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Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the
strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As
a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and
electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice,
in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED
can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial
conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the
capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of
linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example
is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from
wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time
lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics.
The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using
quantum parallelism in the future.
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I. INTRODUCTION

Lattice quantum electrodynamics (QED), a scheme usually
used to study vacuum quantum electrodynamics, can also
be used to simulate plasmas. By allowing for dynamical
background fields, we remove unnecessary restrictions on
field configurations, making lattice QED a useful tool also
for plasma physics, especially when plasmas are dense or
when fields are strong. Under these extreme conditions where
collective QED effects are important, the commonly adopted
classical plasma kinetic model is no longer sufficient. An
example is the production of electron-positron pairs when
intense lasers interact with plasma targets [1–4]. To describe
such phenomena in the classical framework, source terms must
be inserted into kinetic or fluid equations [5–9], which can then
be solved by numeric integration [10,11] or QED-particle-
in-cell (PIC) simulations [12–14]. However, prefabricated
source terms take little account of the interplay between
coexisting processes [15], which may interfere quantum me-
chanically. While classical approximations may be applicable
when scales are well separated, large source-term errors are
expected when fields, such as those of x-ray lasers, evolve
on scales comparable to intrinsic QED scales. Moreover, in
classical treatments, there is no obvious way to conserve
both energy and momentum, when strong fields produce
pairs or when particles radiate high-energy photons. Although
errors may be tolerable in some cases, disrespecting energy-
momentum conservation will likely have nonphysical conse-
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quences. Therefore, lattice QED is in fact an indispensable
tool when relativistic-quantum and collective effects are both
important.

While lattice simulations may be unfamiliar for plasma
physics, they have been used extensively in quantum chro-
modynamics (QCD) to describe the strong interaction [16]
and quark-gluon plasmas [17,18]. In conventional lattice-
QCD simulations, quantum correlation functions are computed
using numerical path integrals, from which observables are
extracted as coefficients of scaling laws [19]. This scheme
can be analytically continued to imaginary time to describe
statistical systems in thermal equilibrium [20]. For out-of-
equilibrium systems, real-time simulations can be carried
out using the Schwinger-Keldysh time contours [21,22]. The
above formulations, based on numerical path integrals, are
capable of capturing genuine quantum loop effects but are
numerically expensive. Fortunately, the computational cost
can be dramatically reduced when the occupation numbers
of quantum states are high and when the coupling is weak.
This is precisely the case for plasma physics, where a large
number of particles are present, and the coupling coefficient
e ≈ 0.3 is small. In this classical-statistic regime, tree-level
effects dominate loop effects [23–27], and the quantum system
can be adequately described by time-advancing the classical
field equations with an ensemble of statistically equivalent
initial conditions [28–31]. Based on this approach, lattice
spinor-QED simulations have been carried out to demonstrate
production of fermion pairs from the vacuum by self-consistent
background electric fields [32–34]. However, the role of
nonvacuum plasma backgrounds during pair production has
not been investigated.
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In this paper, we demonstrate plasma effects during pair
productions using the scalar-QED model. Keeping in mind
that the derivation for spinor QED proceeds analogously, the
scalar-QED model enables a clean demonstration of collective
plasma effects, without the complication of spin and chiral
effects associated with Dirac fermions [35–38]. The scalar-
QED model governs interactions between electromagnetic
(EM) fields and spin-0 charged bosons, such as charged pions
or Cooper pairs. Although laboratory plasmas are typically
made of spin-1/2 charge fermions, classical plasma physics
takes no account of particle spin-statistics at all. Therefore,
lattice scalar QED, which has been used to study laser-plasma
interactions [39,40], provides a sufficient demonstration. In
the classical-statistics regime, scalar QED is governed by the
Klein-Gordon-Maxwell (KGM) equations

(
Dζ,μD

μ
ζ + m2

ζ

)
φζ = 0, (1)

∂μFμν = jν, (2)

where we have used the natural units h̄ = c = ε0 = 1. In the
above equations, φζ is the complex scalar field, describing
spin-0 bosons of species ζ , whose charge is qζ and mass is mζ .
The real-valued 1-form Aμ is the gauge field, describing spin-1
bosons, and Fμν = ∂μAν − ∂νAμ is the field strength tensor.
Charged bosons couple to the gauge field through the covariant
derivative Dζ,μ = ∂μ − iqζ Aμ, and the gauge field couples
with charged fields through the gauge-invariant current density

jν =
∑

ζ

qζ

i

[
φ̄ζ

(
Dν

ζ φζ

) − c.c.
]
, (3)

where φ̄ζ denotes complex conjugation of φζ . By the famous
Klein paradox [41], the charged scalar field φζ cannot be
interpreted as the probability amplitude of a single particle. A
more appropriate interpretation is that the classical field φζ is
intrinsically a many-particle field, which can be represented
as φζ (x) = ∫ √

V �ζ (x,x2,x3, . . . ), where �ζ (x,x2,x3, . . . )
is the symmetrized many-body wave function, and the
integration is carried out on the many-body configurations
space [40]. Regardless of the interpretation, we can solve
the KGM equations as coupled partial differential equations,
whose solutions model the tree-level behavior of charged
bosons interacting with EM fields.

This paper is organized as follows. In Sec. II we develop
a variational algorithm for solving the KGM equations. In
Sec. III we apply this algorithm to two example problems
in plasma physics. The first example is the propagation of
linear waves, where we compare numerical spectra with an-
alytical dispersion relations. The second example is wakefield
acceleration and pair production, when intense lasers interact
with a one-dimensional (1D) plasma slab. Conclusion and
discussion are given in Sec. IV. In Appendix A we discuss local
conservation laws underlying our algorithm. In Appendix B
we summarize an explicit numerical scheme using the Lorenz
gauge condition.

II. VARIATIONAL ALGORITHM

In the continuum, the KGM equations can be derived from
the action S = ∫

d4xL, where the Lorentz invariant and U(1)-

gauge invariant scalar-QED Lagrangian

L = (Dμφ)(Dμφ) − m2φ̄φ − 1
4FμνF

μν. (4)

Here we have omitted the species subscript ζ , and the summa-
tion of charged species is implied. By Noether’s theorem, the
U(1)-gauge symmetry of the action

φ → φeiqα, Aμ → Aμ + ∂μα (5)

implies charge conservation ∂μjμ = 0, where the current den-
sity jμ is given by Eq. (3). Similarly, by the Lorentz symmetry,
energy, and momentum are also conserved ∂μT μν = 0, where
the gauge-invariant stress-energy tensor

T μν = (Dμφ)(Dνφ) + (Dμφ)(Dνφ)

+FμσF ν
σ − gμνL. (6)

Here gμν is the Minkowski metric with characteristics
(+, − , − ,−). This scalar-QED theory, omitting the φ4 self-
coupling, is the underlying model of our algorithm on the
discrete space-time lattice. In fact, a variational algorithm for
solving the KGM equations has already been developed in
the numerical analysis community [42], which shows supe-
rior charge conservation property when gauge symmetry is
respected. In this paper, we rederive the variational algorithm
in arbitrary gauge, using local energy conservation to justify
the choice of Yee-type action [43] over Wilson-type action [16]
and emphasize the application of such algorithm to plasma
physics.

A. Discretization of fields and action

To solve the continuous system numerically, let us discretize
the space-time manifold. Here we use a rectangular lattice,
keeping in mind that other lattices are also viable. Then the
scalar field φ, namely, a 0-form, naturally lives on the vertexes
of the discrete manifold

φn
i,j,k := φ(tn,xi,yj ,zk), (7)

where (tn,xi,yj ,zk) is the coordinate of the vertex. In compar-
ison, the gauge 1-form A = Aμdxμ naturally lives along the
edges of the discrete space-time manifold. For example, the t

and x components

A
n+ 1

2
i,j,k := +A0

(
tn + 
t

2
,xi,yj ,zk

)
, (8)

An

i+ 1
2 ,j,k

:= −A1

(
tn,xi + 
x

2
,yj ,zk

)
, (9)

where 
t = tn+1 − tn and 
x = xi+1 − xi . The minus sign
comes from the Minkowski metric gμν , which lowers the index
Aμ = gμνA

ν . In the above discretization, a half-integer index
indicates which edge the field resides along. For example,
A

n+1/2
i,j,k resides along the edge connecting vertices (tn,xi,yj ,zk)

and (tn+1,xi,yj ,zk) and is therefore the A0 component of A.
Notice that since A is a 1-form living along edges, only one
of its four indices can take half-integer values, while the other
three indices must take integer values. Moreover, to each edge
of the lattice, the discrete 1-form only assigns the component of
A that is parallel to this edge (Fig. 1), while other components
of A are not assigned.
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FIG. 1. Discretization of the txy submanifold of space time using
a rectangular lattice. The discrete function φv lives on the vertexes
(blue squares). For example, φn

i,j,k = φ(tn,xi,yj ,zk) lives on the vertex
(n,i,j,k). The discrete 1-form Ae lives along edges (red circles).
For example, the t component A

n+1/2
i+1,j,k = A0(tn + 
t/2,xi+1,yj ,zk)

lives along the timelike edge connecting vertexes (n,i + 1,j,k) and
(n + 1,i + 1,j,k), and the x component An

i+1/2,j,k = −A1(tn,xi +

x/2,yj ,zk) lives along the spacelike edge connecting vertexes
(n,i,j,k) and (n,i + 1,j,k). The discrete 2-form Ff lives on faces
(green crosses). For example, electric field E

n+1/2
i+1/2,j,k = Ex(tn +


t/2,xi + 
x/2,yj ,zk) lives on the timelike face spanned by vertexes
(n,i,j,k),(n + 1,i,j,k),(n + 1,i + 1,j,k), and (n,i + 1,j,k); mag-
netic field Bn+1

i+1/2,j+1/2,k = Bz(tn+1,xi + 
x/2,yj + 
y/2,zk) lives
on the spacelike face spanned by vertexes (n + 1,i,j,k),(n + 1,i,j +
1,k),(n + 1,i + 1,j + 1,k), and (n + 1,i + 1,j,k).

Now that we have discretized the fields, the gauge-covariant
derivatives can be computed using the Wilson’s lines [16].
Since the gauge-covariant derivatives are 1-forms, they also
lives along edges when discretized. For example, the t and x

components of the pull-back gauge covariant derivatives are

(D<
0 φ)

n+ 1
2

i,j,k = 1


t

(
φn+1

i,j,ke
−iq
tA

n+ 1
2

i,j,k − φn
i,j,k

)
, (10)

(D<
1 φ)n

i+ 1
2 ,j,k

= 1


x

(
φn

i+1,j,ke
−iq
xAn

i+ 1
2 ,j,k − φn

i,j,k

)
. (11)

These pull-back covariant derivatives transform under the
discrete U(1)-gauge symmetry [Eqs. (A3)–(A5)] as φn

i,j,k

[Eq. (A6)]. Analogously, one can define push-forward co-
variant derivatives, which we shall not use in this paper. The
gauge field A serves as the 1-form defining the connection
on the U(1)-bundle, which enables parallel transport φ on the
space-time manifold.

To compute the field strength tensor Fμν , notice that F =
dA is the curvature 2-form and hence lives on faces of the lattice
upon discretization. For example, the timelike component
F01 = E1 is the electric field in the x direction, which can
be computed by

E
n+ 1

2

i+ 1
2 ,j,k

=
An+1

i+ 1
2 ,j,k

− An

i+ 1
2 ,j,k


t
− A

n+ 1
2

i+1,j,k − A
n+ 1

2
i,j,k


x
. (12)

This component lives on the timelike face spanned by four
vertices (n,i,j,k), (n,i + 1,j,k), (n + 1,i + 1,j,k), and (n +
1,i,j,k). Analogously, we can compute the spacelike compo-
nents of F . For example, F12 = −B3 is the magnetic field in

the z direction

−Bn

i+ 1
2 ,j+ 1

2 ,k
= 1


x

(
An

i+1,j+ 1
2 ,k

− An

i,j+ 1
2 ,k

)

− 1


y

(
An

i+ 1
2 ,j+1,k

− An

i+ 1
2 ,j,k

)
. (13)

This z component of the magnetic field lives on the spacelike
face spanned by four vertices (n,i,j,k), (n,i + 1,j,k), (n,i +
1,j + 1,k), and (n,i,j + 1,k). Notice that the sign of the
discretized F is determined by the orientation of the face.
Since the above discretization respects geometric structures
of exterior calculus, the Bianchi identities, namely, ∇ · B = 0
and the Faraday’s law, are automatically and exactly satisfied
(Appendix A).

Using the discrete gauge-covariant derivatives and the
discrete field strength, the action can be discretized by

Sd =
∑

c


V Ld [φv,Ae], (14)

where φv and Ae are the discrete fields. Here the subscript v

denotes vertexes, and e denotes edges. In the discrete action,

V is the volume 4-form, and the summation runs over all
cells of the lattice. In each unit cell, the discrete Lagrangian
function

Ld = (Dμφ)e(Dμφ)e − m2φ̄vφv + 1
2

(
E2

f − B2
f

)
, (15)

where summations over unique e, v, and f are implied.
Here the subscript f denotes faces. Notice that in favor
of local energy conservation, we choose the noncompact
FμνF

μν instead of the standard Wilsonian plaquettes Re[1 −
exp(ieFμν
μ
ν)] for the gauge sector. The Wilsonian for-
mulation is numerically convenient, because it uses gauge
links Uν = exp(ieAν
ν) and thereby avoids computing ex-
ponentiations. However, this compact formulation introduces
an O(
2) local energy error, which can be eliminated using
our noncompact formulation, when the coupling goes to zero
(Appendix A). Since capturing long-time dynamics accurately
is what concerns real-time lattice simulations, we choose local
energy conservation over numerical convenience.

B. Equations of motion for discrete fields

Having discretized the action, the classical equation of
motion (EOM) for the discrete field φv can be obtained by
extremizing Sd . Taking variation with φ̄v and set δSd/δφ̄v = 0,
a discrete version of Eq. (1) is

1


t2

(
φn+1

s e−iq
tA
n+ 1

2
s − 2φn

s + φn−1
s eiq
tA

n− 1
2

s

)

= 1


2
l

(
φn

s+le
−iq
lA

n

s+ l
2 − 2φn

s + φn
s−le

iq
lA
n

s− l
2

)
− m2φn

s ,

(16)

where the time index is explicit, the vertex-centered spatial
index is abbreviated as s = (i,j,k), and summations over l =
i,j,k directions are implied. By taking variation with φv , we
can obtain the EOM for φ̄v , which is the complex conjugation
of the above equation. The finite difference equation (16) is
centered around vertexes and couples φv with its eight nearest
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FIG. 2. Coupling pattern of φv (blue squares), Ae (red circles),
and Ff (green crosses) in the tx submanifold. (a) The discretized
KG equation [Eq. (16)] couples φv with its nearest neighbors though
Ae. (b) The discretized Gauss’s law [Eq. (17)] couples Ei−1/2 and
Ei+1/2 through φv , centered around the common timelike edge. (c) The
Maxwell-Ampère’s law [Eq. (19)] couples En+1/2 to En−1/2 through
φv and Bn (not depicted here), centered around the common spacelike
edge. (d) The Lorenz gauge condition couples values of Ae that share
the same vertex.

neighbors though Ae, as illustrated by Fig. 2(a) in the tx

submanifold.
To find the equation for the electric field, take variation

of Sd with respect to the timelike component A
n+1/2
s . Setting

δSd/δA
n+1/2
s = 0, we obtain a discrete version of the Gauss’s

law, centered along timelike edges

1


l

(
E

n+ 1
2

s+ l
2

− E
n+ 1

2

s− l
2

)
= J n+1/2

s . (17)

The charge density 1-form J
n+1/2
s is the Hodge dual of the

charge density 3-form j0 = �j 0, discretized by

J n+1/2
s = iq


t

(
φ̄n+1

s eiq
tA
n+ 1

2
s φn

s − c.c.
)
. (18)

When there are multiple charged species, the right-hand side
(RHS) should sum over charge densities of all species. In
Fig. 2(b) we illustrate the coupling pattern of the above finite
difference equation.

To find the equations involving components of the magnetic
field, take variation of Sd with respect to the spacelike compo-
nents An

s+l/2. For example, by setting δSd/δA
n
i+1/2,j,k = 0, we

obtain an equation advancing Ei in time by

E
n+ 1

2

s+ i
2

− E
n− 1

2

s+ i
2


t
= εijk

Bn

r− k
2
− Bn

r− k
2 −j


j

+ J n

s+ i
2
. (19)

Here r = (i + 1/2,j + 1/2,k + 1/2) is the abbreviated index
for the body center, εijk is the Levi-Civita symbol, and sum-
mations over repeated indexes are implied. The current density
1-form J n

s+i/2 is the Hodge dual of the current density 3-form
ji = �j i . The Hodge dual gives rise to a negative sign, so that

FIG. 3. Time evolution scheme for discrete KGM equations using
the Lorenz gauge. As initial conditions, the values of φv(n = 0) and
φv(n = 1) are given (blue squares), and so are Ae(n = 0) and Ae(n =
1/2) (red circles). Then the Gauss’s law [Eq. (17)] is used to calculate
Ae(n = 1). On entering the time loop, the first step is to calculate
An+1/2 using the Lorenz gauge condition. The second step is to
use the KG equation [Eq. (16)] to calculate φn+1 and, concurrently,
use the Maxwell-Ampère’s law [Eq. (19)] to calculate An+1. The time
loop is advanced by n → n + 1 and then repeat.

the x component of the current density −jx is discretized by

J n

s+ l
2

= iq


l

(
φ̄n

s+le
iq
lA

n

s+ l
2 φn

s − c.c.
)
. (20)

The finite difference equation (19) is the discrete version
of the Maxwell-Ampère’s law ∂tEi = εijk∂jBk − j i centered
around spacelike edges, whose coupling pattern is illustrated in
Fig. 2(c). When computing the RHS, summation over charged
species is implied.

In order to advance the above finite difference equations in
time, we need to fix a gauge to eliminate the extra degree of
freedom. Since the discrete action Sd is U(1)-gauge invariant
(Appendix A), we can choose any gauge. For example, one
convenient choice is the Lorenz gauge ∂μAμ = 0. When
discretized, the Lorenz gauge condition allows time advance
A

n−1/2
s → A

n+1/2
s in a very simple way [Fig. 2(d), Eq. (B2)].

Another convenient choice is the temporal gauge A0 = 0.
When discretized, A

n+1/2
s remains zero on all timelike edges.

Having obtained discrete equations and fixed the gauge, an
explicit time advance scheme can be constructed (Appendix B,
Fig. 3). We first initialize the simulation by giving values of φn

s

at both n = 0 and n = 1 for every spatial lattice points s. This is
necessary because the KG equation [Eq. (1)] is a second-order
partial differential equation and therefore needs two initial
conditions. Similarly, we need to give initial values of Ae at
n = 0 and n = 1/2. Second, we use the discrete Gauss’s law to
calculate Ae at n = 1 by solving a system of linear equations
[Eq. (B1), Fig. 2(b)]. Notice that the continuous version of this
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equation can be written as ∂t∇ · A = −∇2A0 − ρ, where the
RHS is known. Because the unknowns on the left-hand side
(LHS) involve only first-order spatial derivative, the discrete
Gauss’s law couples less number of points than the discrete
Poisson’s equation and is therefore easier to solve. Third, we
use the Lorenz gauge condition to advance (An−1/2,An) →
An+1/2 [Eq. (B2), Fig. 2(d)]. Fourth, we use the discrete KG
equation to calculate φn+1 in terms of φn and φn−1 [Eq. (B3),
Fig. 2(a)]. This involves exponentiation of An and An+1/2,
whose values are already known at this step. Simultaneously,
we can compute An+1 in terms of Ae at previous time steps
[Eq. (B4), Fig. 2(c)], using the discrete Maxwell-Ampère’s
law. Notice that the discrete Gauss’s law is preserved during
time advance, which is a consequence of the discrete local
charge conservation law [Eq. (A8)]. Finally, having computed
both φv and Ae at t = n + 1, we can move forward in the time
loop by updating n → n + 1, with proper boundary conditions
supplied. In similar fashion, explicit time advance schemes can
be constructed when other gauge conditions are used.

III. NUMERICAL EXAMPLES

In this section, we demonstrate our numerical scheme using
two examples. The first example is the propagation of linear
waves, and the second example is laser-plasma interaction in
one spatial dimension.

A. Linear wave spectra

To test our code implementation, we compare numeri-
cal spectra with analytical linear wave dispersion relations
[39,40,44,45]. For small-amplitude waves, the dispersion
relation constrains the wave frequency ω as function of the
wave vector k. In unmagnetized cold scalar-QED plasma, the
tree-level dispersion relation of the transverse EM wave is

ω2 = ω2
p + k2, (21)

where ω2
p = ∑

ζ ω2
pζ is the total plasma frequency, and ω2

pζ =
q2

ζ nζ0/mζ is the plasma frequency of individual charged
species ζ . The other eigenmode is the longitudinal electrostatic
wave, whose dispersion relation is

1 + χp = 0, (22)

where the cold plasma susceptibility

χp =
∑

ζ

ω2
pζ

(
k2 − ω2 + 4m2

ζ

)
(ω2 − k2)2 − 4m2

ζω
2
. (23)

The dispersion relation of electrostatic wave contains three
branches. The gapless branch is the acoustic wave, the gapped
low-frequency branch is the Langmuir mode, and the gapped
high-frequency branch is the pair mode. While the acoustic
mode and Langmuir mode exist in classical plasmas, the pair
mode exists only in relativistic-quantum plasmas [46]. The pair
mode can be excited when gamma photons (ω > 2m) inelas-
tically scatter in high-density plasmas, creating longitudinal
oscillations in which virtual pairs are created and annihilated
to carry the wave quanta.

We compute the numerical spectra in a single-species
plasma, in which immobile ions serve as homogeneous neutral-

FIG. 4. Power spectra (color) of the transverse electric field Ey

(a) and the longitudinal electric field Ex (b) are well traced by
tree-level dispersion relations (black lines) up to the grid resolution.
The power spectra are averaged over an ensemble of 100 simulations
with statistically equivalent initial conditions. In these simulations,
immobile ion background is homogeneous. The charge q = 0.3,
such that the fine structure constant q2/4π ≈ 1/137 is physical. The
unperturbed background plasma density is extremely high, such that
the plasma frequency ωp = 0.85m can be shown on the same scale
as m. The resolution m
x = 0.04 and m
t = 0.02. The number of
spatial grid point is L = 512, and the total number of time steps,
including the initial conditions, is T = 1024. The dashed gray lines
are the light cone.

izing background. To initialize the simulation so that a broad
spectrum of linear waves are excited, the initial values of Ae are
given using small-amplitude white noise with mean μ(Ae) = 0
and standard deviation σ (Ae) = 10−4m. Assuming the charged
field is initially free, then its initial conditions can be given
using the free field expansion φ(x) = ∫

d3p[ap exp(−ipx) +
b
†
p exp(ipx)](2π )−3(2Ep)−1/2, where px = Ept − p · x is the

Minkowski inner product, and Ep =
√

p2 + m2 is the rela-
tivistic energy corresponding to momentum p. From the above
expansion, the momentum space distribution functions for
particles and antiparticles are fa(p) = a

†
pap and fb(p) = b

†
pbp,

respectively. Consider the simple example where the plasma
is initially homogeneous and constituted of cold particles,
namely, fa(p) = n0δ

(3)(p) and fb(p) = 0, where n0 is the
background plasma density. Then the free charged field φ(x) =√

n0/2m exp(−imt + iα), where α is some random phase.
When discretized, this free field corresponds to the initial
conditions φ0

v = √
n0/2m exp(iα) and φ1

v = φ0
s exp(−im
t).

An ensemble of statistically equivalent initial conditions can
then be constructed by randomly sample the phase α and the
gauge field.

After advancing the initial conditions in time using periodic
boundary conditions, numerical spectra can be read out from
simulations by taking discrete Fourier transforms of electric
field components. Since the unmagnetized plasma is isotropic,
it is sufficient to read out the dispersion relation in the tx

submanifold. In this submanifold, the spectra of either Ey or Ez

correspond to the dispersion relation of transverse EM modes,
and the spectrum of Ex corresponds to the dispersion relation
of longitudinal electrostatic modes. The ensemble-averaged
power spectrum of Ey [Fig. 4(a)] is indistinguishable from
that of Ez and is well traced by the analytical dispersion
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relation (black line) of the transverse EM wave [Eq. (21)],
until k
x ∼ 1 where the spatial resolution is no longer suf-
ficient. Similarly, the ensemble-averaged power spectrum of
Ex [Fig. 4(b)] is localized near three bands, corresponding
to the cold acoustic mode, the Langmuir mode and the pair
mode [Eq. (22)]. That the analytical dispersion relations are
recovered by numerical spectra indicates that our solutions
faithfully capture the propagation of linear waves up to the
grid resolution.

B. Laser-plasma interaction

Having verified our code implementation, let us study laser-
plasma interaction as another example, which can no longer be
described self-consistently under the classical framework once
the laser wavelength becomes too short or the field strength
becomes too large. For illustrative purposes only, as opposed
to suggesting a futuristic device, we use the example of gamma
lasers to show that our method now enables simulations in a
regime that was not accessible through previous methods.

Before discussing our simulations in the relativistic-
quantum regime, it is helpful to recall what happens in the
classical regime [47]. Classically, when the plasma slab is
underdense, namely, when the laser frequency ω > ωp, much
of the laser will travel through the plasma slab, with some
reflection and inverse Bremsstrahlung absorption. In an ini-
tially quiescent slab, the laser will propagate uneventfully, if its
frequency stays away from the two-plasmon-decay resonance,
and its intensity is not strong enough to grow instabilities
within the pulse duration. Beyond nonlinear wave instabilities,
when the laser field becomes relativistically strong, namely,
when a = qE/mω � 1, the ponderomotive force of a short
laser pulse can expel a significant fraction of plasma elec-
trons and form a wakefield [48]. The wakefield can then
accelerate particles, generating energetic beams of particles
and radiations trailing the laser pulse. When the beams are
energetic enough, they may produce gamma photons through
synchrotron radiation or Bremsstrahlung. The virtual gamma
photons may then decay into electron-positron pairs through
the trident process [49]. Alternatively, the on-shell gamma
photons may produce pairs when interacting with ion potentials
through the Bethe-Heitler process [50] or interacting with
other photons through the Breit-Wheeler process [51]. Finally,
when the laser field becomes even stronger, namely, when
qE/m2 � 1, pairs may also be produced directly through the
Schwinger process [52].

Many aspects of laser-plasma interaction can be studied
using our numerical scheme. Here, to validate that our code
can capture genuine relativistic-quantum effects, we select
parameters in our 1D simulations to demonstrate transition
from wakefield acceleration to Schwinger pair production as
we increase the laser intensity. Notice that in 1D, the phase
space is highly constrained. Using periodic boundary condi-
tions in directions transverse to laser propagation, Schwinger
pair production by laser fields is suppressed. This is because
when transverse fields try to pull e−/e+ pairs apart, their wave
functions are enforced to be the same by the periodic boundary
condition, which prevents pairs from emerging out of vacuum
fluctuations. Therefore, in 1D simulations, Schwinger pair
production requires a longitudinal field Ex . To generate Ex

beyond the Schwinger field Ec = m2/q through a wakefield,
the plasma density must be extremely high. Heuristically,
to produce on-shell pairs, the critical electric field needs
to separate the pair by Compton wavelength 1/m within
the Compton time T ∼ π/m, namely, qExT

2/m � 1/m. In
the wave-breaking regime, Ex � amωp/q, so the inequality
requires that the plasma density be high enough such that
the plasma frequency ωp/m � 1/aπ2. In reality, at those
densities, we should treat the electron Fermi degeneracy to
capture the full physical effects. However, simulating instead
a high-density bosonic plasma is just a toy model that tests our
code, with the density picked so high that we can already see
laser Schwinger pair production in 1D simulations.

With this basic understanding of how laser pair production
happen in 1D, we choose parameters to suppress the trident
and Bethe-Heitler processes, by treating ions as an immobile
homogeneous neutralizing background, so that there is no
spiky ion potentials from which energetic “electrons” and
gamma photons can scatter. The smooth ion background
provides an electrostatic potential that initially confines the
“electrons.” We initialize the charged boson wave function
according to φ(x) = √

n0(x)/2m exp(−imt), where n0(x) is
the background ion density with a plateau of width L ≈ 100/m

and Gaussian off-ramps with σ = 20/m. For density of the
bosonic plasma to be high enough to enable pair production,
we take n0 = m3 so that the plasma frequency ωp = 0.3m is
enormous. The above wave function is a linear superposition of
many eigenstates of the system. In our simulations, we let the
wave function evolve to statistically stationary states through
phase mixing, before we start to draw samples at random time
intervals. The sampled wave functions are then used as initial
conditions for φv , which are combined with initial values Ae

of a Gaussian pulse to construct an ensemble. The linearly
polarized Gaussian pulse is initialized in the vacuum region
with zero carrier phase Ay ∝ exp(−ξ 2/2τ 2) cos ωξ , where
ξ = x − t and τ = 20/m. For the laser to be able to transmit
the high-density plasma slab, we use a gamma-ray laser with
frequency ω0 = 0.7m, for which classical treatments are far
from valid. The laser envelope is slowly varying (ω0τ = 14)
and has full width at half maximum about twice the plasma
skin depth. When intense laser pulse propagates, it can excite
plasma waves, from which the laser can be Raman scattered.

With the above setup, the laser pulse simply travels through
the plasma with some refraction and reflections when the laser
field is weak (a 	 1). More interesting phenomena happen
when the laser field becomes strong. For example, when a ≈ 1
is relativistically strong but the resulting Ex ≈ 0.3Ec is below
the Schwinger field, our simulation recovers what happens in
classical plasmas [53–55]. First, let us look at what happens
to charged particles. After the laser enters the plasma, beams
of “electrons” are formed in the forward direction by both
ponderomotive snow-plow and laser wakefield acceleration. At
the same time, some “electrons” are splashed in the backward
direction from strongly driven plasma boundaries [Figs. 5(a)
and 5(c)]. Next, for the laser pulse, its center (solid black
lines) and half widths (dotted black lines) are well traced by
geometric optics in the xt space [Fig. 6(a)], as well as in the kt

space [Fig. 6(c), dashed white line], because the background
plasma is smooth on the laser wavelength scale. Beyond
geometric optics, as the laser travels through the plasma slab,
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FIG. 5. Charge density (a), (b) and energy density (c), (d) of the φ

field. When the gamma-ray laser (ω0 = 0.7m) is relativistic (a ≈ 1),
but not strong enough to produce Schwinger pairs (Ex ≈ 0.3Ec),
“electrons” are expelled by the laser ponderomotive force, accelerated
by the wakefield, and splashed from the plasma boundaries (a),
(c). On the other hand, when the laser field exceeds the Schwinger
threshold (a ≈ 16,Ex ≈ 5Ec), copious pairs are produced when the
laser interacts with plasma waves (b), (d). The spin-0 “electrons” are
initially confined by a smooth immobile neutralizing background,
with a density plateau n0 = m3 and a Gaussian off-ramp σ = 20/m.
The trajectories of the pulse center (black lines) and the pulse half
widths (dashed lines) are well traced by geometric optics. Both
the charge density (normalized by em3) and the energy density
(normalized by m4) are averaged over an ensemble of size 200. The
resolutions are such that m
x = 0.04 and m
t = 0.005.

FIG. 6. Total energy density of EM fields (a), (b), and the power
spectral density of its transverse components (c), (d). The inserts
show the initial (blue) and final (red) spectra of EM waves. When
a ≈ 1 (Ex ≈ 0.3Ec) is below the Schwinger field, the laser excites
plasma waves and is Raman scattered (a), (c). The time evolution
of the main pulse is well traced by geometric optics (dashed lines).
On the other hand, when the laser field a ≈ 16 (Ex ≈ 5Ec) is above
the Schwinger field, a noticeable amount of energy is lost due to pair
production (b), and the k spectrum is substantially broadened (d). The
field energy density is normalized by the Schwinger field E2

c and is
averaged over an ensemble of size 200. The resolutions are such that
m
x = 0.04 and m
t = 0.005. The dotted gray lines mark where
the geometric-optics trajectory of the pulse center crosses the plasma
plateau boundaries.

FIG. 7. Evolution of total charge (a) and total energy (b) in the
numerical example discussed in Sec. III B, where periodic boundary
conditions are used. The total charge remains constant up to machine
precision, both when E < Ec (cyan) and E > Ec (blue). When E <

Ec is below the Schwinger field, a small amount of energy is transfered
from the electromagnetic field (magenta) to the charged field (cyan)
due to wakefield acceleration and plasma wave excitation, while the
total energy (gray) remains constant. In contrast, when E > Ec, a
large amount of laser energy (red) is consumed by pair production.
The energy of the charged field (blue) significantly increases, while
the total energy (black) remains constant. The total charge Qn+1/2 =∑

s J n+1/2
s is normalized by the total ion charge, and the total energy

Un+1/2 = ∑
s Hn+1/2

s is normalized by m3/
x. The vertical dotted
gray lines mark the time when the laser pulse center enters and leaves
the plasma plateau boundaries.

ponderomotive expulsion of “electrons” causes the laser pulse
to adiabatically lose a small amount of energy in the form
of frequency redshift ω < ω0 [Figs. 6(a), 6(c), and 7(b)]. In
addition, the laser excites plasma waves, from which the laser
is Raman-scattered in both forward and backward directions. In
the insert of Fig. 6(c), the final spectrum (red) shows distinctive
Raman scattering peaks at ω + nωp up to n = 8, and second
harmonics peaks 2ω and 2ω + ωp in the forward direction. In
the backward direction, peaks at ω − ωp,ω,ω + ωp and 2ω

can also be identified unambiguously.
When we increase the laser field beyond the Schwinger

threshold (ac = m/ω). For example, when a ≈ 16 (Ex ≈
5Ec), a large number of e−–e+ pairs are produced [Figs. 5(b)
and 5(d)]. A very small fraction of pairs are produced and
trapped in the laser wakefield, forming low-luminosity “elec-
tron” (negative charge density, blue) and “positron” (positive
charge density, red) beams that leave the plasma slab from
its right boundary. On the other hand, a much larger fraction
of pairs are produced when the backscattered EM wave,
whose intensity is near the Schwinger threshold [Fig. 6(b)],
interacts with forward-propagating plasma waves. “Positrons”
produced in this way form high-luminosity collimated beams,
leaving the plasma slab from its left boundary. Apart from
these beams, many “positrons” never manage to leave the
plasma slab. These trapped “positrons” have large probabilities
to annihilate with “electrons” in the highly constrained 1D
phase space. Due to pair creation and particle acceleration, the
laser initially looses a significant amount of energy, until pair
creation and annihilation roughly balance [Figs. 6(b), 6(c), and
7(b)]. At that point, the k spectrum of the laser is substantially

053206-7



SHI, XIAO, QIN, AND FISCH PHYSICAL REVIEW E 97, 053206 (2018)

broadened [Fig. 6(d)]. Such a spectral broadening is expected
from general wave action considerations [56,57], which pre-
dict frequency up-shift due to pair creation, and frequency
down-shift due to pair annihilation and plasma expulsion.
In the insert of Fig. 6(d), the final EM wave spectrum (red)
shows distinctive annihilation bumps near integer multiples of
“electron” rest mass. These annihilation peaks are very broad
since “electrons” and “positrons” annihilate with large kinetic
energy. Finally, notice that no pair is produced when the laser
travels through the vacuum region, which is expected in one
dimension. It is remarkable that very rich physics can already
be captured by simply solving the classical field equations with
proper initial conditions.

To extract observables from simulations, the charge density
[Figs. 5(a) and 5(b)] is computed using Eq. (18), which
includes no contribution from background ions. Therefore,
negative charge (blue) indicates “electron” density in excess
of “positron” density, whereas positive charge (red) indi-
cates the contrary. The energy density of the charged field
[Figs. 5(c) and 5(d)] and the EM fields [Figs. 6(a) and 6(b)]
are computed using Eqs. (A12) and (A13), respectively. To
compute k spectra of EM waves [Figs. 6(c) and 6(d)], notice
that a monochromatic EM wave satisfies kxEy = ωBz. Upon
discretization, this relation remains exactly satisfied if we
take kx = sin(k
x)/
x and ω = 2 tan(ωk
t/2)/
t , where
ωk > 0 is the positive solution of the local numerical disper-
sion relation 4 sin2(ωk
t/2)/
t2 = 4 sin2(k
x/2)/
x2. In
the discrete version of kxEy = ωBz, it is necessary that we take
Ey = E

n+1/2
s+j/2 , and center Bz on timelike faces B

n+1/2
r−k/2−i/2 =

(Bn
r−k/2+Bn

r−k/2−i +Bn+1
r−k/2+Bn+1

r−k/2−i)/4. A similar relation
holds for the Ez and By components, which are subdominant
in our simulations. Using these momentum-space Faraday’s
law, the k spectrum of right-propagating EM waves (k > 0)
and left-propagating EM waves (k < 0) can be separated
from the spatial Fourier transforms of electric and magnetic
fields.

Results presented in Figs. 5–7 are averaged over an en-
semble of 200 simulations with statistically equivalent initial
conditions. The ensemble average starts to show convergence
for tens of realizations. In these simulations, temporal gauge
A0 = 0 is used, and periodic boundary conditions are em-
ployed for both φv and Ae. We choose resolutions mdx = 0.04
and mdt = 0.005, high enough so that the fastest dynamics is
resolved and the simulation results converge. The 1D box is
large enough such that the laser does not transit the spatial
domain before we terminate the simulations.

IV. DISCUSSION AND SUMMARY

In this paper, we develop an algorithm for solving the
Klein-Gordon-Maxwell’s equations [Eqs. (1) and (2)], which
can be used to model bosonic plasmas in the relativistic-
quantum regime. This algorithm is derived by first discretizing
the action [Eq. (14)] in a way that respects the U(1)-gauge
symmetry. We then take variations with respect to the discrete
fields to find their classical equations of motion. The resultant
variational algorithm guarantees that the Bianchi identities,
namely, ∇ · B = 0 and the Faraday’s law, are automatically
and exactly satisfied. The remaining equations of motions are

the discrete Gauss’s law [Eq. (17)], which can be used to
initialize the simulation; the discrete Klein-Gordon’s equation
[Eq. (16)], which can be used to advance the charged field;
and the discrete Maxwell-Ampère’s law [Eq. (19)], which can
be used to advance the gauge field. After fixing a gauge, an
explicit scheme for advancing the discrete fields in time can
be constructed (Appendix B, Fig. 3). Our variational scheme
respects local conservation laws (Appendix A) and can be
easily parallelized using domain decomposition. Moreover,
the numerical scheme we have developed can be inherently
mimicked by quantum systems with local couplings [58,59],
which can be efficiently realized using quantum parallelism
[60,61].

The numerical scheme we have developed has a number of
advantages over conventional methods for simulating plasmas.
As comparison, the two conventional methods that can fully
simulate kinetic effects are the particle-in-cell (PIC) solvers
and the Vlasov solvers. The PIC solvers represent particles
in the continuum while representing EM fields on grids.
Particles feel EM fields through interpolations, and EM fields
feel particles through depositions. Using proper smoothing
functions, these two steps can preserve gauge symmetry and
symplectic structures, and thereby respect local conservation
properties when used in geometrical algorithms [62–65].
Nevertheless, interpolation and deposition introduce artificial
collisions, which are absent in physical systems. In the other
scheme, the Vlasov solvers, EM fields are represented on the
three-dimensional space, while particles are represented in the
six-dimensional phase space. Particles are directly forced by
fields on spatial grids, while the fields feel particles though
velocity space integrals, which requires resolving three extra
dimensions with substantial computational cost. In contrast,
our algorithm represents both particles and EM fields on the
same grid. Therefore, there is no need for interpolations and
depositions as in the case of PIC solvers, nor is there need
for resolving extra velocity space dimensions as in the case of
Vlasov solvers. Our algorithm folds the phase space dynamics
of charged particles into the complex plane and enables
modeling of relativistic and quantum dynamics in regimes
where classical treatments are not applicable. In the example
of linear waves (Sec. III A), we show that relativistic-quantum
wave dispersion relations, including the pair mode, can be
recovered. Moreover, using the example of a gamma-ray laser
interacting with a dense plasma slab (Sec. III B), we show that
our algorithm naturally allows pair production when the laser
intensity exceeds the Schwinger threshold.

Of course, the advantages of our algorithm come at an
expense. The cost comes from the necessity of resolving
the relativistic-quantum scales, which can be much smaller
than scales that classical plasma physics typically deals with.
The coarsest resolution needed in relativistic quantum plasma
simulations is determined by the lowest energy scale of the
problem, which is the rest mass of electrons ∼0.5 MeV,
corresponding to a timescale of ∼10−21 s and spatial scale
of ∼10−12 m. This resolution requirement can be seen from
the discrete KG equation [Eq. (B3)], in which we must have
m
t 	 1 in order for δφv 	 φv . Moreover, since we are
solving a system of hyperbolic partial differential equations,
the Courant-Friedrichs-Lewy (CFL) condition 
t < 
x must
be satisfied. Finally, it is worth noting that high resolution is
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required for large gauge fields. Since the gauge field appears
through the Wilson’s lines in complex exponentials [Eqs. (10)
and (11)], the discrete theory is invariant under the gauge
transformation Ae → Ae + 2π/(q
). Therefore, the discrete
gauge field Ae lives on the torus T1,3, which has a very
different topology than R1,3. Therefore, the step size must
be small enough such that qA
 < 2π , in order to avoid
exciting topological modes that are absent in the continuous
theory.

These stringent resolution requirements make lattice plasma
simulations excessively expensive for some problems. For
example, to simulate ∼1 μm lasers interacting with plasmas,
at least ∼106 grid points are needed in each dimension. In
such cases where QED scales are well separated from clas-
sical plasma physics scales, schemes based on semiclassical
approximations may be more suitable. However, in other
plasma physics problems, the lack of scale separation renders
semiclassical approximations invalid. For example, to simulate
∼50 KeV free-electron lasers interacting with plasmas, the
Compton wavelength of electrons is only ∼1/10 of the laser
wavelength. In such cases where relativistic-quantum scales
overlap with plasma physics scales, real-time QED plasma
simulations are indispensable.

In summary, we develop a variational algorithm for solving
the Klein-Gordon-Maxwell equations, which describe tree-
level scalar QED in the classical-statistical regime, and may
be solved using quantum computers. We demonstrate that
remarkably rich physics is contained in solutions to classical
field equations, which can be used to model high-density
plasmas interacting with strong electromagnetic fields. Our
work uses scalar QED as a toy model to demonstrate that
real-time lattice QED is a powerful tool not only for vac-
uum effects, but also for plasma physics in the strong-field
regime.
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APPENDIX A: GEOMETRIC IDENTITIES AND LOCAL
CONSERVATION LAWS

When discretizing the gauge 1-form A and calculating the
curvature 2-form F = dA in Sec. II A, geometric structures
of discrete exterior calculus are respected. Consequently, the
identity d2 = 0 holds for the discrete exterior derivative. In
components, this Bianchi identity can be written as 0 = dF =
(∂σFμν + ∂μFνσ + ∂νFσμ)dxμ ∧ dxν ∧ dxσ /3!. One nontriv-
ial identity, corresponding to all indexes being spatial, is

∇ · B = 0. When discretized, this identity becomes

1


l

(
Bn

r+ l
2
− Bn

r− l
2

)
= 0. (A1)

The other nontrivial identity, corresponding to two spatial
indexes and one temporal index, is the Faraday’s law ∂tB =
−∇ × E, whose discrete version is

1


t

(
Bn+1

r− i
2
− Bn

r− i
2

) = εijk


k

(
E

n+ 1
2

s+ j

2 +k
− E

n+ 1
2

s+ j

2

)
. (A2)

The above finite difference equations are automatically satis-
fied in our algorithm by geometric constructions, in contrast
to standard elecromagnetic algorithms, such as the Yee’s
algorithm [43], in which the Faraday’s law needs to be solved
as a dynamical equation.

In addition to the above geometric identities, we also have a
number of local conservation laws. The first is local charge con-
servation, which is a direct consequence of local U(1)-gauge
symmetry. Under the continuous U(1)-gauge transformation,

φn
s → φn

s eiqαn
s , (A3)

A
n+ 1

2
s → A

n+ 1
2

s + 1


t

(
αn+1

s − αn
s

)
, (A4)

An

s+ l
2

→ An

s+ l
2
+ 1


l

(
αn

s+l − αn
s

)
, (A5)

where αn
s is any real-valued function living on vertexes. These

transformations leave the discrete face-centered field strength
tensor Ff invariant, while transforming the pull-back covariant
derivative by

(D<
μ φ)ns → eiqαn

s (D<
μ φ)ns . (A6)

Using the classical field equations δSd/δφv = 0, we have

δSd

δφn
s

δφn
s + c.c. = 0. (A7)

Substituting in the infinitesimal transformation δφn
s = iqαn

s φ
n
s ,

the above identity is equivalent to the discrete charge conser-
vation law:

1


t

(
J

n+ 1
2

s − J
n− 1

2
s

)
= 1


l

(
J n

s+ l
2
− J n

s− l
2

)
.

Here the charge density J
n+ 1

2
s is given by Eq. (18), and the

current density J n
s+l/2 is given by Eq. (20), and the sign is due

to the Minkowski metric. It is straightforward to check that
the above discrete charge conservation law is compatible with
the discrete Gauss’s law [Eq. (17)] and the discrete Maxwell-
Ampère’s law [Eq. (19)]. In the numeric example discussed in
Sec. III B, the total charge Qn+1/2 = ∑

i J
n+1/2
i is constant up

to the machine precision [Fig. 7(a)], both when the laser field
is below (Q<) and above (Q>) the Schwinger field.

Moreover, the discrete action Sd is invariant under trans-
lations on the discrete space-time manifold. Although the
symmetry group in this case is discrete and hence the Noether’s
theorem does not immediately apply, we do have local energy
conservation laws for the charged field and EM fields sepa-
rately when their coupling vanishes. Using the classical field
equations δSd/δφv = 0 and δSd/δA

n
s+l/2 = 0, as well as the
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Bianchi identity, we have the following identity:

0 = δSd

δφn
s

(D0φ)ns + δSd

δφ̄n
s

(D0φ)ns

+ δSd

δAn
s+l/2

1

2

(
E

n+1/2
s+l/2 + E

n−1/2
s+l/2

)

+Bn
r−l/2

1

2

[
(d2A)n+1/2

r−l/2 + (d2A)n−1/2
r−l/2

]
, (A8)

where the vertex-centered time covariant derivative

(D0φ)ns = e−iq
tA
n+ 1

2
s φn+1

s − eiq
tA
n− 1

2
s φn−1

s

2
t
. (A9)

After rearranging terms, the above identity gives rise to the
local energy conservation law

Hn+1/2
s −Hn−1/2

s


t
= Pn

s+l/2−Pn
s−l/2


l

+ O(q
2), (A10)

where the sign is again due to the Minkowski metric. The
energy density can be separated into three terms:

Hn+1/2
s = Hn+1/2

s [φ] + Hn+1/2
s [A] + hn+1/2

s , (A11)

where the energy density of the charged field is

Hn+ 1
2

s [φ] = 1
2

[
(D<

0 φ)
n+ 1

2
s (D<

0 φ)
n+ 1

2
s +m2φn

s eiq
tA
n+ 1

2
s φ̄n+1

s

+ (D<
l φ)n

s+ l
2
eiq
tA

n+ 1
2

s (D<
l φ)n+1

s+ l
2

]
+ c.c.,

(A12)

and the energy density of the EM fields is

Hn+ 1
2

s [A] = 1
2

[(
E

n+ 1
2

s+ l
2

)2
+ Bn+1

r− l
2
Bn

r− l
2

]
. (A13)

The energy density correction h = O(q
2) can take many
different forms, and each has a corresponding error term at
finite-resolution. As expected, the energy density is U(1)-
gauge invariant, and so is the momentum density, which can
be split into two terms:

Pn
s+l/2 = Pn

s+l/2[φ] + Pn
s+l/2[A]. (A14)

The momentum density of the charged field is

Pn

s+ l
2
[φ] = (D<

l φ)n
s+ l

2
e
iq
lA

n

s+ l
2 (D<

0 φ)ns+l + c.c., (A15)

and the momentum density of the EM fields Pi = −P i =
−(E × B)i is

Pn

s+ i
2
[A]= εijkB

n

r− j

2

1
2

(
E

n+ 1
2

s+i+ k
2
+E

n− 1
2

s+i+ k
2

)
. (A16)

Since the stress-energy tensor T μν is not a 2-form, neither the
energy density H nor the momentum density P is well defined
on the discrete space-time manifold. Hence, it can be shown,
by enumerating combinations of U(1)-gauge invariant basis
terms, that the resulting error in the local energy conservation
law [Eq. (A10)] is always second order, except when the
coupling q → 0, in which case the conservation law becomes
exact even at finite space-time resolutions. This remarkable
feature would be lost if we had used the Wilsonian plaquettes in
the discrete action instead. In examples discussed in Sec. III B,

the total energy Un+1/2 =∑
iH

n+1/2
i , whose error is of order

O(qn
t2), is redistributed among φ and A [Fig. 7(b)]. The
total energy fluctuates up to 6 ppm and 0.2% when the laser
wakefield is below (U<) and above (U>) the Schwinger field,
respectively.

APPENDIX B: NUMERICAL SCHEME

In this Appendix, we list the four equations that are
necessary for implementing the algorithm. We rewrite these
equations from Sec. II B, such that the explicit nature of our
scheme becomes apparent. The first step in the simulation is
initializing values of φ0

s ,φ
1
s ,A

0
s+l/2, and A

1/2
s for all spatial

indexes. This step is crucial and determines what physical
system will be evolved subsequently.

The second step is calculating A1
s+l/2 using the discrete

Gauss’s law [Eq. (17)], which can be rewritten as

A1
s+l/2 − A1

s−l/2


l

= A0
s+l/2 − A0

s−l/2


l

+ 
tJ 1/2
s

+ 
t


l2

(
A

1/2
s+l − 2A1/2

s + A
1/2
s−l

)
, (B1)

where all terms on the RHS are known. Since the LHS couples
only two adjacent A1

s+l/2 in each direction, the discrete Gauss’s
law is easier to solve than the Poisson’s equation, which
couples three nearest neighbors in each direction.

The third step is advancing the time component of the
gauge field (An−1/2

s ,An
s+l/2) → A

n+1/2
s . This step depends on

the choice of the gauge condition. For example, when the
Lorenz gauge is used,

An+1/2
s = An−1/2

s + Cl

(
An

s+l/2 − An
s−l/2

)
, (B2)

where Cl = 
t/
l is the dimensionless Courant number. In
comparison, when temporal gauge is used instead, An+1/2

s = 0
and the time advance is trivial. Using the temporal gauge, one
only needs to store values of Ae at integer time steps t = n.
However, when a background electric field is present, An

s+l/2
will grow indefinitely in the temporal gauge. In this case, long-
time dynamics may be more accurately computed using the
Lorenz gauge instead.

In the fourth step, we can use the discrete KG
equation [Eq. (16)] to time advance the charged field
(φn−1

s ,φn
s ; An

s+l/2,A
n±1/2
s ) → φn+1

s . The explicit time advance
is given by

φn+1
s =

[(
2 − 2C2

l − 
t2m2
)
φn

s − φn−1
s eiq
tA

n− 1
2

s

+C2
l

(
φn

s+le
−iq
lA

n

s+ l
2 + φn

s−le
iq
lA

n

s− l
2

)]
eiq
tA

n+ 1
2

s .

(B3)

For the free φ field, suppose the fluctuation is of the form
exp(iplx

l − iEt); then the numerical dispersion relation of the
massive particle is

4


t2
sin2 E
t

2
= 4


2
l

sin2 pl
l

2
+ m2,
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which is consistent with the continuum energy-momentum
relation E2 = p2 + m2 for relativistic particles. For the nu-
merical solution to be stable, E must be real, which holds
only if for each l = i,j,k, the CFL condition Cl < 1 is
satisfied.

Finally, without relying on the fourth step, we can use the
discrete Maxwell-Ampère’s law [Eq. (19)], concurrently with
the KG equation, to advance the spatial component of the gauge
field (An−1

s+l/2,A
n±1/2
s ,An

s+l/2; φn
s ) → An+1

s+l/2. The explicit time

advance is given by

An+1
s+ i

2
= An

s+ i
2
+ Ci

(
A

n+ 1
2

s+i − A
n+ 1

2
s

)
+ 
t2J n

s+ i
2

+
t
[
E

n− 1
2

s+ i
2

+ εijkCj

(
Bn

r− k
2
− Bn

r− k
2 −j

)]
, (B4)

where the RHS is known. For a free gauge field, it is straight-
forward to show that the numerical solution is stable if and
only if the CFL condition Cl < 1 is satisfied.
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