (triangles)
and IWKE (circles) simulations. The two blue lines in (b) correspond
to two branches of ReγTI. Only the fastest-growing mode is observed
numerically.

waves in a quantum plasma. Assuming U = Re(Uqe
iqy+γZIt )

and δW = Re(Wqe
iqy+γZIt ), one obtains [19]

γZI =
∫

d2p

(2π )2

qp2
xpy

γZIp
2
D,+qp

2
D,−q + 2iβqpxpy

×[(
1 − q2/p2

D,−q

)
W−q − (

1 − q2/p2
D,+q

)
W+q

]
,

(6)

where W±q
.= W(px,py ± q/2) and p2

D,±q

.= 1 + p2
x +

(py ± q/2)2. For comparison, the IWKE predicts [18]

1 =
∫

d2p

(2π )2

q2p2
xp

4
D

(
1 − 4p2

y

/
p2

D

)(
1 − q2

/
p2

D

)
(
γZIp

4
D + 2iβqpxpy

)2 W(p).

The TWKE result is obtained if one ignores q2/p2
D in the

second set of parentheses in the numerator.
We considered two equilibria: W1(p) = 2πN δ(|p| −

pf )/pf and W2(p) = π2N
∑

mx,y=±1 δ(px − mxkx)δ(py −
myky). Here N [W] = ∫

W(p)d2p/(2π )2 is the drifton den-
sity, or twice the DW enstrophy density [19], and pf , kx ,
and ky are constants. The simulations used U (t = 0,y) =
Uq cos qy (with small Uq) and W (t = 0,y,p) = W1,2(p). The
exponential growth of the perturbations in WM simulations
agrees with Eq. (6) (Fig. 1). In contrast, the TWKE is adequate
only at q 	 1 and the corresponding γZI has a maximum at the
largestq resolved numerically. Thus, the TWKE is inapplicable
to modeling the ZI, as also noticed in Refs. [18,19]. This
means that the pioneering TWKE-based simulations of the ZI
in Ref. [12] were, at best, a qualitative demonstration of the
effect. The IWKE is better, for it predicts that the ZI vanishes
at q � 1 and approximates ReγZI reasonably well in the most
important region (namely, q � 1) where γZI has its maximum.
Even so, the IWKE agreement with the full-wave theory is
generally qualitative [Fig. 1(b)] and the WM model is more
adequate.

B. Nonlinear ZI

We also compare the GO and full-wave DW-ZF dynamics
beyond the linear ZI. The former is elucidated by ray equations
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FIG. 2. Contour plots ofH from the the IWKE for U = u0 cos qy

at β = 1, q = 0.5, and px = 0.5: (a) regime 1, u0 = 0.1; (b) regime 2,
u0 = 2; and (c) regime 3, u0 = 10. The arrows show the phase-space
velocity given by Eqs. (7) and (8). The labels P , T , and R denote
passing, trapped, and runaway trajectories. The vertical dashed lines
in (c) denote the locations where U ′′ = β.

inferred from Eqs. (3) and (5),

ẏ = ∂H/∂py = 2pxpy(β + q2u0 cos qy)/p4
D, (7)

ṗy = −∂H/∂y = (
1 − q2/p2

D

)
pxqu0 sin qy, (8)

where we substituted a fixed ZF profile U = u0 cos qy for
clarity. Three different topologies of the (y,py) space are
possible then, assuming q < 1. (At q > 1, the GO model is
inapplicable, so it is not considered.) Regime 1 corresponds
to weak ZFs, u0 < uc,1

.= β/(2 − q2) (Fig. 2). This regime
shows three types of trajectories: passing (labeled P ), trapped
(labeled T ), and runaway (labeled R), which extend to
infinity along py while being localized along y.2 Regime 2
corresponds to moderate ZFs, uc,1 � u0 < uc,2

.= β/q2. In
this case, P trajectories vanish but T and R trajectories persist.
In regime 3, only R trajectories are left. This is the case of
strong ZFs, u0 � uc,2. The latter is precisely the Rayleigh-Kuo
criterion [40], which has been known as a necessary condition
of the ZF instability. Note that the Rayleigh-Kuo parameter


.= u0/uc,2 emerges in the IWKE but not in the TWKE,
where uc,2 is infinite and hence regime 3 is impossible.

Since the total energy is conserved [19], the ZI eventually
saturates. By taking moments of the IWKE, one also finds that
∂tU = [2(U ′′ − β)]−1∂tN . Since the direction of phase-space
flows is known (Fig. 2), one can show from here that, within
the IWKE validity domain (q < 1), the profile of U can
only sharpen with time. This implies that the ZI saturates
monotonically, i.e., never transfers its energy back to DWs.
This is corroborated by both IWKE and WM simulations at
q � 1; i.e., the GO approximation is adequate in this case
[Fig. 3(a)]. In contrast, at q � 1, full-wave effects are essential.
In this regime, the IWKE and the TWKE are inapplicable,
while WM simulations show that the ZI is eventually reversed;
i.e., an intense ZF transfers its energy back to DWs (Fig. 3).
This results in predator-prey-type oscillations. They were also
reported in the past [6–9] but were assumed to require ZF
collisional damping. Our simulations show that this is not

2For the lack of a better term, we call these driftons runaway by
analogy with commonly known runaway electrons. However, the
nature of the runaway effect for driftons is different as they are
collisionless to begin with.
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FIG. 3. Nonlinear simulations of the ZI with the same initializa-
tion as in Fig. 1(a). (a) The ZF energy EZF

.= ∫
U 2dy/2 versus t for

various q: the IWKE model (dashed line) and the WM model (solid
line). At q � 1, the IWKE and WM models produce similar results.
At q � 1, WM simulations predict oscillations of EZF. Also shown
are snapshots of W from WM simulations (q = 0.4) for (b) t = 8.0,
(c) t = 10.0, and (d) t = 12.0. The shape of the ∩ and ∪ structures is
determined by the R trajectories [Fig. 2(c)]. Also see the movies in
the Supplemental Material [44].

necessary. Besides, the oscillations were previously shown
only within a TWKE-based model of drifton quasilinear diffu-
sion, which assumes the GO limit and random small-amplitude
ZFs. Neither of these assumptions holds in the regime when
the oscillations occur in our simulations, so the WM approach
is, in fact, necessary for accurate DW-kinetic modeling of
these oscillations. Also, the importance of q as a bifurcation
parameter is consistent with our TI theory presented below.

IV. TERTIARY INSTABILITY

Consider a system with initial conditions such that there
is an intense ZF field and no DWs. Such ZF is subject to an
instability of the Kelvin-Helmholtz type that we term TI. (The
presence of DWs can affect the instability rate, as shown in
Refs. [21,23] and in our discussion of the nonlinear ZI. We do
not consider this effect here for it is hard to separate such TI
from the nonlinear ZI.) This definition of the TI is different
from that in Refs. [38,39], where the TI was attributed to the
ion-temperature gradient (absent in our model), but similar
to those in the majority of relevant papers [10,17,36,37]. In
Refs. [18,36], a connection was mentioned between the TI and
the Rayleigh-Kuo criterion, but the sufficient and necessary
conditions for the TI were not explored analytically, and
the mode structure was unknown.3 Below we propose two
analytical and numerical calculations of the TI.

3Two calculations of γTI were proposed in Ref. [10] but are
incomplete. The first one, which uses a Floquet analysis, misses
the stability threshold determined by . (The q-dependent threshold
that we discuss is absent in Ref. [10] because a different model of
the electron response is assumed.) The second one, which uses the
TWKE, is in fact a calculation of one of the ZI branches rather than
of the TI. As we pointed out already, the TWKE cannot capture the
TI in principle. In contrast, γTI reported in Ref. [17] is consistent with
our Eq. (11).

Let us consider ϕ̃ = Re[φ(y)eikxx−iωt ] and C
.= ω/kx . Lin-

earizing the GHME gives

[
d2/dy2 − (

1 + k2
x

) − (U ′′ − β)/(U − C)
]
φ = 0. (9)

We assume U = u0 cos qy and search for φ as a Floquet mode
φ = ψ(y)eiq̄y , where ψ(y + 2π/q) = ψ(y) and q̄ is a constant
restricted to the first Brillouin zone −q/2 � q̄ < q/2. Then,
by following and correcting Kuo’s argument [40], we find that
there are at most two unstable modes. The maximum of their
growth rates, which we define as the TI growth rate γTI,1 =
max(kxImC), is given by

γTI,1 = |kxu0|ϑH (ϑ)
√

1 − −2, (10)

where ϑ
.= 1 − (q̄2 + 1 + k2

x)/q2,  = u0q
2/β, and H is the

Heaviside step function. (The index 1 denotes that this is our
first model of γTI.) This growth rate is largest at q̄ = 0 and
positive if  > 1 and q2 > 1 + k2

x > 1. Similar inequalities
hold for nonsinusoidal ZF. Hence, the necessary and sufficient
conditions for the TI onset is twofold: (i)  � 1 and (ii) q2 � 1.
The latter implies a violation of the GO approximation. As
a corollary, there is no TI in the GO limit. These findings
also differ from those in Ref. [10], where the  dependence
is missed.

For comparison, we also calculate γTI numerically. First,
we represent Eq. (9) as an eigenvalue problem Â−1(UÂ +
β − U ′′)ψ = Cψ , where Â

.= d2/dy2 + 2iq̄d/dy − (q̄2 +
1 + k2

x). Then we adopt ψ in the form ψ = ∑N
m=−N ψmeimqy ,

with truncation at a large enough N . Then C is found as an
eigenvalue of a (2N + 1) × (2N + 1) matrix. As seen from
Fig. 4, Eq. (10) is in reasonable agreement with the simulations,
but only when ϑ 	 1. In contrast, the WM approach allows
for a calculation that extends to general ϑ , namely, as follows.
The numerical solution of the above eigenmode equation
for ψ can be used to calculate the eigenvector ψm, so we
also obtain w̃ = (∇2 − 1)ϕ̃ and W . In the spectral represen-
tation W(t,λ,p)

.= ∫
W (t,y,p)e−iλydy, the Floquet mode is

a series of delta functions W(t,λ,p) = ∑
mn Wm,n(px)δ(λ −

mq)δ(py − nq/2), where Wm,n decrease with m and n. As
an approximation, we retain only W0,0, W±1,±1, W±2,0, and

FIG. 4. Plots of (a) γTI(kx) at β = 0.5 and (b) γTI(β) at kx = 0.4.
In both cases, U (t = 0,y) = u0 cos qy, u0 = 1, q = 1.6, and q̄ = 0.
Shown are the analytical approximations (10) (red line) and (11)
(green line). Also shown are numerical solutions of the eigenvalue
equation for C (blue line) and the results of WM simulations (circles)
with W (t = 0,y,p) = W1δ(px − kx)e−p2

y (with small W1).
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FIG. 5. Nonlinear simulations of the TI with the same initializa-
tion as in Fig. 4 (β = 1 and kx = 0.4). (a) Energy of the ZF (blue
line), DWs (green line) [19], and the total energy (red line) versus t .
Also shown are snapshots of the normalized Wigner function W̄ for
(b) t = 8.0, (c) t = 33.0, and (d) t = 58.0. Panels (c) and (d) show the
presence of multiple harmonics in the py spectrum, which is because
DWs are Floquet modes rather than point particles. Also, substantial
regions of negative W̄ are present. Hence, unlike in GO, W cannot be
understood as the probability distribution. This shows the importance
of full-wave effects. The energy oscillations seen in (a) are correlated
with the horizontal shifts of the phase-space structures; compare
(c) and (d). Also see the movie in the Supplemental Material [44].

W0,±1. Then, from Eq. (1), we obtain the eigenvalue

γTI,2 = |kxu0|[
√

2(1 + δ)]−1
√

1 − δ2 − (2δ22)−1, (11)

where δ
.= (1 + k2

x)/q2. The conditions for the TI onset
within this model are 22δ2(1 − δ2) > 1 and q2 > 1 + k2

x .
This implies  >

√
2 and q2 > 1, which is in qualitative

agreement with Eq. (10). Some discrepancy is explained by
the fact that our series truncation is not a rigorous asymptotic
approximation. For the same reason, γTI,2 is not always a
better approximation of γTI compared to γTI,1, but it does

not require the smallness of ϑ . Results of WM simulations
of the TI are presented in Fig. 5, which also illustrates the
phase-space dynamics during the nonlinear stage. Our findings
are in agreement with the direct numerical simulations reported
in Ref. [36].

V. CONCLUSION

We reported a full-wave phase-space modeling of the key
basic effects associated with inhomogeneous DW turbulence
and DW-ZF interactions. The turbulence is modeled as kinetics
of an effective plasma where DWs act as quantumlike particles
and the ZF velocity serves as their collective field. The
drifton Hamiltonian is very different from that of conventional
particles, so the phase-space dynamics is unusual and the
applicability of the GO approximation is a subtle matter. Our
findings show that traditional wave kinetics, which assumes
the GO limit, misses essential physics in many aspects of the
DW-ZF interaction problem. In contrast, the WM formulation
is more robust and can be used as an efficient and intuitive tool
for both analytical and numerical studies of DW turbulence.
Our specific findings include a revised understanding of the
nonlinear ZI and predator-prey oscillations and also an alter-
native theory of the TI within the GHME model. Applications
of the WM formulation to other models of DW turbulence are
anticipated in the future.
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