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Scale-free crystallization of two-dimensional complex plasmas:
Domain analysis using Minkowski tensors
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Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously
test a recently developed scale-free phase transition theory. The “fractal-domain-structure” (FDS) theory is based
on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines,
during crystallization and a fractal relationship between domain area and boundary length. For the defect number
fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of
the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the
Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the
number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings
are supplemented by extending the use of the bond-order metric to measure the defect number fraction and
furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with
unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods.
Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures
that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory
are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number
and system energy is verified for one more order of magnitude at high energies compared to the inherently
discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and
circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice
of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex
plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes.
It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results
founded on a solid mathematical framework.
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I. INTRODUCTION

Complex plasmas are composed of a weakly ionized gas
and microparticles that are highly charged due to absorption of
the ambient electron and ion streams [1,2]. Complex plasmas
constitute a model system that is well suited for studying the
kinetics of fluids and crystallization processes at the individual
particle level in three or two dimensions. Properties of pair
interactions, such as the interaction range and strength, can
be flexibly tuned. Also, the dynamics of particles at short
timescales is practically undamped due to the low gas density
in typical complex plasmas [2].

Because the Mermin-Wagner [3] theorem forbids any long-
range order in only two dimensions, the existence of crys-
tallization in two-dimensional phase transitions seemed ther-
modynamically impossible. However, Kosterlitz and Thouless
(KT) proved [4–8] the possibility of a topological phase transi-
tion, from solid to liquid, in two-dimensional systems. This KT
transition is mediated by lattice defects. Paired dislocations as
initially bound defects dissociate into an intermediate hexatic
phase that consists mainly of free dislocations, which then
dissociate into free disclinations as the liquid state is reached.
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A disclination is a crystal defect for which rotational symmetry
is broken. A dislocation is a type of defect that breaks transla-
tional symmetry. The general term defect refers to either or a
combination of both types. In the KT transition, the long-range
order typical to three-dimensional crystals is replaced by a
quasi-long-range order. Thus, the Mermin-Wagner theorem [3]
is not violated. Experimental evidence for such a topological
phase transition is rare; examples are colloidal systems [9,10],
the two-dimensional electron sheet on liquid helium [11],
atomic gases [12], and superconducting vortex lattices [13].
However, only recently it was shown for a colloidal suspension
system that the conventional Kosterlitz, Thouless, Halperin,
Nelson, and Young (KTHNY) theory is not applicable on
spherical geometry [14].

Whether a phase transition is of KTHNY type can be
reduced to the question as to whether the pair correlation
function g(r) or the bond correlation function g6(r) follows
a specific scaling behavior [15,16]. In Ref. [17] it is shown, by
both experimental and simulated data, that the recrystallization
of two-dimensional complex plasmas is not compatible with
the KTHNY theory of phase transition due to different scaling
behaviors in g(r) and g6(r). In this work, a “fractal-domain-
structure” (FDS) theory [2] based on the kinetic theory of
Frenkel [18] is tested. It assumes the formation of homoge-
neous domains, separated by defect lines, during crystalliza-
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tion. Based on experimental evidence, a fractal relationship
between domain area and boundary length is postulated. For
the defect number fraction and system energy, a scale-free
power-law relation is predicted.

The FDS theory is tested for experiments and a simulation
of the crystallization process in two-dimensional complex
plasmas. A layer of microparticles is levitated in the plasma
sheath region and illuminated by a thin laser sheet. The
crystalline particle system is melted by a short electric pulse
and the recrystallization is captured by a high-speed camera.

Indications that this complex plasma phase transition data
confirm the FDS theory were given in a first study [19].
There, defect numbers were counted as 5/7-dislocations. The
hexagonal translational order in the solid state is violated by
pairs of particles that have 5, respectively, 7 next neighbors
instead of 6. A preliminary analysis of domain structure was
done using the �6 bond-order parameter. However, various
shortcomings of the �6 bond-order parameter have reported
recently [20]: The choice of neighborhood definition has an
impact on �6 beyond physical interpretation and its inherent
discontinuity leads to a lack of robustness.

In this work, we verify previous results obtained via count-
ing of 5/7-dislocations and the conventional �6 bond-order
parameter and extend the �6 bond-order analysis to measure
the defect number fraction. We proceed in the systematic
testing of the FDS theory with unprecedented scrutiny: A
morphological analysis of lattice structure is performed via
Minkowski tensor methods [20–28]. Minkowski tensors are
a tensorial extension of scalar Minkowski functionals. They
form a complete family of additive, motion covariant and
continuous morphological measures that are sensitive to non-
linear properties. They avoid the ambiguity, robustness, and
discontinuity issues of the bond-order parameters and provide
highly sensitive morphological measures with a wide range of
applications.

As a first step in this work, it is confirmed that the complex
plasma phase transitions are in fact not of KTHNY type. This
is due to their long-range scaling behavior in the bond-order
correlation function g6(r). Then the hypothesis of a fractal
relationship between area and boundary length of crystalline
domains is tested. Finally, the predicted scale-free relationship
of defect fraction and system energy of the FDS theory is
verified.

This paper is structured as follows: In Sec. II the theoretical
foundations of the FDS theory are explained. Also theoretical
predictions of the KTHNY theory on the bond-order corre-
lation function are briefly reviewed. Section III describes the
experiments and simulations that were performed and used
to test the FDS theory. In Sec. IV, methods are presented:
The traditional methods as the bond-order metric and the
bond-order correlation function are described. Then the state
of the art morphological analysis methods are introduced:
Voronoi tessellations, Minkowski functionals, and Minkowski
tensors. Based on this introduction an isotropy measure and
a symmetry metric is derived. Also the method to cluster
particles into homogeneous, ordered domains is explained,
as is the method to calculate the particle kinetic energy.
Section V presents the results obtained by both traditional
analysis and Minkowski tensor analysis of the experimental
and simulation data. The long-range decay scaling of the bond-

order correlation function, and the fractal relationships for
energy and defect fraction and for domain area and boundary
length are shown. Finally, in Sec. VI results are discussed and
conclusions are drawn.

II. THEORY

A. Fractal domain structure (FDS) theory

Experimental work, with complex plasmas as model sys-
tems [19], provided evidence that fundamental properties of
a two-dimensional phase transition are not consistent with
the usually assumed KT process. Rather, the findings support
the recently developed FDS theory based on the kinetic
theory of Frenkel [18]. The FDS theory was fist introduced
in Refs. [2,17] and is revisited here. The model describes a
scale-free phase transition of a two-dimensional N -particle
system when the temperature is varied.

At a given energy E = kBT , the N -particle system is di-
vided into z = N/〈Nd〉 homogeneous domains. Each domain
contains 〈Nd〉 particles on average. The domain boundaries
are defined by lattice defects (e.g., pairs of pentagons and
septagons). The structural order in the individual domains is
assumed to be uncorrelated with other domains in the system.

For a mean particle separation �, the mean domain radius
〈r〉 is determined by the domain area, consisting of all unit cell
areas in the domain, as π〈r〉2 = π (�/2)2(N/z) as

〈r〉 = 1/2(N/z)1/2�. (1)

Neglecting the interaction between domains, the interface line
energy of the boundaries is 〈E〉 = 2π〈r〉zσ , with the line
tension σ . Substituting 〈r〉 gives

〈E〉 = π�(Nz)1/2σ. (2)

Due to the arrangement possibilities of the domain structure,
the system entropy increases with the number of domains z.
The number of possible realizations P of the particles ordering
characterizes the measure of disorder. It can be calculated by
counting the number of possible realizations to distribute N

distinguishable particles on z domains, each containing 〈Nd〉
particles. At first one can choose 〈Nd〉 distinguishable particles
from an ensemble of N particles. Then, 〈Nd〉 particles are
chosen from the remainingN − 〈Nd〉particles with the number
of possibilities p,

p =
(

N − 〈Nd〉
〈Nd〉

)
. (3)

Repeating this until all domains are completely occupied gives
P as the product of all the independent numbers of possibilities:

P =
z−1∑
i=0

(
N − i〈Nd〉

〈Nd〉
)

= N !/[(N/z)!]z. (4)

Using Stirlings formula for sufficiently large N and N/z

yields P � zN . The entropy is S = ln(P ) and the mean free
Helmholtz energy is accordingly

〈F 〉 = π�(Nz)1/2σ − NT ln(z). (5)
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Assuming thermodynamic equilibrium at all times, it follows
from ∂〈F 〉/∂z = 0 that

z = (2T/π�σ )2N. (6)

The scaling nature of the domain structure is now introduced
as a hypothesis:

〈Nd〉�2B = [�〈Ns〉]1+α, (7)

with B and α constants depending on the shape of the domains.
With the above definition α = 1 if the domain is circular, for
long narrow domains α → 0, suggesting 0 < α < 1 for fractal
domains. Substituting this scaling in Eq. (6) yields the scaling
for the total number of particles in all domain boundaries
NT ≡ z〈Ns〉:

NT /N ∝ T 2α/(1+α) ∝ E2α/(1+α). (8)

B. Consequences of KTHNY on the bond
correlation function g6(r)

A well accepted theory for phase transitions of two-
dimensional systems is the KTHNY theory [4–8], which
describes the melting of two-dimensional systems with a
continuous, second-order, defect-mediated phase transition.

The KTHNY theory makes predictions on the long-range
decay behavior of the bond correlation function for orienta-
tional order g6(r). It can be defined as

g6(r) =
∑

r−δr�r<r+δr

〈�∗(r)�(0)〉, (9)

with �(r) = exp[iθ (r)], where θ (r) denotes the angle between
a nearest-neighbor bond at position r and an arbitrary axis. It
measures the correlation between the orientation of nearest-
neighbor bonds separated by the distance r .

The KTHNY theory predicts a two-stage melting scenario
with an intermediate phase between the solid and liquid state:
the hexatic phase. In the solid phase T < Tc1 all dislocations
are bound in pairs. Orientational order is preserved in the long-
range limit: The bond correlation function g6(r) approaches a
finite constant for large distances [6]. At Tc1 the dislocation
pairs start to dissociate and for T > Tc1 the orientational order
persists with a slow power-law decay g6(r) ∝ rη6(T ) [6]. This
transition if well known as the Kosterlitz-Thouless transition.
A second transition was discovered by Halperin and Nelson at
the temperature Tc2 > Tc1: Here the dislocations break up and
form free disclinations. The bond-order correlation function
decays exponentially g6(r) ∝ exp[−r/ξ6(T )] [6,7]. Table I
summarizes these predictions.

TABLE I. Consequences of the KTHNY theory on the long-range
scaling behavior of the bond correlation function g6(r) in different
phase regimes.

Phase g6(r) scaling

Liquid (T > Tc2) g6(r) ∝ exp[−r/ξ6(T )]
Hexatic (Tc1 < T < Tc2) g6(r) ∝ r−η6(T ); η6 < 0.25
Solid (T < Tc1) g6(r) = const., const. 	= 0

laser sheet

chamber
grounded

wires
floating

2D crystal

rf electrode

high speed
camera

FIG. 1. Sketch of the experimental setup used for the presented
crystallization experiments [17]. A two-dimensional crystal is levi-
tated in the plasma sheath region above the lower rf electrode. A glass
window in the upper chamber flange provides optical access for a
high-speed camera from the top viewpoint. Particles are illuminated
by a vertically thin, horizontally spread laser sheet. Two wires are
mounted inside the chamber for electric particle manipulation. These
are normally floating, but can be fed with a short electric pulse to melt
the particle system.

III. EXPERIMENTS AND SIMULATION

To study the phase transition in a genuine two-
dimensional system, experiments [19] were performed with
two-dimensional complex plasmas: many-particle systems
consisting of electrons, ions, neutral gas atoms, and charged
micrometer-sized particles. A sketch of the experimental setup
is provided in Fig. 1. An example image of an experimental
data set is shown in Fig. 2. Movies for all data sets are provided
in the Supplemental Material [29].

Melamine-formaldehyde particles with a diameter of
9.19 μm and a mass of 6.14 × 10−13 kg were injected into

FIG. 2. Left: Image of a two-dimensional plasma crystal of the
experimental data set XII for time t = 6.0 s. The field of view is
18 × 25 mm. Right: Gray scale plot of the �6 bond-order parameter.
Dark Voronoi cells have low �6 values. The direction of the argument
of �6 is indicated with arrows. Dislocations with 5 (respectively, 7)
neighbors are marked with red (respectively, blue) dots.
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an argon radio-frequency (rf) discharge ignited between a
horizontal, capacitively coupled electrode mounted on the
bottom of a vacuum chamber, and the grounded chamber walls.
Due to the balance of electron- and ion-streams onto their
surface, the particles acquired a negative charge. The electric
fields in the plasma sheath region above the electrode then
levitated particles against gravity (usually several millimeters
above the electrode surface). Additionally, an elevated rim on
the electrode provided a radial confinement by shaping the
electric potential inside the chamber. The injected particles
then formed a crystalline single layer with a hexagonal crystal
structure, which could temporarily be destroyed by applying a
negative electric pulse (duration: 0.2 s, amplitude: −250 V) to
two parallel wires (58.7 mm apart from each other) mounted
at approximately the levitation height of the monolayer. The
particle system then was left to recrystallize under constant
“environmental” conditions, i.e., pressure and rf power.

To obtain particle trajectories, the particle layer was illu-
minated by a 532 -nm Nd:YAG laser, adjusted to provide a
vertically thin, horizontally spread sheet of light. The light
reflected by the particles was then observed by a high-speed
camera with a frame rate of 250 frames per second (fps) and
a spatial resolution of 0.03 mm/px from the top viewpoint
through a glass window. To reduce the effect of pixel noise
during the image analysis, each two consecutive images were
later averaged, yielding an effective frame rate of 125 fps [17].
The number of particles in the field of view of the camera was
approximately 2000, which amounts to approximately 10–15%
of the total number of particles in the monolayer.

Experiments were performed at 11 different plasma condi-
tions: the neutral gas pressure was varied between 1.15 and
2.3 Pa and the peak-to-peak rf voltages UPP at the electrode
were chosen in the range [−134,−214] V.

Additionally, another data set from Ref. [30] was included
in the analysis. Here, the gas pressure was 1.94 Pa, UPP was
−172 V, the recording frame rate was 500 fps (effective frame
rate after averaging each three consecutive images: 166.667
fps), and the spatial resolution was 0.034 mm/px.

Details of the experimental setup are given in Refs. [17,30].
To complement the experimental results, the outcome of

a molecular dynamics simulation of the crystallization of a
monolayer of 3000 particles in a parabolic confinement is
presented in addition. The simulation parameters were chosen
to meet the experimental conditions: the damping rate was
2 Hz, the time step 0.01 s, particle mass and charge were
6.1 × 10−13 kg and −12 000 e, respectively. The particles were
initially heated to 230 eV and then allowed to cool until they
reached a crystalline state. The parabolic potential used in the
simulation gives rise to deviations from the experiments. The
confinement in the experiments is nonparabolic due to the
presence of the electrodes used to induce the electric shock
causing the melting. The nonparabolic confinement in the
experiments leads to a constant particle density, whereas the
parabolic confinement in the simulation gives rise to a radially
decreasing particle density. Also, the expansion before melting
and relaxation during crystallization of the system is affected
by the difference in the confinement potential. Details of the
simulation procedure are given in Ref. [31].

Here, the results of these earlier experiments and simula-
tion are analyzed employing Minkowski tensor methods and

TABLE II. Parameters of the experiments and the simulation.
Neutral gas pressure p, Epstein damping coefficient ν, peak-to-peak
rf voltage UPP at the driven electrode, and the mean particle separation
� obtained from the pair correlation functions. The Epstein damping
coefficient ν, a measure for the damping rate of the particle motion due
to scattering on neutral gas atoms, was calculated from the discharge
parameters given in Ref. [32], using the reflection index δ = 1.26 as
measured in Ref. [33].

p(Pa) ν(Hz) UPP(V) �(mm)

I 1.93 2.27 –138 0.60
II 1.36 1.60 –144 0.61
III 2.29 2.69 –134 0.61
IV 1.15 1.35 –184 0.60
V 1.36 1.60 –180 0.60
VI 1.68 1.97 –176 0.60
VII 2.12 2.49 –172 0.60
VIII 2.30 2.70 –172 0.60
IX 1.36 1.60 –214 0.57
X 1.93 2.27 –206 0.51
XI 2.30 2.70 –200 0.53
XII 1.94 2.28 –172 0.59
Simulation (S) ... 2 ... 0.8

compared with previous results. The particular parameters of
each experiment are given in Table II.

IV. METHODS

The bond-order parameters �6 were introduced in 1983
[34] and quickly became a standard tool to quantify crystalline
structures. However, recent work [20] has shown that the
calculation of �6 has some conceptual drawbacks. The choice
of neighborhood definition causes an ambiguity of �6 beyond
physical interpretation and its inherent discontinuity leads to a
lack of robustness.

However, the Minkowski functionals are a continuous and
robust tool for morphological data analysis, known since
the early 20th century [35]. Only recently the hierarchy of
Minkowski valuation was extended to tensor valued quantities
called Minkowski tensors [36]. Minkowski functionals and
tensors are sensitive to any n-point correlation function and
thus can give new insights to processes beyond the capability
of conventional (linear) methods, e.g., �6, g(r) or g6(r). A
commonly used method for quantifying the local structure
of points (or discs) is by construction of a nearest-neighbor
network on which quantitative structure metrics are computed
(e.g., �6). The ambiguity of the neighborhood selection can
be circumvented by using the method of the bijective Voronoi
tessellation, based on the idea of a Wigner-Seitz cell for each
particle.

In the following, the �6 bond-order metric, the bond
orientational correlation function g6(r), Voronoi tessellation,
Minkowski functionals and tensors, as well as a clustering
algorithm via DBSCAN and the energy calculation via velocity
distribution fits, are introduced as methods used throughout this
paper.
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A. Bond order parameter �6

In a fist step of a thorough investigation of the domain
structure, irregular lattice sites are identified as defects via the
�6 bond-order parameter [34]. It is defined as

�6 = 1/nk ×
nk∑

m=1

exp(6ikm) (10)

for each lattice site k. Here, nk is the number of nearest
neighbors of particle k, km is the angle of the bond between
particles k and m to an arbitrary chosen axis (we chose the
x axis), and i is the imaginary unit. For hexagonal ordered
lattice sites, the modulus |�6| is close to 1, whereas it tends
to zero for distorted ones and therefore also for defects. To
distinguish ordered from disordered sections, a cut off value
of �6,thresh > �6,defects (corresponding to Voronoi cells close
to |�6| = 1 interpreted as in the crystalline state) is chosen.
The specific value that is chosen for �6,thresh is indicated in
each case in the result Sec. V. The number fraction of these
particles identified as in the crystalline state will be referred to
as �6 measure in the following. Typical histograms for �6 for
the analyzed recrystallization processes are shown in Fig. 3 for
increasing time steps.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Typical histograms for the �6 measure as time t evolves
representatively shown for experiment X (see Table II). (a) t = 3.00 s:
Before melting a large peak for �6 values close to �6 = 1 is a
signature of the crystalline state. (b, c) t = 3.30 s, t = 4.50 s: The
distribution broadens after melting. (d, e) t = 6.00 s, t = 7.20 s:
During recrystallization the distribution shifts to larger �6 values.
(f) t = 12.00 s: For late times the large peak for values close to �6 = 1
is recovered in the recrystallized state.

B. Bond correlation function g6(r)

The bond correlation function g6(r) for the orientational
order II B is calculated via

g6(r) =
∣∣∣∣∣ 1

NB

NB∑
l=1

1

n(l)

n(l)∑
k=1

exp{6i[θ (rk) − θ (rl)]}
∣∣∣∣∣. (11)

Here, NB is the total number of bonds in the crystal, n(l) is the
number of bonds at distance r from bond l, θi the angle of bond
i at ri to an arbitrary axis. For a perfect hexagon, g6(r) ≡ 1.
Since we are only interested in the long-range decay and not
the exact shape of g6 with its peaks in the close range regime,
we choose large bins, i.e., large values of n(l).

For a solid crystalline state g6(r) should be constant and
close to 1 [6]. However, for the plasma crystal data sets
analyzed here, we find g6(r) to be a linearly decaying function.
This is because the crystal is made up of homogeneous
domains, separated by defect lines, whose structural order
is uncorrelated with neighboring domains. Since power law
(respectively, exponential decay) is predicted in hexatic (re-
spectively, liquid states) [6,7] for large r , following models
are fitted to the experimental and simulation data sets: (a)
linear decay g6(r) = A1 + c6r , (b) exponential decay g6(r) =
A2exp(−r/ξ6), and (c) power-law decay g6(r) = A3r

−η6 . To
determine the best model the goodness of best fits is compared
using the χ -squared χ2 statistic. Lower values indicate a higher
goodness of fit. This method was already applied to test for a
hexatic phase [17,37].

C. Voronoi tessellation

An approach for quantifying local structure is provided by
the analysis of the Voronoi diagram. The Voronoi diagram is
the partition of space into the same number of convex cells as
there are discs in the packing. The Voronoi cell of each disk
is the region of space closer to that given disk than to any
other disk. For the special case of three- or two-dimensional
crystal lattices the Voronoi cell is called Wigner-Seitz cell. In
the field of granular matter, Voronoi diagrams have been used
to determine distributions of local packing fractions [38–40],
spatial correlations [41], and correlations with particle motion
[42].

Recently, studies provided insight into the local structure of
sphere packings and sphere ensembles by analyzing the shape
of Voronoi cells, in particular, their degree of anisotropy or
elongation [23,43–45].

Here, the structure of the Voronoi tessellation, obtained
from particle positions, is analyzed using Minkowski func-
tional and tensor methods. The boundary particles were dis-
carded from the analysis since they have no neighboring
particles needed to define their Voronoi cells.

D. Minkowski functionals

For a body K with a smooth boundary contour ∂K

embedded in D-dimensional euclidean space the D + 1
Minkowski functionals are, up to constant factors, defined
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as

W0(K) =
∫

K

dDr

Wν(K) =
∫

∂K

Gν(r) dD−1r , 1 � ν � D (12)

Gν(r) are the elementary symmetric polynomials of the local
principal curvatures as defined in differential geometry.

In two-dimensional euclidean space the Minkowski func-
tionals, up to constant factors, are W0(K) (area), W1(K)
(circumference) and W2(K) (euler characteristic):

W0(K) =
∫

K

d2r

W1(K) =
∫

∂K

dr

W2(K) =
∫

∂K

κ(r) dr

(13)

Here, κ(r) is the local curvature.
Minkowski functionals are motion invariant, additive and

conditionally continuous. They form a complete family of
morphological measures. Or vice versa: Any motion invariant,
(conditionally) continuous and additive functional is a super-
position of the (countably many) Minkowski functionals. They
are nonlinear measures sensitive to higher order correlations.
Applications are e.g. curvature energy of membranes [46],
order parameter in Turing patterns [47], density functional
theory for fluids (as hard balls or ellipsoids) [48,49], testing
point distributions (find clusters, filaments, underlying point-
process) or searching for non-Gaussian signatures in the CMB
[50–54].

E. Minkowski tensors

To also account for directional properties it is natural to
extend the scalar valued Minkowski functionals to tensor-
valued quantities called Minkowski tensors. Applications of
Minkowski tensors range from the analysis of cellular, granu-
lar, and porous structures to the classification of crystal types
[22–28]. They are defined as [21]

W
a,0
0 (K) :=

∫
K

dDr r
a,

Wa,b
ν (K) := 1/D

∫
∂K

dD−1r Gν(r) r
a 
 n
b. (14)

Here, 
 denotes the symmetric tensor product x 
 y =
1/2 (x ⊗ y + y ⊗ x). Again Gν(r) are the elementary symmet-
ric polynomials of the local principal curvatures as defined in
differential geometry. a counts the number of position vectors
r, b counts the number of normal vectors n in the tensor
product. Thus, the rank of each tensor is the tuple (a,b).

Similar to Minkowski functionals the attractiveness of
Minkowski tensors is due to their manifold applications.
Further, they are founded on a solid mathematical framework:
A strong completeness theorem by Alesker [36] states that
all morphological information that is relevant for additive
properties of a body K is represented by the Minkowski

FIG. 4. Illustration for the explicit calculation of Minkowski
tensors of a body K via Kε .

tensors. Any motion covariant, conditionally continuous and
additive tensor valued functional is a superposition of the
(countably many) Minkowski tensors.

The Minkowski tensors are defined as curvature integrals
over smooth boundary surfaces. To calculate them for polygo-
nal bodies P we consider the parallel body construction Pε =
P � Sε [55]. Sε is a disk of radius ε > 0 and � is the Minkowski
sum (defined as K1 � K2 = {p1 + p2 | p1 ∈ K1,p2 ∈ K2}).
Thus, Pε is the union of all disks Sε with origins at all points
in P , illustrated in Fig. 4. Performing the limit ε → 0 then
yields the tensor Wa,b

ν (P ) = limε→0 Wa,b
ν (Pε). Consider the

polygonal representation of P by its vertices vk . Then the
edges between vertices vk and vl are e(k,l) = vl − vk with

normal vectors n(k,l) = R e(k,l)/|e(k,l)|. R = ( 0 −1
−1 0 ) is the

π/2 rotation matrix. γk is the angle between n(k−1,k) and
n(k,k+1). Using these definitions we can obtain the explicit
formula. Here we present formulas for the second rank in
position vectors circumference [Eq. (15)] and the second rank
in normal vectors euler tensors [Eq. (16)] as examples. E is
the unit matrix:

W
2,0
1 (P )

= lim
ε→0

1

2

∫
∂Pε

dr r 
 r = 1

6

∑
(k,l)

|e(k,l)|

×
(

v2
kx + vkxvlx + v2

lx vkxvky + vkxvly + vlxvly

vkyvkx + vkyvlx + vlyvlx v2
ky + vkyvly + v2

ly

)
,

(15)

W
0,2
2 (P ) = lim

ε→0

1

2

∫
∂Pε

dr κ(r) n 
 n = 4 W2 E. (16)

A list of expressions for two-dimensional tensors up to rank
two is available in Ref. [55].

F. MT2 isotropy index

For a body K and each second-rank Minkowski tensor
Wa,b

ν (K) an isotropy index β can be defined as the ratio
between the smallest and largest eigenvalue λmin and λmax of
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the D × D matrix representing each Minkowski tensor [21]:

βa,b
ν (K) := λmin

[
Wa,b

ν (K)
]

λmax
[
W

a,b
ν (K)

] . (17)

The dimensionless isotropy index is a pure shape measure. It
is invariant under isotropic scaling of K . For example, in two
dimensions the isotropy index β = 1 is obtained for a circle or a
square. For a rectangle one obtains β = shorter/longer edge.
Thus, this isotropy index is an isotropy measure only in the
sense of elongation. β provides equivalent information as
the improved, area weighted bond-order metric proposed in
Ref. [20].

The rank-two Minkowski tensor analysis carried out in this
study is done by calculating the isotropy index β Eq. (17)
locally for every Voronoi cell and for every time step in the
experimental and simulation data using the circumference
Minkowski tensor W

2,0
1 , since it is most sensitive to changes

of elongation of Voronoi cells. To distinguish ordered from
disordered Voronoi cells a cutoff value of βthresh > βdefects

(corresponding to isotropic Voronoi cells interpreted as in the
crystalline state) is chosen. The specific value that is chosen
for βthresh is indicated in each case in the result Sec. V. The
number fraction of these particles identified as in the crystalline
state will hereinafter be referred to as MT2 measure. Typical
histograms for β for the analyzed recrystallization processes
are shown in Fig. 5 as time evolves.

G. MT4 symmetry metric

To distinguish between structures of high symmetry, i.e.,
differentiate between crystalline structures (hcp, fcc, etc.),
higher ranked tensors have to be applied. For rank four and
higher, isotropic symmetry is distinct from cubic symmetry.
(This is evidenced by the appearance of a second independent
shear modulus when transitioning from isotropic to cubic
symmetry in the theory of linear elasticity, which is formulated
using a rank-four tensor [56].) This method has been used in
hard sphere systems to characterize random close packings
[23].

For brevity, only the simplest rank-four Minkowski tensor
is considered:

W
0,4
1 (K) = 1

2

∫
∂K

dr n(r) ⊗ n(r) ⊗ n(r) ⊗ n(r). (18)

In the polygonal representation its components, labeled
μ,ν,τ,σ ∈ (x,y) are

[
W

0,4
1 (P )

]μντσ = 1

2

∑
(k,l)

|e(k,l)|nμ

(k,l)n
ν
(k,l)n

τ
(k,l)n

σ
(k,l). (19)

Since it is translation invariant and symmetric (i.e., it holds

for the components [W 0,4
1 ]

μντσ = [W 0,4
1 ]

(μντσ )
), it has, in two

dimensions, only 5 independent elements instead of 16. The
round brackets denote cyclic permutation.

A morphological metric suitable for characterizing systems
of spherical particles should be rotationally invariant since the
physics does not a priori designate a preferred direction. Thus,
the tensor W 04

1 should not be directly used. Instead, rotational
invariants are constructed [57]. This is done by borrowing ideas
from the theory of the elastic stiffness tensor.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Typical histograms for the MT2 measure as time t evolves
representatively shown for experiment X (see Table II). (a) t = 3.00 s:
Before melting a large peak for β values close to β = 1 is a signature
of the crystalline state. (b) t = 3.30 s The distribution broadens
after melting. (c–e) t = 4.50 s, t = 6.00 s, t = 7.20 s: During
recrystallization the distribution shifts to larger β values. (f) t = 12.00
s: For late times the large peak for β values close to β = 1 is recovered
in the recrystallized state.

The tensor W
0,4
1 (K) is rewritten in the Mehrabadi superma-

trix notation [58] as a 3 × 3 matrix:

M =

⎡
⎢⎣

Sxxxx Sxxyy Sxxzz

Syyxx Syyyy

√
2 Syyxy√

2 Sxyxx

√
2 Sxyyy 2Sxyxy

⎤
⎥⎦, (20)

where S = W
0,4
1 (K)/W1(K).

Then, the three-tuple formed by the eigenvalues ζi of M (in
descending order) may be considered a symmetry fingerprint
of the polyhedron K . It is invariant under rotation, scaling,
and translation of the polyhedron K . Using the signature
eigenvalue tuple ζi of M , it is possible to define a distance
measure on the space of bodies induced by the Euclidean
distance:

�(K1,K2) :=
{

6∑
i=1

[ζi(K1) − ζi(K2)]2

}1/2

. (21)

�(K1,K2) is a pseudometric. It is positive definite, symmetric,
the triangle inequality holds, however, the coincidence axiom
�(K1,K2) = 0 ⇐ K1 = K2 is only an implication and not an
equivalence. For example, �(sphere,dodecahedron) = 0. To
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Typical histograms for the MT4 measure as time t evolves
representatively shown for experiment X (see Table II). (a) t =
3.00 s: Before melting a large peak for small �hex values is a
signature of the crystalline state. (b) t = 3.30 s: The distribution
broadens after melting. (c–e) t = 4.50 s, t = 6.00 s, t = 7.20 s:
During recrystallization the distribution shifts to smaller �hex values.
(f) t = 12.00 s: For late times the large peak for small �hex values is
recovered in the recrystallized state.

distinguish dodecahedra from spheres one needs to employ
even higher rank tensors.

The MT4 analysis carried out in this study is done
in analogy to the MT2 analysis. The symmetry metric
�hex = �(Kvoronoi cell,Khex) Eq. (21) is calculated locally for
every Voronoi cell Kvoronoi cell and for every time step in the
simulation. Khex denotes the ideal hexagonal unit cell. To
distinguish ordered from disordered sections a cut off value
of �thresh < �defects (corresponding to Voronoi cells close to
hexagonal symmetry interpreted as in the crystalline state) is
chosen. The specific value that is chosen for �thresh is indicated
in each case in the result Sec. V. The number fraction of these
particles identified as in the crystalline state will be referred
to as MT4 measure in the following. Typical histograms for
�hex for the analyzed recrystallization processes are shown in
Fig. 6 as time evolves.

H. Clustering

The area of ordered domains Ai is proportional to the
number of particles in the domain Nd , weighted with the
square of the particle separation �2. The boundary length li is
proportional to the number of particles Ns that the boundary
line consists of, weighted with the particle separation �. It

follows that the hypothesis Eq. (7) can be reduced to

〈Ai〉 ∝ 〈li〉1+α. (22)

To measure the area Ai and boundary length li of the or-
dered domains, the clustering algorithm density-based spatial
clustering of applications with noise (DBSCAN) [59] was
used. After sorting out the defect particles as identified by the
�6 or Minkowski tensor methods, the remaining particles in
the crystalline state domains where sorted in clusters via the
DBSCAN algorithm. It sorts point clouds into clusters with at
least nmin particles having at most dmax separation. To be able
to disjoin clusters linked only by a small number of particles,
the DBSCAN algorithm was run two consecutive times with
adapted parameter nmin: In the second run, nmin was increased
from nmin = 3 in the first run (i.e., the smallest clusters have at
least four particles), to nmin = 4. The parameter dmax is set in
the range of the mean particle displacement as dmax = 0.75mm
(i.e., the largest particle distance within a cluster can not exceed
0.75 mm). Domains in contact with the image boundary were
discarded. This restricts the maximum domain size, but for
domains not completely within the field of view an estimate of
their area and circumference is not possible.

After identifying the particles in domains separated by
defect lines and associating them in clusters, as described in
the paragraph above, the area and boundary length of each
domain could be measured as follows: The concave hull (also
known as “alpha shape”) of the set of points was calculated
as the polygon that represents the area occupied by this set
of points in the plane. To achieve this, at first the convex hull
and Delaunay triangulation is calculated. The convex hull is
comprised of all triangles of the Delaunay triangulation. To
get to a concave hull the largest triangles (i.e., the triangles at
the boundary of the convex hull) are then discarded from the
convex hull: All triangles (with edge lengths a,b,c and area
A) with radius filter rf = abc/(4A) > 1/γ for an arbitrary
parameter γ . The specific value that is chosen for 1/γ is
indicated in each case in the result section V. Only values
in the range 1/γ ∈ [0.04,0.08]mm are considered: For 1/γ >

0.08 mm, the algorithm breaks down since domains become
internally disconnected until no connected regions can be
found anymore. Domains for 1/γ < 0.04 mm are unphysical,
since the concave hull then includes particles that are not part
of the domain as determined by the DBSCAN algorithm.

In a last step, the concave hull polygon is smoothed out by
buffering it as a smooth contour constructed by discs with a
radius rb in the range of the mean inter-particle separation rb =
0.75 mm. An example of the clustering steps is given in Fig. 7.

I. Energy calculation

The velocities of every particle are obtained by tracking
each particle frame by frame and comparing consecutive
images. This provides trajectories in time from which the
velocity of every particle is derived. After fitting a normal
distribution to the histogram of velocities in x and y direction
separately at every time step, the mean of the width of these
histograms gives the particle kinetic energy E (representative
of T from Sec. II) for each data set. With this method energies
could be resolved down to a level of 0.1 eV.
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(a) (b)

(c) (d)

FIG. 7. Calculating the area and circumference of crystalline
domains: (a) DBSCAN clustering for a specific time-step t = 6.59 s.
Colors indicate different clusters, black are particles that are not
considered as part of a cluster. (b) Clusters touching image boundary
and particles not considered in a cluster are deleted. (c) The second
DBSCAN clustering removes noise: Very small clusters, small cluster
extensions and separates clusters connected by only few particles.
(d) Estimate of the area and circumference of a specific domain via a
concave hull algorithm. For details consult Sec. IV H.

V. RESULTS

A. Scaling behavior of the bond correlation function g6(r)

The bond correlation function g6(r) was calculated for all
time steps and datasets and fitted to a linear decay model
(crystalline state), an exponential decay model (liquid state),
and a power-law decay model (hexatic phase). For brevity of
presentation only results of fits for experiment I are shown in
Fig. 8. The findings, however, are qualitatively the same for
all data sets. Figure 8(a) shows fits of the long-range decay
behavior of g6(r) for different time steps. The goodness of fit
χ2 statistic is shown in Fig. 8(b). Small values indicate high
goodness of fit and confidence of the validity of the underlying
model. Figure 8(c) provides the values of the fit parameters c6,
ξ6, and η6.

For small times, before melting (∼0 s < t < 3 s), and for
large times(∼7 s < t < 12 s), after crystallization, we find the
best model to be the linear decay. The linear decay evidences a
state of crystalline domains that exhibit internal orientational
order but have the freedom to rotate their orientation compared
to neighboring domains [17].

For times directly before the linear decay (∼ 5.5 s < t <

7 s) evidences the crystalline state to be the best model, the
exponential decay model provides the best goodness of fit
(i.e., smallest χ2 values in Fig. 8), indicating a liquid state
[6,7]. This already excludes the possibility of a KTHNY-type

(a)

(b)

(c)

FIG. 8. Scaling behavior of the long-range decay of the bond cor-
relation functiong6(r). Shown for experimental data set I. (a) Different
models are fitted to the long-range decay of g(r) at different times
t . Crystalline state: g6(r) ∝ c6 · r , liquid state: g6(r) ∝ exp(−r/ξ6)
and hexatic phase: g6(r) ∝ r−η6 . (b) The chi-squared χ 2 statistic as
a measure of the goodness of fit for different decay models. Small
values indicate the best model. (c) Values of the best fit parameters
for different models. To enhance the clarity of the strongly fluctuating
figures during melting times (∼ 3 s < t < 5 s), panels (b) and (c) only
show every 20th data point.
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phase transition, since between the liquid and crystal state no
evidence for the existence of a hexatic phase is found.

In a very short time frame between the chaotic melting and
the liquid state (∼ 4.5 s < t < 5.5 s), the power-law decay
and exponential decay model both provide high goodness of
fits values (i.e., low χ2 values). The power-law decay would
indicate a hexatic phase [6,7] in the KTHNY model. However,
the KTHNY model predicts a power-law exponent of η < 0.25
for the hexatic phase. Here, we have much larger values of
η > 3 for all times but the chaotic melting regime where no
reliable fit could be performed. Also, the temperature regime
does not correspond to a possible hexatic phase.

Thus, no hexatic state can be found for this phase transition.
This implies that the two-dimensional complex plasma phase
transitions analyzed in this study are not consistent with the
KTHNY theory.

B. Relationship between domain area and boundary length

The results of the analysis with the above explained methods
and measures are presented in the following. In this section,
the hypothesis introduced in Eq. (7) and condensed to Eq. (22)
is tested via plotting measured domain areas Ai against their
circumferences li and thus possibly obtaining the power-law
exponent α. To this end, first the defect Voronoi cells were
detected via the �6 bond-order parameter (Sec. IV A), the MT2
(Sec. IV F), and the MT4 (Sec. IV G) method. Discarding these
defects leaves ordered disjoint domains that are clustered using
a DBSCAN clustering algorithm (IV H). The relation between
the area of crystalline domains Ai and the boundary length li
of defect lines separating the crystalline domains is shown in
Fig. 9. All defect detection methods provide consistent results
and every experiment is consistent with the scaling relation
〈Nd�

2〉 ∝ [�〈Ns〉]1+α . The exponents for the experiments are
consistent with those found for the simulation data. The values
of α obtained by least-square fits are listed in Table III and are
consistent with the findings in Sec. V C.

In the simulation data we find small deviations. Since
they are generated using a parabolic potential the particle
density decreases in the radial direction. Thus, the density-
based DBSCAN algorithm cannot as easily be applied to
the simulation data as in the experimental case. For the �6

and MT2 metric in most cases a large cluster in the center
is detected. For the MT4 metric predominantly very small
clusters are detected.

It is noteworthy that the exponents are very stable (see
Fig. 10): They are independent of the cutoff value used in the
Minkowski methods to define crystalline cells and independent
of the particular choice of Minkowski tensor metric and tensor
rank. Even the �6 bond-order parameter gives a consistent
result. Also, they depend only very weakly on the particular
choice of parameters [reasonable values are discussed below
and in Fig. 10(b)] in the DBSCAN clustering algorithm and
the particular parameters in the calculation of the domain area
and length via the convex hull algorithm. Varying the cutoff
parameters in a large range only gives rises to very small
changes in α. Variations are in the range of only a few percent
and are listed in the caption of Fig. 10(a). In this figure the mean
values 〈α〉 are plotted for the whole range of cutoff values
for the MT2, MT4 and �6 bond-order method, respectively.

(a)

(b)

(c)

FIG. 9. The area Ai of crystalline domains plotted against their
boundary length li . Different colors indicate different experiments
and the simulation. The solid line is the mean of all least-square
linear fits to the power-law Eq. (22) 〈Ai〉 ∝ 〈li〉1+α for the experiments
and the simulation. In panel (a) defects are identified via a �6

bond-order metric (Sec. IV A,�6,thresh = 0.5), in panel (b) the particles
in crystalline states are identified via the MT2 isotropy index method
(Sec. IV F, βthresh = 0.81), and in panel (c) they are identified via the
MT4 symmetry metric method as explained in Sec. IV G (�thresh =
0.18). Area and boundary length are measured using a DBSCAN
clustering algorithm as explained in Sec. IV H. Individual exponent
values can be found in Table III.
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TABLE III. Power-law exponent α for the area-length scaling
in Fig. 9 measured via the �6 (IV A, �6,thresh = 0.7), the MT2
(IV F, βthresh = 0.88), and the MT4 (IV G, �thresh = 0.12) methods
in Eq. (22) 〈Ai〉 ∝ 〈li〉1+α , for experiments I–XII and the simulation
(III). For the corresponding graphs consult Fig. 9. The last row is the
mean value of all above with the standard deviation as uncertainty.
Area and circumference were measured via a DBSCAN algorithm
[IV H, here 1/γ = 0.06 mm, corresponding to the points in Fig. 10(b)
marked with thick marker-edges.]

α (�6) α (MT2) α (MT4)

I 0.526 0.505 0.519
II 0.569 0.550 0.570
III 0.503 0.535 0.539
IV 0.550 0.524 0.566
V 0.466 0.487 0.574
VI 0.485 0.494 0.547
VII 0.515 0.540 0.558
VIII 0.501 0.545 0.547
IX 0.527 0.518 0.570
X 0.488 0.545 0.545
XI 0.490 0.479 0.578
XII 0.548 0.543 0.560
S 0.752 0.856 0.529
〈I...XII〉 0.51 ± 0.02 0.52 ±0.02 0.55 ± 0.02

Changing the smoothing parameter rb over one order of magni-
tude has practically no effect. Varying the DBSCAN parameter
1/γ (it can be thought of as describing the raggedness of the
concave hull) also gives only small changes in α as depicted
in Fig. 10(b). The largest deviations are observed for values
1/γ < 0.04 mm and 1/γ > 0.08 mm. Yet, only values of
1/γ ∈ [0.04,0.08]mm are physically relevant since for too
large values the domains become disconnected and for too
small values the domains become more and more convex and
include neighboring particles that are not part of the detected
ordered domains. Averaging over all experiments, all defect
detection methods with all threshold values and all physical
DBSCAN parameters leads to a final value for the scaling
exponent:

α = 0.52 ± 0.05. (23)

This is the mean value (and uncertainty as standard deviation)
of measurements as depicted in Fig. 10(b) for the range of
physical values 1/γ ∈ [0.04,0.08]mm.

Detected domain sizes for different methods are compared
in Fig. 11. Since multiple domains are detected during one
point in time the comparison is only between the largest domain
of each measure and point in time. With this method we only
find few clusters that are detected consistently using different
methods. Nevertheless, one can see that the Minkowski mea-
sures are more similar to each other than to the �6 bond-order
metric, whereas the higher-rank Minkowski measure provides
even less similar domains compared to the �6 measure than
the lower-ranked Minkowski tensor measure.

(a)

(b)

FIG. 10. (a) The exponents α from Eq. (22) 〈Ai〉 ∝ 〈li〉1+α ,
obtained by linear fits of the fractal relationship of domain area
and circumference are plotted as the cutoff parameter of the par-
ticular measure is varied. α is found to be very stable: Varying
the cutoff parameters in their whole range only gives rises to very
small changes in α. We find variations of

√
V ar[αβ ]/〈αβ〉 = 2.7 %,√

V ar[α�]/〈α�〉 = 4.3 % and
√

V ar[α�6 ]/〈α�6 〉 = 1.9 %. The DB-
SCAN parameters are constant, in particular, 1/γ = 0.06 mm. (b)
Variation of α from Eq. (22) 〈Ai〉 ∝ 〈li〉1+α by variation of the DB-
SCAN parameter γ . (The cutoff parameter βthresh = 0.81 is constant.)
The data points with thick marker-edges (1/γ = 0.06 mm) are the
mean values of the individual α in Table III. The final mean value is
indicated by a dashed line.
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(a)

(b)

(c)

FIG. 11. A comparison of the detected domain areas Ai . For every
point in time in which two measures both detect at least one crystalline
domain the correlation between the largest domain of each measure
is plotted. Comparison between the largest domains for (a) the MT2
and �6 measure, (b) the MT4 and �6 measure, and (c) the MT2 and
MT4 measure. The Minkowski measures show the largest correlation,
however, the data points are still widely spread. In all graphs (a–c) we
find the simulation data points to be outliers. This is due to the fact
that the clustering algorithm is not applicable in a straight forward
way to this data, as discussed in the text.

TABLE IV. Power-law exponent α for the defect fraction-energy
scaling in Fig. 12 measured via the MT2 (IV F, βthresh = 0.81), MT4
(IV G, �thresh = 0.18), and �6 (IV A, �6,thresh = 0.5) methods in
Eq. (8) NT /N ∝ E2α/(1+α), for experiments I–XII and the simulation
(III). For the corresponding graphs, consult Fig. 12. The last row is
the mean value of all above with the standard deviation as uncertainty.

α (�6) α (MT2) α (MT4)

I 0.186 0.454 0.413
II 0.405 0.518 0.593
III 0.266 0.323 0.367
IV 0.295 0.416 0.473
V 0.362 0.618 0.605
VI 0.319 0.453 0.359
VII 0.336 0.573 0.317
VIII 0.405 0.526 0.418
IX 0.358 0.563 0.844
X 0.241 0.254 0.328
XI 0.263 0.103 0.677
XII 0.304 0.550 0.234
S 0.303 0.504 0.471
〈I...XII〉 0.31 ± 0.06 0.52 ± 0.18 0.47 ± 0.17

C. Relationship between energy and defect fraction

In this section the theoretical prediction of Eq. (8) NT /N ∝
T 2α/(1+α) ∝ E2α/(1+α) of the FDS theory [2] is tested via
plotting defect fractions NT /N against the kinetic energy E

of the particles. This is shown in Fig. 12. One can clearly see
that the relation can well be described by a power law within
a reasonable energy interval. After the detection of defects
their number fraction NT /N is obtained by simple division of
the total defect number NT and the total particle number N .
The system temperature E = kBT is determined by fitting a
normal distribution to the histogram of each component of the
particle velocity vectors. Plotting these values in a log-log plot
(Fig. 12) then gives the power-law exponent α for every data
set and method. The exponents obtained in Secs. V B and V C
are compared.

The dependence of the defect fraction NT /N on the kinetic
energy is shown in Fig. 12. Every measure and experiment
is consistent with a power-law Eq. (8) NT /N ∝ Eξ , with
ξ = 2α/(1 + α). The exponents obtained by least-square fits
are listed in Table IV. The exponents for the experiments are
comparable with the exponents found for the simulation data:
The line of best fit, shifted in a parallel fashion to simulation
data energies, fits the data quite well. Thus, the simulation
validates the experimental results. However, for very high
energies the simulation curves deviate from the experimental
fit. This can be explained by the dynamic difference in the
system expansion during melting and the relaxation during
crystallization due to the difference in the confinement poten-
tial of the experiments and simulation.

The exponents found via the MT2 and MT4 measures are
consistent with the value obtained in the previous section [see
Eq. (23)]. The only deviation found is for the mean exponent
obtained via the �6 bond-order method. It is significantly
smaller than all the other exponents obtained (with 〈α〉�6 �
0.31 by almost 40% compared to all other exponents 〈α〉 �
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(a)

(b)

(c)

FIG. 12. The defect fraction NT /N plotted against the particle
kinetic energy E. Different colors indicate different experiments and
the simulation. The solid line is the mean of all linear fits to the power-
law NT /N ∝ Eξ for all experiments. The linear fit of the experimental
data is shifted onto the simulation data in a parallel fashion. In panel
(a) the defect fraction is obtained via the �6 method (�6,thresh = 0.5).
The exponent is α�6 = 0.313. The fit is constrained to energies in the
interval E ∈ [10−1,101] eV. (b) MT2 (βthresh = 0.81); αMT2 = 0.518;
fit interval E ∈ [10−1,101.7] eV. (c) MT4 method (�thresh = 0.18);
αMT4 = 0.507; fit interval E ∈ [10−1,102] eV. Individual exponent
values can be found in Table IV.

(a)

(b)

(c)

FIG. 13. A comparison of the detected defect fraction NT /N at
equal energiesE. (a) MT2 vs�6, (b) MT4 vs�6, (c) MT2 vs MT4. The
Minkowski measures resolve defect fractions for energy levels about
one order of magnitude larger than the bond-order metric. The higher-
rank Minkowski tensor measure resolves defect fractions even further
than the lower ranked tensor measure. Compared to the Minkowski
tensor measures the bond-order metric shows an early saturation for
high energies.

053201-13



A. BÖBEL, C. A. KNAPEK, AND C. RÄTH PHYSICAL REVIEW E 97, 053201 (2018)

0.5) in this and the previous section. The reason for the smaller
�6 exponent likely lies in the fact that the �6 bond-order
metric is less sensitive to lattice distortions compared to the
Minkowski tensor measures and therefore less continuous in
its nature, leading to a more binary, discontinuous form of
defect/crystal state detection: Even for noisy data with larger
distortions the Minkowski tensor method is able to distinguish
more crystalline lattice structures form distorted ones, whereas
the �6 bond-order metric only finds defects and can resolve
crystalline structures only for smaller distortions. This can also
be seen when comparing Fig. 3(c) with Fig. 5(c) [respectively,
Fig. 6(c)]. After the melting the MT2 (respectively, MT4)
measure starts to detect recrystallization much earlier than
the �6 bond-order metric: The histogram of the Minkowski
measure shifts noticeably to the right (respectively, left),
whereas the bond-order metric histograms start to shift to
crystalline values only at much later times.

The bond-order metric is obviously more binary in nature,
allowing high values only for fairly perfect crystal structure
and then changing rapidly to low values for distorted crystal
structure. The Minkowski tensor metrics provide a means to
probe and resolve the crystal structure continuously between
those extremes. This allows the Minkowski tensor measures to
confirm the scaling relation Eq. (8) for energy levels one order
of magnitude larger (see also Fig. 13) than for the �6 bond-
order metric and to confirm the FDS theory with unprecedented
scrutiny.

VI. DISCUSSION AND CONCLUSION

Employing Minkowski tensor methods to the recrystalliza-
tion process of experiments and simulation of two-dimensional
complex plasma systems supports the FDS phase transition
theory [2] based on the kinetic theory of Frenkel [18]. The
analysis of the experimental and simulation data showed a
scaling behavior in crystalline self-similar domains that is
not consistent with the prominent KTHNY theory of phase
transitions. The results of the Minkowski tensor analysis are
consistent with the theoretically predicted power laws obtained
from the scale-free theory and provide higher accuracy com-
pared to results obtained by the commonly used bond-order
metric �6 due to their capability to detect differences in defect
fraction even for very high energies. Further, it is superior
to the simple counting of paired 5/7-dislocations since it
provides a more reliable statistic due to the much larger
number of detected defects. All of the power-law exponents
measured via Minkowski tensor metrics are consistent for
all experiments and a simulation. Furthermore, they are also
consistent for two different theoretical predictors: the scale-
free behavior between defect fraction and particle energy, and
the fractal relation between domain area and circumference.
Summarized, this scale-free phase transition does not depend
on experimental parameters but rather seems to be an inherent,
universal feature of two-dimensional phase transitions as
analyzed here.

The scaling relation introduced in Eq. (7) is confirmed
by all experiments and the simulation for all applied defect
measures (�6 bond-order metric, MT2 and MT4 measure).
The straight lines in the log-log plots (Fig. 9) are reproduced
extremely well. The power-law exponents are consistent for all

measures and vary only marginally with changes of parameters
in the methods of identifying defects and changes in the
parameters of the DBSCAN clustering algorithm applied to
measure the circumference and the area of crystalline domains.
The DBSCAN clustering algorithm applied in this work
measures this fractal behavior very precise and reproduces
it even for the conventional �6 bond-order method. For this
method deviations from the fractal behavior were found in
an earlier study [19], where domain circumference and area
where calculated by counting of particles. The DBSCAN
method seems to be more accurate (holes in defect lines do
not play an important role) and less tedious than only counting
defects.

Also, the power-law Eq. (8) could be reproduced in with
deviations only for very low and very high energies. This
was already reproduced in a previous study, however, only
by counting paired dislocation. The extended analysis in this
work validated the predicted power law more rigorously, since
the applied continuous measures (�6 bond-order metric, MT2
and MT4 measure) provide a significantly higher number of
points in the defect-energy diagrams (Fig. 12) for the statistical
analysis. The saturation in these diagrams can be explained
by fact that for high energies all lattice sites in the system
are distorted to fluid levels and an upper limit is reached.
For low energies we only observe small deviations due to
the thermodynamic occurrence of defects that are not domain
boundaries and because of particles that leave the plane of
observation due to oscillation in the vertical directions [60,61].
This causes artificial defects that can also be observed in
the movies shown in the supplemental material [29]. The
power-law exponents found for Eq. (8) are consistent with
those for Eq. (7) for the Minkowski tensor methods. However,
while the �6 measure reproduces a consistent exponent for
Eq. (7) it yields a significantly smaller one for Eq. (8). This
is due to the fact that the �6 measure is more binary in its
nature than the Minkowski tensor measures. Therefore the
dynamic range of the measured defect fraction is smaller which
is reflected in the slope and the power-law exponent. The single
measurement of the exponent α that does not fit into the other
measurements in this work is, however, in the same range
as the α obtained in a previous study [19] by considering
defects only as 5/7-dislocations in a completely discrete
fashion. The difference in these exponents might arise from
this discreteness in counting defects in comparison to the more
continuous Minkowski tensor methods. Here the Minkowski
Tensor methods show promising potential for the analysis of
crystal distortions: Where the �6 bond-order metric only scales
over one order of magnitude and fails to detect changes in
crystal defect numbers for very high energies, the Minkowski
tensor methods provide one more order of magnitude in scaling
range. Due to its continuous nature also the joint defect lines,
forming the boarders of crystalline domains, can readily be
detected leading to a more precise verification of the fractal
relation 22 compared to defect detection via the �6 bond-order
metric.

This study gives further evidence that Minkowski tensor
methods are a powerful tool for morphological characterization
of point sets. They are superior to conventional analysis
methods in various respects. Minkowski tensor analysis is able
to quickly reveal new aspects of interest in data, it is founded
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on a solid mathematical framework, however it still provides
easily interpretable results.
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