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High-temperature electronic structure with the Korringa-Kohn-Rostoker Green’s function method
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Modeling high-temperature (tens or hundreds of eV), dense plasmas is challenging due to the multitude of
non-negligible physical effects including significant partial ionization and multisite effects. These effects cause
the breakdown or intractability of common methods and approximations used at low temperatures, such as
pseudopotentials or plane-wave basis sets. Here we explore the Korringa-Kohn-Rostoker Green’s function method
at these high-temperature conditions. The method is all electron, does not rely on pseudopotentials, and uses a
spherical harmonic basis set, and so avoids the aforementioned limitations. It is found to be accurate for solid
density aluminum and iron plasmas when compared to a plane-wave method at low temperature, while being able
to access high temperatures.
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I. INTRODUCTION

Material properties at high temperatures such as equation
of state and opacity are used to model a diverse range of
physical phenomena such as inertial fusion experiments [1],
white dwarf stars [2], and main sequence stars [3]. Often
density functional theory based average atom models are used
to generate the data due to their computational efficiency
and reasonable physical fidelity [4–9]. Other higher fidelity
methods are available [10,11]; however, they have limitations
such as extreme computational expense or in which properties
can be calculated.

In this work we explore the possibility of using the KKR
(Korringa-Kohn-Rostoker) [12–15] Green’s function method
for equation of state at high temperatures. KKR has been shown
to be accurate for total energy calculations at normal conditions
[16] but has not yet, to our knowledge, been explored in
the literature for high-temperature materials (i.e., 104–106 K).
This study follows the exploratory work of Wilson et al. [17]
who first demonstrated the possibility of using this method for
high-temperature materials.

While average atom models have reasonable physical fi-
delity, one key piece of missing physics is multiple scattering.
In average atom models the boundary condition on the electron
wave functions is that they match the free-electron form at the
ion sphere. In practice this means that such models assume that
scattering electrons are asymptotically free, which is clearly
not true in dense materials, where electrons go on to scatter
multiple times. This lack of multiple scattering has a significant
effect on the calculated electronic structure and hence the
predicted material properties.

KKR does include multiple scattering; indeed, it is some-
times called multiple scattering theory [14,18]. The basic
idea is that space is partitioned into space-filling, nonover-
lapping polyhedra. Inside each polyhedron the “single-
site” problem is solved, which amounts to evaluating the
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Kohn-Sham density functional theory (DFT) equation for the
regular and irregular solutions and phase shifts. Then by taking
into account the differing frames of reference of each single-
site solution, the multisite Green’s function is constructed
[19]. From this Green’s function all the usual electronic
properties such as equation of state (EOS) and opacity can be
calculated [14].

Here we show that an average atom model is a special case
of KKR where multiple scattering has been ignored and the
polyhedra are approximated as spheres. We then focus on two
exploratory examples, fcc aluminum and bcc iron at high tem-
peratures. Our use of crystal structures, instead of a disordered
fluid structure is justified at this early stage of research in that
it is still an improvement over the average atom model, and is
useful because it allows us to test a key approximation, that of
multiple scattering basis set convergence. Also, such systems,
with hot thermal electrons and nuclei at or near their lattice
positions, are already of physical interest since they occur in
ultrafast heating experiments such as at the x-ray free-electron
laser facility at Linac Coherent Light Source [20].

A further simplification of the present implementation is
that we use the muffin-tin (MT) approximation. In essence this
assumes that, for calculating the Green’s function, the effective
one-electron potential is spherically symmetric inside each
polyhedron. This is unnecessary in the context of KKR [21],
but does simplify the implementation. Again this is justified at
this early stage of research because it allows us to assess the
effect of multiple scattering. It is worth noting that even though
the MT approximation is used, the electron density is not
spherically symmetric in the polyhedra because the multiple
scattering boundary condition breaks the symmetry.

The structure of this paper is as follows. In Sec. II we
outline the physical model that is being modeled and look at
basis set convergence for aluminum and iron plasmas. In .Sec.
III we show the results for EOS and density of states (DOS)
for these same aluminum and iron plasmas. We compare to a
commonly used average atom model as well as to state of the
art plane-wave DFT calculations. Finally, in Sec. IV we draw
our conclusions.
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II. PHYSICAL MODEL

We consider dense plasmas in which thermalized electrons
move in a background of nuclei that are fixed at their lattice
positions. The system is then periodic in the usual way. The
electron density ne(r) is found using finite-temperature density
functional theory [22]. The free-energy functional is

F [ne(r)] = F KS + F el + F xc, (1)

where F KS is the kinetic-entropic term

F KS = Uk − T S, (2)

Uk is the electron kinetic energy contribution to the internal
energy

Uk =
∫ ∞

−∞
dε f (ε,μ)χ (ε)ε −

∫
V

d3r V eff(r)ne(r), (3)

and S is the entropy

S = −kB

∫ ∞

−∞
dε χ (ε){f (ε,μ) ln[f (ε,μ)]

+ [1 − f (ε,μ)] ln[1 − f (ε,μ)]}. (4)

In these equations μ is the chemical potential found by
requiring the system volume V to be charge neutral, ε is the
energy, f (ε,μ) is the Fermi-Dirac occupation factor, χ (ε) is
the density of states per volume V , and T is the temperature.

F el is the electostatic free energy due to the Coulomb
interactions of the nuclei and electron density ne(r) with each
other and with themselves. F xc is the exchange and correlation
free energy for which we use the temperature independent
Perdew-Zunger form [23].

Requiring F to be at a minimum with respect to variations
in ne(r) subject to charge neutrality leads to the effective one-
electron potential

V eff(r) = V el(r) + V xc(r), (5)

where V xc(r) is the exchange-correlation potential and the
electrostatic potential is

V el(r) =
∑

i

−Zi

|r − Ri | +
∫

d3r
ne(r ′)

|r − r ′| , (6)

where Zi is the nuclear charge of nucleus i.
This is a self-consistent field problem. The solution proce-

dure is as follows:
(1) Input nuclear charges and positions, choose electron-

exchange and correlation potential, create initial guess at ne(r).
(2) Solve Poisson equation for electrostatic potential V el(r).
(3) Calculate total effective potential V eff(r).
(4) Solve for an electron density in the presence of V eff(r).
(5) Mix input and output electron densities to get new input

guess and repeat steps (2)–(5) until input and output densities
are the same to within numerical tolerance.

An example of ne(r) for bcc iron at solid density and a
temperature of 10 eV is given in the top panel of Fig. 1.
The figure demonstrates the electron density is very strongly
peaked near the nuclei, due to the occupation of bound (or core)
states. To solve the Poisson equation a number of options are
available [24–27]. We have opted for the method presented
in Ref. [28] which uses fast-Fourier transforms to solve the

FIG. 1. Top panel: a 2D slice of the 3D electron density ne(r)
for bcc iron at solid density and a temperature of 10 eV. Notice
the logarithmic color bar. The electron density is very strongly
concentrated at the nuclear position. Bottom panel: the difference
�ne between ne(r) and the superposition density nsuper

e (r) that must
be Fourier transformed to solve the Poisson equation.

Poisson equation. This method is suitable for relatively small
systems, with perhaps up to a few hundred unique nuclei
only. It works by splitting the electron density into a sum
of spherically symmetric electron densities placed at each
nuclear site nsuper

e (r) = ∑
i n

PA
e,i (r) and a correction, �ne(r) =

ne(r) − nsuper
e (r). The Poisson equation is then solved by using

a uniform three-dimensional (3D) spatial grid to represent
�ne, while the potential due to the spherically symmetric
quantities is solved for easily using a well-known method [28].
An example of the correction density is shown in the bottom
panel of Fig. 1.

To carry out spatial integrals like that in Eq. (3) we have
used the method presented in [29].

To generate a new guess at ne(r) we use the fifth-order
extended Anderson’s method due to Eyert [30,31]. This is
closely related to Broyden’s method [32,33] and typically
converges in less than ten iterations.

All that remains is a method to solve for the electron density.
This is where KKR is used.

A. KKR for the electron density

The electron density ne(r) is expressed in terms of the
Green’s function G(r ′,r,ε),

ne(r) = − 1

π
Im

∫ ∞

−∞
dε f (ε,μ)TrG(r,r,ε), (7)
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FIG. 2. Voronoi decomposition of space around each nuclei here
for a bcc crystal. In KKR the Schrödinger equation is solved inside
each polyhedron. These solutions together with the positions of the
nuclei are then used to construct the Green’s function for the entire
system, from which the electron density and other material properties
are calculated.

where the integral is over energy, and nonrelativistically the
trace amounts to a factor of 2 that accounts for the spin
degeneracy. In KKR, the Green’s function is constructed by
first partitioning space into nonoverlapping polyhedra. For ma-
terials with only one type of nucleus we use a Voronoi decom-
position (see Fig. 2). Inside each polyhedron the Schrödinger
equation (or Kohn-Sham equation in DFT) is solved using a
spherical harmonic Ylm(r̂) basis set, resulting in a set of regular
Rl(ε,r) and irregular Hl(ε,r) wave functions [34]. These wave
functions are normalized so that they match the free-electron
behavior at the cell boundaries. This also gives the T matrix
t(ε) that is familiar from scattering physics, and is related to the
scattering phase shifts. The T matrix is a matrix in l and m and
has size (lmax + 1)2 × (lmax + 1)2, where lmax is the maximum
value of l included in the basis set expansion. A super T matrix
is constructed for the N particles in the supercell t = {tnn′

δnn′ }
where n = 1, . . . ,N labels the nucleus [27].

The positions of the nuclei and the periodic nature of the
supercell are then encoded in the so-called structure constants
matrix G0(ε,k) that accounts for the different origins of the
basis sets. G0 and t are combined in the structural Green’s
function matrix G(ε) [27,35,36]. The trace of the Green’s
function is then written

Tr G(r,r,ε) = Gss(r,r,ε) + Gms(r,r,ε), (8)

where the single-site part is

Gss(r,r,ε) = −2mı
√

2mε

lmax∑
l=0

2(2l + 1)

4π
Rl(ε,r)Hl(ε,r ′),

(9)

with the symbol ı being the imaginary number, and the
multisite part is

Gms(r,r,ε) = 2m

lmax∑
l=0

lmax∑
l′=0

l∑
m=−l

l′∑
m′=−l′

Gnn
lml′m′ (ε)

×Rl(ε,r)Rl′(ε,r)Ylm(r̂)Y ∗
l′m′ (r̂), (10)

where we have limited ourselves to the local (i.e., r = r ′)
expression and we have assumed that the scattering potential
inside each polyhedron is spherically symmetric. This assump-
tion is an approximation that simplifies the numerics but is not
formally, or even practically, necessary [21]. To enforce the
spherical symmetry we use the common MT approximation.
In practice this is done by defining a MT sphere for each
polyhedron, which is the largest sphere that completely fits
into the polyhedron. Inside the spheres the potential V eff(r)
is spherically averaged. Outside the spheres, in the so-called
interstitial region, V eff(r) is replaced with its average value
V̄ MT. The total MT potential is then shifted by V̄ MT [27]. The
Schrödinger equation is then solved for this potential.

This is the only place the MT potential is used, i.e.,
to generate the Green’s function. It is not (directly) used,
for example, when calculating the equation of state which
explicitly depends on the potential V eff(r).

It is interesting to note that the single-site and multisite con-
tributions to the Green’s function are fully separable [Eq. (8)].
Making the approximation that the multisite contributions to
the Green’s function and Poisson equation can be neglected,
and approximating the polyhedra as spheres with volume
equal to the average volume per atom, we are left with an
average atom model [4,34,37]. Such average atom models are
widely used for equation of state tables. This derivation brings
insight into the approximations and missing physics inherent
in average atom models.

The density of states χ (ε), appearing in Eq. (3), is simple
related to the Green’s function

χ (ε) = − 1

Nπ
Im

∫
V

d3r TrG(r,r,ε), (11)

where there are N nuclei in the volume V . The pressure is
given by the virial expression

P = 1

V

[T + F el

3

]
+ P xc (12)

with

Pxc = 1

V

[
−F xc +

∫
V

d3r ne(r)V xc(r)

]
(13)

and T is

T = 2
∫ ∞

−∞
dε f (ε,μ)χ (ε)ε − 2

∫
V

d3r V eff(r)ne(r). (14)

The internal energy U is

U = F el + U xc + Uk, (15)

where U xc is the exchange and correlation internal energy.

B. Basis set truncation

A key question of the method is that of the choice of lmax.
Since the matrix that has to be inverted has size N (lmax + 1)2

[38], it is clearly in our interest to keep lmax as small as possible.
To achieve this we treat lmax for Gss and Gms separately. lmax

for Gss can be numerically converged automatically by the
code using a common trick employed in average atom models
[39,40]. lmax for Gms determines the size of the matrix to be
inverted and can be converged separately through convergence
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FIG. 3. Convergence of changes in pressure �P and internal
energy �U as a function of the truncation of the l summation for
Gms, for fcc aluminum.

testing. One can expect lmax for Gms to converge at much
smaller values than that for Gss which for high-temperature
cases can need lmax > 100. The reason for this is that elec-
trons in states characterized by large values of l also have
higher energies, and therefore behave more like free electrons.
Since the T -matrix elements for free electrons are zero, so
is Gms.

To test this expectation, Figs. 3 and 4 show convergence of
the EOS for fcc aluminum and bcc iron, respectively. lmax in
the figures is that used for Gms only; that for Gss is converged
automatically by the code. lmax = −1 is used to represent the
case where Gms = 0. For both cases we consider electrons with
temperatures of 1, 10, and 50 eV. For all cases the pressure and
internal energies are well converged by lmax = 8. Note that we
have plotted absolute changes in pressure and energy, i.e.,

�P = P (lmax) − P (lmax = lcon), (16)

�U = U (lmax) − U (lmax = lcon), (17)

where lcon = 8 for Al and 12 for Fe. Relative changes would
show a relatively small influence of multiple scattering on EOS
as temperature is increased (also see Figs. 7 and 8).

Another interesting feature of these plots is that for iron
at 1 eV there is a “spike” in the EOS changes for lmax = 2,
and rapid convergence thereafter. This is due to capturing the
3d valence band feature in the multiple scattering treatment.
This 3d feature is expected to be particularity important at
low temperatures, and less so at high temperatures (see later,
Fig. 6).
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FIG. 4. Convergence of changes in pressure �P and internal
energy �U as a function of the truncation of the l summation for
Gms, for bcc iron.

III. EQUATION OF STATE AND DENSITY OF STATES

In Figs. 5 and 6 we plot the density of states for fcc
aluminum and bcc iron, respectively. Compared are the DOS
from KKR and that from the average atom code TARTARUS
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FIG. 5. Density of states for fcc aluminum at 2.7 g/cm3.
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FIG. 6. Density of states for bcc iron at 7.894 g/cm3.

[40]. Firstly, we note that “noisy” KKR curves are due to
the fact that for real energies the KKR DOS is a series of
Dirac delta functions at the eigenvalues of the system. What
we actually plot is the real part of the DOS parallel to the
real energy axis, with an imaginary part of the energy equal to
0.01Eh. This effectively broadens the DOS by convolving it
with a Lorentzian with a width equal to this imaginary part of
the energy [41]. Such noise can also be caused by insufficient
k-point sampling. We have converged the shown DOS so that
any larger scale features are actual predictions of the model.

Generally speaking, there is a very good level of agreement
between the KKR and average atom results. For aluminum
at 1 eV the most significant difference is near-zero energy
where the KKR DOS extends to roughly −0.1Eh, while the
average atom goes to zero at zero energy, as it must. In the
average atom model the only states that can appear at negative
energies are discrete bound states, whose DOS are Dirac delta
functions at the eigenenergy. Clearly KKR does not have this
restriction and the DOS looks much more free-electron like.
Such differences will show up in spectroscopic quantities like
opacity. For aluminum at 10 eV one significant difference is
a dip in the KKR DOS at 1–1.5Eh in contrast to a very weak
dip in the average atom result. At 50 eV for aluminum the
KKR DOS displays structure at small energies that is quite
different to that displayed by the average atom. Clearly the
more realistic treatment of ionic structure and nonspherical
symmetry in KKR are the cause of these differences.

For iron, Fig. 6, the differences are even more pronounced.
At 1 eV the large 3d resonance feature in the average atom
curve is broadened and reduced in height in KKR. For 10 eV a
similar result is seen. By 50 eV the 3d state has recombined and
is no longer visible on this scale. The average atom DOS has
a large spike at small positive energy associated with a nearly
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FIG. 7. Equation of state of fcc aluminum at solid density.

recombined s state. This is completely missing from the KKR
DOS which is very free-electron like.

In summary, there is a good level of general agreement
between KKR and the average atom but significant differences
in details caused by the more realistic treatment of ion structure
and nonspherical symmetry in the KKR model.
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FIG. 8. Equation of state of bcc iron at solid density.
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In Figs. 7 and 8 EOS from the KKR model is compared
to both average atom results and, at low temperatures, to
the plane-wave DFT code QUANTUM ESPRESSO [42,43] (QE).
The QE calculations use pseudopotentials but are thought
to be accurate at relatively low temperatures (up to 10 eV
here). Moreover, such plane-wave-type calculations become
prohibitively expensive as temperature increases. KKR on the
other hand can easily access high temperatures (up to 100 eV
here) without significant scaling. Although the calculation of
Gss does scale with temperature, the prefactor is small and is
not significant for any of the results presented here. Due to the
cutoff of lmax for Gms, its computational cost does not increase
with temperature, hence the quasitemperature independence of
the overall computational cost of the method.

In Fig. 7 we see very good agreement between the QE
and KKR results for both pressure and internal energy, and
for higher temperatures, very good agreement between the
average atom results and KKR. This is a key result: KKR is
accurate at both low and high temperature while remaining
computationally feasible. In Fig. 8, for iron, similar trends are
observed. Now, however, there are some relatively small dif-
ferences between the KKR and QE results, presumably due to
the muffin-tin approximation that we have used. Nevertheless,
there is a clear and substantial improvement over the average
atom, particularly for pressure.

IV. CONCLUSION

The KKR method has been explored for use in dense
plasmas. It was found that the method is accurate for equation

of state when compared to other state of the art methods at
low temperature, while being able to access high-temperature,
partially degenerate, plasma states without prohibitive com-
putational cost. As such, it offers a promising capability to
provide high physical fidelity modeling of warm and hot dense
plasmas.

It was also shown that the commonly used average atom
model is a special case of the KKR method, where multiple
scattering has been ignored and the polyhedra around each
nucleus approximated by spheres.

Our relatively crude implementation of the method does not
exploit many of the numerous methodological and numerical
improvements that have been presented over its long history in
solid-state physics. For example, we have used the obsolete
muffin-tin approximation due to its relative simplicity to
implement. This approximation is unnecessary [21], but is
adequate for the present purposes. Also, we have used a
nonrelativistic implementation, but relativity in the form of
the Dirac equation is possible [27]. Also, the method can be
made to scale linearly with the number of particles [44]. In
summary, this method offers much promise to improve our
understanding of warm and hot dense plasmas.

ACKNOWLEDGMENTS

The author thanks T. Sjostrom for doing the QUANTUM

ESPRESSO calculations for this work. This work was performed
under the auspices of the United States Department of Energy
under Contract No. DE-AC52-06NA25396.

[1] S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D.
Salmonson, B. A. Hammel, L. J. Atherton, R. C. Cook, M.
J. Edwards, S. Glenzer et al., Point design targets, speci-
fications, and requirements for the 2010 ignition campaign
on the national ignition facility, Phys. Plasmas 18, 051001
(2011).

[2] G. Fontaine, P. Brassard, and P. Bergeron, The potential of
white dwarf cosmochronology, Publ. Astron. Soc. Pac. 113, 409
(2001).

[3] J. E. Bailey, T. Nagayama, G. P. Loisel, G. A. Rochau, C.
Blancard, J. Colgan, Ph. Cosse, G. Faussurier, C. J. Fontes, F.
Gilleron et al., A higher-than-predicted measurement of iron
opacity at solar interior temperatures, Nature (London) 517, 56
(2015).

[4] B. Wilson, V. Sonnad, P. Sterne, and W. Isaacs, Purgatorio—
A new implementation of the inferno algorithm, J. Quant.
Spectrosc. Radiat. Transfer 99, 658 (2006).

[5] R. Piron and T. Blenski, Variational-average-atom-in-quantum-
plasmas (VAAQP) code and virial theorem: Equation-of-state
and Shock-Hugoniot calculations for warm dense Al, Fe, Cu,
and Pb, Phys. Rev. E 83, 026403 (2011).

[6] G. Faussurier, C. Blancard, P. Cossé, and P. Renaudin, Equation
of state, transport coefficients, and stopping power of dense
plasmas from the average-atom model self-consistent approach
for astrophysical and laboratory plasmas, Phys. Plasmas 17,
052707 (2010).

[7] C. E. Starrett and D. Saumon, Electronic and ionic structures of
warm and hot dense matter, Phys. Rev. E 87, 013104 (2013).

[8] F. Perrot and M. W. C. Dharma-wardana, Electrical resistivity
of hot dense plasmas, Phys. Rev. A 36, 238 (1987).

[9] A. A. Ovechkin, P. A. Loboda, and A. L. Falkov, Transport and
dielectric properties of dense ionized matter from the average-
atom RESEOS model, High Energy Density Phys. 20, 38 (2016).

[10] B. Militzer and K. P. Driver, Development of Path Integral Monte
Carlo Simulations with Localized Nodal Surfaces for Second-
Row Elements, Phys. Rev. Lett. 115, 176403 (2015).

[11] S. Hamel, L. X. Benedict, P. M. Celliers, M. A. Barrios, T. R.
Boehly, G. W. Collins, T. Döppner, J. H. Eggert, D. R. Farley,
D. G. Hicks, J. L. Kline, A. Lazicki, S. LePape, A. J. Mackinnon,
J. D. Moody, H. F. Robey, E. Schwegler, and P. A. Sterne,
Equation of state of CH1.36: First-principles molecular dynamics
simulations and shock-and-release wave speed measurements,
Phys. Rev. B 86, 094113 (2012).

[12] J. Korringa, On the calculation of the energy of a Bloch wave in
a metal, Physica 13, 392 (1947).

[13] W. Kohn and N. Rostoker, Solution of the Schrödinger equation
in periodic lattices with an application to metallic lithium, Phys.
Rev. 94, 1111 (1954).

[14] H. Ebert, D. Koedderitzsch, and J. Minar, Calculating condensed
matter properties using the KKR-Green’s function method—
Recent developments and applications, Rep. Prog. Phys. 74,
096501 (2011).

053205-6

https://doi.org/10.1063/1.3592169
https://doi.org/10.1063/1.3592169
https://doi.org/10.1063/1.3592169
https://doi.org/10.1063/1.3592169
https://doi.org/10.1086/319535
https://doi.org/10.1086/319535
https://doi.org/10.1086/319535
https://doi.org/10.1086/319535
https://doi.org/10.1038/nature14048
https://doi.org/10.1038/nature14048
https://doi.org/10.1038/nature14048
https://doi.org/10.1038/nature14048
https://doi.org/10.1016/j.jqsrt.2005.05.053
https://doi.org/10.1016/j.jqsrt.2005.05.053
https://doi.org/10.1016/j.jqsrt.2005.05.053
https://doi.org/10.1016/j.jqsrt.2005.05.053
https://doi.org/10.1103/PhysRevE.83.026403
https://doi.org/10.1103/PhysRevE.83.026403
https://doi.org/10.1103/PhysRevE.83.026403
https://doi.org/10.1103/PhysRevE.83.026403
https://doi.org/10.1063/1.3420276
https://doi.org/10.1063/1.3420276
https://doi.org/10.1063/1.3420276
https://doi.org/10.1063/1.3420276
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevA.36.238
https://doi.org/10.1103/PhysRevA.36.238
https://doi.org/10.1103/PhysRevA.36.238
https://doi.org/10.1103/PhysRevA.36.238
https://doi.org/10.1016/j.hedp.2016.08.002
https://doi.org/10.1016/j.hedp.2016.08.002
https://doi.org/10.1016/j.hedp.2016.08.002
https://doi.org/10.1016/j.hedp.2016.08.002
https://doi.org/10.1103/PhysRevLett.115.176403
https://doi.org/10.1103/PhysRevLett.115.176403
https://doi.org/10.1103/PhysRevLett.115.176403
https://doi.org/10.1103/PhysRevLett.115.176403
https://doi.org/10.1103/PhysRevB.86.094113
https://doi.org/10.1103/PhysRevB.86.094113
https://doi.org/10.1103/PhysRevB.86.094113
https://doi.org/10.1103/PhysRevB.86.094113
https://doi.org/10.1016/0031-8914(47)90013-X
https://doi.org/10.1016/0031-8914(47)90013-X
https://doi.org/10.1016/0031-8914(47)90013-X
https://doi.org/10.1016/0031-8914(47)90013-X
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1088/0034-4885/74/9/096501
https://doi.org/10.1088/0034-4885/74/9/096501
https://doi.org/10.1088/0034-4885/74/9/096501
https://doi.org/10.1088/0034-4885/74/9/096501


HIGH-TEMPERATURE ELECTRONIC STRUCTURE WITH … PHYSICAL REVIEW E 97, 053205 (2018)

[15] N. Papanikolaou, R. Zeller, and P. H. Dederichs, Conceptual
improvements of the KKR method, J. Phys.: Condens. Matter
14, 2799 (2002).

[16] R. Zeller, M. Asato, T. Hoshino, J. Zabloudil, P. Weinberger, and
P. H. Dederichs, Total-energy calculations with the full-potential
KKR method, Philos. Mag. B 78, 417 (1998).

[17] B. G. Wilson, D. D. Johnson, and A. Alam, Multi-center
electronic structure calculations for plasma equation of state,
High Energy Density Phys. 7, 61 (2011).

[18] J. S. Faulkner, Multiple-scattering approach to band theory,
Phys. Rev. B 19, 6186 (1979).

[19] F. S. Ham and B. Segall, Energy bands in periodic lattices—
Green’s function method, Phys. Rev. 124, 1786 (1961).

[20] S. M. Vinko, O. Ciricosta, B. I. Cho, K. Engelhorn, H.-K. Chung,
C. R. D. Brown, T. Burian, J. Chalupský, R. W. Falcone, C.
Graves et al., Creation and diagnosis of a solid-density plasma
with an x-ray free-electron laser, Nature (London) 482, 59
(2012).

[21] J. Zabloudil, The full-potential screened KKR method, Ph.D.
thesis, Technical University, Vienna, 2000.

[22] N. David Mermin, Thermal properties of the inhomogeneous
electron gas, Phys. Rev. 137, A1441 (1965).

[23] J. P. Perdew and A. Zunger, Self-interaction correction to
density-functional approximations for many-electron systems,
Phys. Rev. B 23, 5048 (1981).

[24] A. Alam, B. G. Wilson, and D. D. Johnson, Accurate and fast
numerical solution of Poisson’s equation for arbitrary, space-
filling Voronoi polyhedra: Near-field corrections revisited, Phys.
Rev. B 84, 205106 (2011).

[25] A. Gonis, E. C. Sowa, and P. A. Sterne, Exact Treatment of
Poisson’s Equation in Solids with Space-Filling Cells, Phys. Rev.
Lett. 66, 2207 (1991).

[26] L. Vitos and J. Kollár, Optimized l-convergency in the solution
of Poisson’s equation with space-filling cells, Phys. Rev. B 51,
4074 (1995).

[27] J. Zabloudil, R. Hammerling, L. Szunyogh, and P. Weinberger,
Electron Scattering in Solid Matter: A Theoretical and Compu-
tational Treatise (Springer Science & Business Media, Berlin,
2006), Vol. 147.

[28] C. E. Starrett, Thomas-Fermi simulations of dense plasmas
without pseudopotentials, Phys. Rev. E 96, 013206 (2017).

[29] A. Alam, S. N. Khan, B. G. Wilson, and D. D. Johnson, Efficient
isoparametric integration over arbitrary space-filling Voronoi
polyhedra for electronic structure calculations, Phys. Rev. B 84,
045105 (2011).

[30] V. Eyert, A comparative study on methods for convergence
acceleration of iterative vector sequences, J. Comput. Phys. 124,
271 (1996).

[31] D. G. Anderson, Iterative procedures for nonlinear integral
equations, J. ACM 12, 547 (1965).

[32] C. G. Broyden, A class of methods for solving nonlinear
simultaneous equations, Math. Comput. 19, 577 (1965).

[33] D. D. Johnson, Modified Broyden’s method for accelerating
convergence in self-consistent calculations, Phys. Rev. B 38,
12807 (1988).

[34] C. E. Starrett, A Green’s function quantum average atom model,
High Energy Density Phys. 16, 18 (2015).

[35] H. L. Davis, Efficient numerical techniques for the calculation of
KKR structure constants, Computational Mmbt (Springer, New
York, 1971), pp. 183–199.

[36] B. Segall, Calculation of the band structure of “complex”
crystals, Phys. Rev. 105, 108 (1957).

[37] D. A. Liberman, Self-consistent field model for condensed
matter, Phys. Rev. B 20, 4981 (1979).

[38] A. Thiess, R. Zeller, M. Bolten, P. H. Dederichs, and S. Blügel,
Massively parallel density functional calculations for thousands
of atoms: KKRnano, Phys. Rev. B 85, 235103 (2012).

[39] T. Blenski and K. Ishikawa, Pressure ionization in the spherical
ion-cell model of dense plasmas and a pressure formula in the
relativistic Pauli approximation, Phys. Rev. E 51, 4869 (1995).

[40] N. M. Gill and C. E. Starrett, Tartarus: A relativistic Green’s
function quantum average atom code, High Energy Density
Phys. 24, 33 (2017).

[41] D. D. Johnson, F. J. Pinski, and G. M. Stocks, Fast method
for calculating the self-consistent electronic structure of random
alloys, Phys. Rev. B 30, 5508 (1984).

[42] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo
et al., Quantum espresso: A modular and open-source software
project for quantum simulations of materials, J. Phys.: Condens.
Matter 21, 395502 (2009).

[43] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M.
Cococcioni et al., Advanced capabilities for materials modelling
with Quantum ESPRESSO, J. Phys.: Condens. Matter 29,
465901 (2017).

[44] R. Zeller, Linear scaling for metallic systems by the
Korringa-Kohn-Rostoker multiple-scattering method, Linear-
scaling Techniques in Computational Chemistry and Physics
(Springer, New York, 2011), pp. 475–505.

053205-7

https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1080/13642819808206739
https://doi.org/10.1080/13642819808206739
https://doi.org/10.1080/13642819808206739
https://doi.org/10.1080/13642819808206739
https://doi.org/10.1016/j.hedp.2011.01.002
https://doi.org/10.1016/j.hedp.2011.01.002
https://doi.org/10.1016/j.hedp.2011.01.002
https://doi.org/10.1016/j.hedp.2011.01.002
https://doi.org/10.1103/PhysRevB.19.6186
https://doi.org/10.1103/PhysRevB.19.6186
https://doi.org/10.1103/PhysRevB.19.6186
https://doi.org/10.1103/PhysRevB.19.6186
https://doi.org/10.1103/PhysRev.124.1786
https://doi.org/10.1103/PhysRev.124.1786
https://doi.org/10.1103/PhysRev.124.1786
https://doi.org/10.1103/PhysRev.124.1786
https://doi.org/10.1038/nature10746
https://doi.org/10.1038/nature10746
https://doi.org/10.1038/nature10746
https://doi.org/10.1038/nature10746
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.84.205106
https://doi.org/10.1103/PhysRevB.84.205106
https://doi.org/10.1103/PhysRevB.84.205106
https://doi.org/10.1103/PhysRevB.84.205106
https://doi.org/10.1103/PhysRevLett.66.2207
https://doi.org/10.1103/PhysRevLett.66.2207
https://doi.org/10.1103/PhysRevLett.66.2207
https://doi.org/10.1103/PhysRevLett.66.2207
https://doi.org/10.1103/PhysRevB.51.4074
https://doi.org/10.1103/PhysRevB.51.4074
https://doi.org/10.1103/PhysRevB.51.4074
https://doi.org/10.1103/PhysRevB.51.4074
https://doi.org/10.1103/PhysRevE.96.013206
https://doi.org/10.1103/PhysRevE.96.013206
https://doi.org/10.1103/PhysRevE.96.013206
https://doi.org/10.1103/PhysRevE.96.013206
https://doi.org/10.1103/PhysRevB.84.045105
https://doi.org/10.1103/PhysRevB.84.045105
https://doi.org/10.1103/PhysRevB.84.045105
https://doi.org/10.1103/PhysRevB.84.045105
https://doi.org/10.1006/jcph.1996.0059
https://doi.org/10.1006/jcph.1996.0059
https://doi.org/10.1006/jcph.1996.0059
https://doi.org/10.1006/jcph.1996.0059
https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://doi.org/10.1090/S0025-5718-1965-0198670-6
https://doi.org/10.1090/S0025-5718-1965-0198670-6
https://doi.org/10.1090/S0025-5718-1965-0198670-6
https://doi.org/10.1090/S0025-5718-1965-0198670-6
https://doi.org/10.1103/PhysRevB.38.12807
https://doi.org/10.1103/PhysRevB.38.12807
https://doi.org/10.1103/PhysRevB.38.12807
https://doi.org/10.1103/PhysRevB.38.12807
https://doi.org/10.1016/j.hedp.2015.05.001
https://doi.org/10.1016/j.hedp.2015.05.001
https://doi.org/10.1016/j.hedp.2015.05.001
https://doi.org/10.1016/j.hedp.2015.05.001
https://doi.org/10.1103/PhysRev.105.108
https://doi.org/10.1103/PhysRev.105.108
https://doi.org/10.1103/PhysRev.105.108
https://doi.org/10.1103/PhysRev.105.108
https://doi.org/10.1103/PhysRevB.20.4981
https://doi.org/10.1103/PhysRevB.20.4981
https://doi.org/10.1103/PhysRevB.20.4981
https://doi.org/10.1103/PhysRevB.20.4981
https://doi.org/10.1103/PhysRevB.85.235103
https://doi.org/10.1103/PhysRevB.85.235103
https://doi.org/10.1103/PhysRevB.85.235103
https://doi.org/10.1103/PhysRevB.85.235103
https://doi.org/10.1103/PhysRevE.51.4869
https://doi.org/10.1103/PhysRevE.51.4869
https://doi.org/10.1103/PhysRevE.51.4869
https://doi.org/10.1103/PhysRevE.51.4869
https://doi.org/10.1016/j.hedp.2017.06.002
https://doi.org/10.1016/j.hedp.2017.06.002
https://doi.org/10.1016/j.hedp.2017.06.002
https://doi.org/10.1016/j.hedp.2017.06.002
https://doi.org/10.1103/PhysRevB.30.5508
https://doi.org/10.1103/PhysRevB.30.5508
https://doi.org/10.1103/PhysRevB.30.5508
https://doi.org/10.1103/PhysRevB.30.5508
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79



