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Size distribution spectrum of noninertial particles in turbulence
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Collision-coalescence growth of noninertial particles in three-dimensional homogeneous isotropic turbulence
is studied. Smoluchowski’s coagulation equation describes the evolution of the size distribution of particles in
this system. By applying a methodology based on turbulence theory, the equation is shown to have a steady-
state solution, which corresponds to the Kolmogorov-type power-law spectrum. Direct numerical simulations of
turbulence and Lagrangian particles are conducted. The result shows that the size distribution in a statistically
steady state agrees accurately with the theoretical prediction.
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I. INTRODUCTION

Coagulation growth of particles plays an important role in
various phenomena, such as growth of aerosol particles in the
atmosphere [1,2], raindrop formation in an atmospheric cloud
[2,3], planetesimal formation in protoplanetary disks [4,5], and
sol-gel transformation in polymerizing systems [6].

When the number of particles is huge and it is difficult
to track the motion of each particle, the evolution of the
particle size distribution is often considered instead. Here,
n(σ,t)dσ is defined as the number of particles having a volume
of between σ and σ + dσ per unit volume of fluid media
at time t . The evolution of the size distribution n(σ,t) due
to collision-coalescence is assumed to be described by the
Smoluchowski equation [7] as

dn(σ,t)

dt
= 1
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0
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0
K(σ1,σ2)n1n2δ(σ − σ1 − σ2)dσ1dσ2

− 1

2

∫ ∞
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∫ ∞

0

∫ ∞
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K(σ,σ1)nn1δ(σ2 − σ − σ1)dσ1dσ2

+ I + S, (1)

where ni = n(σi,t) (i = 1,2), δ() is the Dirac δ function, and
the collision kernel K(σ1,σ2) indicates the rate at which a pair
of particles with volumes σ1 and σ2 merge and form a particle
of volume σ = σ1 + σ2. The terms I and S represent a source
and sink of particles, respectively.

Recently, a theory was proposed to derive a steady-state
solution for (1) [8–10]. This theory uses similarities between
the Smoluchowski equation (1) and the kinetic equation, the
governing equation in wave turbulence theory which describes
the evolution of the energy spectrum in wave-number space
[10,11]. As usual in turbulence studies, a statistically steady
state under the presence of a source (I ) and sink (S) of particles
is considered in (1). After injection by the source around the
size σI , particles merge and grow in size, and finally they
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are removed by the sink around the size σS , where σI � σS .
In a size range where the effects of both source and sink
are assumed to be small (σI � σ � σS), a Kolmogorov-type
power-law distribution [n(σ ) ∼ σ ν , where ν is a constant] is
derived as a formal solution after the Zakharov transforma-
tion. The derivation assumes that mergings of particles with
comparable sizes are dominant in the coagulation interaction
associated with the solution. This property is called locality
in the size interaction, which corresponds to locality in the
scale interaction in turbulence theory [10–12]. Locality of the
size interaction can be examined a posteriori by substituting
the derived solution into (1) and checking the finiteness of the
collision integral. When the integral is finite, the assumption
of the interaction locality is confirmed and the solution is
established in the range σI � σ � σS in a statistically steady
state.

Horvai et al. (2008) [9] (hereinafter referred to as HNS)
applied this theory to spherical particles falling at their terminal
velocities in a stationary fluid under the influence of uniform
gravity and Stokes drag. HNS considered two simplified mod-
els for particle coalescence; either any particle pair coalesces
when their trajectories cross (referred to as “free merging”)
or coalescence is restricted to similar-sized particles (referred
to as “forced locality”). For the case of forced locality, HNS
derived a power-law solution of the Smoluchowski equation in
a steady state and showed that it is given by n(σ ) ∝ σ−13/6.
They also conducted direct numerical simulations (DNSs)
by calculating the Lagrangian evolution of particles, and
demonstrated that the size distribution close to the theoretical
prediction is established in a statistically steady state.

In HNS, the trajectory of a particle is uniquely determined
once it is introduced at a certain position in the system, because
particles are assumed to move straight in the direction of
the gravity force at their terminal velocities. The collision
rate is determined primarily by the difference in terminal
velocities of particles and corresponds to the gravitational
collision kernel K(σ1,σ2) = π (r1 + r2)2|V1 − V2|, where Vi

and ri[=(3σi/4π )1/3] are the terminal velocity and radius,
respectively, of a particle with volume σi (i = 1,2). Such a
model is a good approximation for the collision of raindrops
as considered by HNS and is actually used in various types
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of cloud models [13,14]. In general, however, it is also the
case that the randomness in the motion of fluid media plays an
important role in the transport, and hence collision statistics, of
particles. For example, the randomness in the motion of fluid
media due to turbulence has important effects on the collision
growth of cloud droplets [15–17], planetesimals [4,6,18], etc.

In the present study, we consider the case in which the
randomness of a turbulent flow field affects the collision
statistics of particles. As a simplest model, we consider the
collision-coalescence growth of spherical particles without
inertia advected by three-dimensional homogeneous isotropic
turbulence. In this case, the effect of the randomness of the
turbulent flow field on the collision of particles is repre-
sented in the well-known Saffman-Turner turbulent collision
kernel [19]:

K(σ1,σ2) = (r1 + r2)3

(
8πε

15νa

)1/2

, (2)

where νa is the kinematic viscosity of the fluid and ε is the
energy dissipation rate. For coalescence of particles, we follow
HNS and mainly consider the case with forced locality.

Another motivation of the present study is to examine the
consistency between theory and DNS, thereby validating the
accuracy of DNS, which uses a Lagrangian framework for
particles and includes collision-coalescence. DNS is a useful
tool and has been used in studies of the collision of particles
[20,21]. Although many of them consider applications for
situations that include not only collision but also coalescence,
these studies often do not model coalescence explicitly and
assume special forms of size distributions of particles, such as
monodispersed and bidispersed distributions. It is recently that
DNSs without such special assumptions have been conducted
[17,22,23], and the accuracy of those DNSs have not yet
sufficiently been validated with respect to the size distribution
spectrum formed due to collision-coalescence of various sizes
of particles. Our approach here examines the consistency
of theory and DNS for a situation which includes explicit
treatment of coalescence.

The remainder of the present paper is organized as follows.
Section II presents the theory. The Kolmogorov-type power-
law solution for the Smoluchowski equation (1) is derived.
Locality of the size interaction associated with the derived
solution is also examined, and an analytical form of the
constant coefficient for the solution is derived. In Sec. III, we
conduct DNSs and show that the theoretically predicted size
distribution is reproduced accurately in a statistically steady
state. A summary and discussion are provided in Sec. IV.

II. KOLMOGOROV-TYPE POWER-LAW SOLUTION

The procedure to derive a Kolmogorov-type power-law
distribution as a steady-state solution is the same as that in
HNS, except for the form of the collision kernel (2). Readers
are referred to HNS for more details concerning the derivation
and the theoretical background.

We consider a statistically steady state (d/dt = 0) in (1).
Particles are injected into the system by the source around the
size σI . They grow in size by merging, and are removed from
the system by the sink around the size σS . We assume that
σI � σS and that the effects of both source and sink are small

in the size range σI � σ � σS . In this range, the source and
sink terms can be neglected. Equation (1) is rewritten in the
same form as the kinetic equation in wave turbulence theory
as follows:

0 =
∫ ∞

0

∫ ∞

0
(Rσσ1σ2 − Rσ1σσ2 − Rσ2σσ1 )dσ1dσ2, (3)

where Rσσ1σ2 is defined as

Rσσ1σ2 = 1

2

(
3ε

10πνa

)1/2(
σ

1/3
1 + σ

1/3
2

)3

× n1n2δ(σ − σ1 − σ2). (4)

We assume a power-law solution n(σ ) ≈ σ ν in (3). After
substituting (σ1,σ2) = (σσ ′

1,σσ ′
2) for Rσσ1σ2 , we obtain

Rσσ1σ2 = 1

2

(
3ε

10πνa

)1/2

σ 2ν[(σ ′
1)1/3 + (σ ′

2)1/3]3

× (σ ′
1)ν(σ ′

2)νδ(1 − σ ′
1 − σ ′

2) = σ 2νR1σ ′
1σ

′
2
, (5)

and the first integrand in (3) is written as∫ ∞

0

∫ ∞

0
σ 2ν+2R1σ ′

1σ
′
2
dσ ′

1dσ ′
2. (6)

Next, we apply the Zakharov transformation ([10,11,24,25],
see also [8,9,26]) to the second and third integrands in (3). The
purpose of this transformation is to extract the same factor
σ 2ν+2R1σ ′

1σ
′
2

as in (6). The transformation is to substitute

(σ1,σ2) = (σ/σ ′
1,σσ ′

2/σ
′
1) (7)

and

(σ1,σ2) = (σσ ′
1/σ

′
2,σ/σ ′

2) (8)

into the second and third integrands in (3), respectively. First,
after the substitution (7), the second integrand in (3) can be
written as ∫ ∞

0

∫ ∞

0
σ 2ν+2(σ ′

1)−3−2νR1σ ′
1σ

′
2
dσ ′

1dσ ′
2. (9)

Second, after the substitution (8), the third integrand in (3) can
be written as∫ ∞

0

∫ ∞

0
σ 2ν+2(σ ′

2)−3−2νR1σ ′
1σ

′
2
dσ ′

1dσ ′
2. (10)

In summary, Eq. (3) is transformed into the following form:

0 = σ 2ν+2
∫ ∞

0

∫ ∞

0

(
1−σ−3−2ν

1 −σ−3−2ν
2

)
R1σ1σ2dσ1dσ2, (11)

after dropping the primes. Since R1σ1σ2 includes the Dirac
δ function δ(1 − σ1 − σ2), the right-hand side of the above
equation is identically zero if (1 − σ−3−2ν

1 − σ−3−2ν
2 ) = (1 −

σ1 − σ2), or ν = −2. Then,

n(σ ) ≈ σ−2 (12)

is a steady-state solution.

A. Locality of the solution

The above derivation assumes that the effects of both source
and sink are small. In other words, the size distribution in
the range σI � σ � σS is assumed to be independent of the
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characteristic sizes for the source (σI ) and sink (σS) at a steady
state. This corresponds to the assumption of locality in the
size interaction, meaning that coagulations of similar-sized
particles are dominant. Here, we check the validity of this
assumption for the solution (12).

We perform the same analysis as described in HNS (see
Appendix A for details). We consider the Smoluchowski
equation (1) before the Zakharov transformation, examine
the asymptotic behavior of the collision integrals for small
and large sizes, and check the finiteness of the integrals after
substituting the solution (12) into them. It is shown that the
coagulation interaction is local on small and large sizes of
particles if the following integration,∫

nσdσ, (13)

is finite for σ → 0 and σ → +∞, respectively. Substituting
n ≈ σ−2 into (13), we obtain∫

σ−2σdσ = ln σ + const. (14)

Since the integration diverges for both σ → 0 and σ → +∞,
the interaction is nonlocal. The assumption of the interaction
locality does not apply, and the distribution (12) is not estab-
lished at a steady state.

B. Forced locality

Here, we introduce the collision efficiency to enforce local-
ity on the size interaction of particles. The Smoluchowski equa-
tion (1) assumes that particles of any size collide. However,
when the trajectories of nearby particles are affected by the
flow field around them, the smaller particle tends to circumvent
the larger particle by tracking the stream line around it, and the
collision probability tends to be smaller for a particle pair with
a larger size ratio. This phenomenon is called hydrodynamic
interaction, and its effect can be introduced in Eq. (3) by using
the collision efficiency E as

0 =
∫ ∞

0

∫ ∞

0

(
Rσσ1σ2Eσ1σ2 −Rσ1σσ2Eσσ2 −Rσ2σσ1Eσσ1

)
dσ1dσ2.

(15)

Here, Eσ1σ2 indicates the collision efficiency of a particle pair
with volumes σ1 and σ2. Generally, Eσ1σ2 is a complicated
function of σ1, σ2 and other parameters [13]. In the present
study, however, we adopt the same strategy as HNS and use
the simplest form ofEσ1σ2 to include the effect of hydrodynamic
interaction:

Eσ1σ2 =
{

1 if 1/q < r1/r2 < q

0 otherwise , (16)

where r1/r2 = (σ1/σ2)1/3 is the radius ratio of the two particles
and the constant parameter q(>1) represents the cutoff for the
size interaction. This means that collisions are restricted to
particle pairs with a radius ratio of between 1/q and q.

The collision integral in (15) is finite with the collision
efficiency given by (16). Hence, the size interaction in this
case is local, and the Kolmogorov-type power-law distribution
is established in the size range σI � σ � σS at a steady state.
Because all three coefficients E in (15) are transformed into

Eσ ′
1σ

′
2

by Zakharov transformation when E is defined as (16), we
obtain the same equation as (11) except that R1σ1σ2 is multiplied
by Eσ1σ2 :

0 = σ 2ν+2
∫ ∞

0

∫ ∞

0

(
1−σ−3−2ν

1 − σ−3−2ν
2

)
Eσ1σ2R1σ1σ2dσ1dσ2.

(17)

Therefore, the solution is the same as (12). As in HNS, we
hereinafter refer to the coefficient (16) as forced locality.

C. Nondimensional constant

The advantage of the Zakharov transformation is that it
can determine the constant coefficient for the solution (12)
in addition to the slope ν. From arguments similar to those
presented in [8], an analytical form of (12) with the constant
coefficient is derived as follows:

n(σ ) = K0J
1/2
0 (νa/ε)1/4σ−2, (18)

where J0 is the particle volume injection rate from a source
and K0 is a nondimensional constant. The derivation of (18)
is described in Appendix B. The nondimensional constant K0,
given in (B9), depends on forced locality and is written as

K0 = 2

(
10π

3

)1/4[
dI (ν)

dν

∣∣∣∣
ν=−2

]−1/2

, (19)

where the integration I (ν) is given in (B4). After differentiating
I (ν) with respect to ν and substituting ν = −2, we have

dI (ν)

dν

∣∣∣∣
ν=−2

= −
∫ ∞

0

∫ ∞

0

(2 lnσ1)σ1 + (2 lnσ2)σ2

σ 2
1 σ 2

2

(
σ

1/3
1 + σ

1/3
2

)3

× Eσ1σ2δ(1 − σ1 − σ2)dσ1dσ2. (20)

Using the form of forced locality (16) and integrating (20) with
respect to σ2, we have

dI (ν)

dν

∣∣∣∣
ν=−2

=
∫ σmax

σmin

(2 ln σ1)σ1 + [2 ln(1 − σ1)](1 − σ1)

σ 2
1 (1 − σ1)2

× [
σ

1/3
1 + (1 − σ1)1/3

]3
dσ1, (21)

where

σmin = (1 + q3)−1, σmax = 1 − (1 + q3)−1. (22)

For example, (σmin,σmax) = (0.49,0.51) for q = 1.02, and
(σmin,σmax) = (0.01,0.99) for q = 5. We numerically calculate
the integration (21).

Figure 1(a) shows the relationship between the nondimen-
sional constant K0 and the cutoff parameter q. K0 is typically
order 0.1 and a decreasing function of q. The dependence of
K0 on q is interpreted as follows: the greater q means the
wider range of particle size involved in the size interaction,
leading to enhancement of the particle volume transfer by
the size interaction in σ space and to smaller K0. In the
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FIG. 1. (a) Nondimensional constant K0 in (19) as a function of
the cutoff parameter q for forced locality defined in (16). The data
points are from q = 1.004 to q = 16. (b) Same as (a) except that
the horizontal axis is β = log2(q). The blue line (∝ β−1/2) is the
asymptotic form of K0 for β ≈ 0 given in (26). The short black line
indicates a slope of −1/2.

case of q = 2,

K0(q = 2) = 0.377 . . . ≈ 0.38. (23)

An asymptotic form of K0 is obtained by setting

q = 2β (24)

and Taylor expanding (21) around β = 0. The expansion is
given as

dI (ν)

dν

∣∣∣∣
ν=−2

= 192(ln 2)2β + · · · , (25)

hence we have

K0 ≈ 1

4
√

3(ln 2)

(
10π

3

)1/4

β−1/2 = (0.3746 . . .) × β−1/2.

(26)

Figure 1(b) compares (26) with numerically calculated K0. The
agreement between the two is excellent, remarkably even for
β > 1.

III. DIRECT NUMERICAL SIMULATIONS

In this section, we conduct DNSs of particles advected
in three-dimensional homogeneous isotropic turbulence and
compare the results with the theoretical prediction obtained in
the previous section.

A. Experimental setup

The velocity field of a fluid is governed by the incompress-
ible Navier-Stokes equations:

∂u
∂t

+ u · ∇u = − 1

ρa
∇p + νa∇2u + f, ∇ · u = 0, (27)

where ρa is the density and f represents the external force.
We set ρa = 1.06 × 10−3 g cm−3 and νa = 0.15 cm2 s−1,
which are typical values for the terrestrial atmosphere. Particles
are regarded as spherical point masses without inertia that
are advected by the fluid velocity at the particle position.
The evolution equations for the position of the j th particle,
Xj (t), are

dXj

dt
= u(Xj ), (28)

where u(Xj ) is the fluid velocity at Xj . u(Xj ) is calculated
from the velocity field at the surrounding eight grid points by
linear interpolation.

We use the same collision detection scheme as that used
in [22]. The number density of particles is kept sufficiently
small, so that only binary collisions are considered. Collisions
of two particles are detected if their trajectories overlap. When
particles coalesce, the total mass is conserved. More detailed
explanations are provided in [22].

In the present simulation, we consider the case with forced
locality (16) and set q = 2. This means that a particle pair
with a radius ratio smaller than 2 coalesces if their trajectories
overlap. The case without forced locality may also be interest-
ing. However, this case requires more careful considerations
of sources and sinks, because the size distribution is expected
to be sensitive to precise forms of sources and sinks due to
nonlocal size interactions. Thus, we leave this as a task for
future study and herein consider the simplest case with forced
locality (16).

The numerical domain is a cubic box with a length Lbox =
25.6 cm per side. Periodic boundary conditions in three
directions are imposed on the flow field. We numerically
integrate the evolution equations (27) and (28) using the
second-order Runge-Kutta scheme. For spatial discretization
of the flow field, we use the pseudo spectral method with a
grid number N = 256 for each direction and a grid spacing

x = Lbox/N = 1 mm. The force f is solenoidal, is applied to
all wave-number components within a shell of 4 � kLbox � 6,
and is produced by an Ornstein-Uhlenbeck stochastic process,
the details of which are explained in [22]. Turbulence parame-
ters are summarized in the row “run 1” in Table I. Definitions
of turbulence parameters are given in Appendix C.

TABLE I. Numerical and mean turbulence parameters. Rλ is the Taylor microscale Reynolds number, E is the kinetic energy, ε is the mean
energy dissipation rate per unit mass, L is the integral scale, λ is the Taylor microscale, η is the Kolmogorov length, kmaxη is the cutoff wave
number normalized by the Kolmogorov length, Teddy is the large-eddy turnover time, and τK is the Kolmogorov time. Definitions of parameters
are given in Appendix C.

E ε L λ η Teddy τK

Rλ [cm2 s−2] [cm2 s−3] [cm] [cm] [mm] kmaxη [s] [s]

Run 1 27.5 17.2 17.5 1.93 1.22 1.18 3.42 0.57 9.27 ×10−2

Run 2 27.5 17.2 17.5 1.93 1.22 1.18 3.42 0.57 9.27 ×10−2

Run 3 39.6 55.0 85.8 1.76 0.98 0.792 2.30 0.29 4.18 ×10−2
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TABLE II. Particle parameters. Q0 is the particle number injec-
tion rate, J0 is the injection rate of the volume of particles [see (29)
for the definition], and n and Np are the mean number density and
total number of particles, respectively, in a statistically steady state.

Q0 J0 n

[cm−3 s−1] [s−1] [cm−3] Np

Run 1 4.77 × 10−1 3.49 × 10−8 629 1.06 × 107

Run 2 2.98 × 10−2 2.18 × 10−9 157 2.64 × 106

Run 3 4.77 × 10−1 3.49 × 10−8 427 7.16 × 106

We first integrate the evolution equation for the flow field
(27) without particles until a steady state is reached for
turbulence statistics. Typically, this takes a few large-eddy
turnover times. We then add particles into the system and
integrate evolution equations both for the flow field (27) and
particles (28). Turbulence is in a statistically steady state in all
results shown and, unless explicitly stated otherwise, a phrase
“statistically steady state” hereinafter refers to a steady state
in terms of particle statistics.

Particles are injected into the system at a constant rate Q0,
namely, Q0 new particles are introduced per unit volume of
fluid per unit time. For run 1, Q0(run 1) = 0.477 cm−3 s−1.
The initial positions of injected particles in the domain are
random. Their initial radii are between 21.4 and 30.0 μm,
determined by a uniform random number generator. As soon
as the radius of a particle exceeds 1000 μm, the particle is
removed from the system. The mean particle number density
at a statistically steady state is approximately n(run 1) =
629 cm−3.

The relation between the particle number injection rate Q0

and the particle volume injection rate J0 is given by

J0 = Q0 ×
∫ ∞

0
P (r)σ (r)dr, (29)

where P (r) is the probability density function for the radius
of injected particles. For the case of a uniform distribution,
P (r) = (r2 − r1)−1 for r1 � r � r2 and P (r) = 0 for other-
wise, and we obtain

J0 = Q0

(π

3

)(
r2

2 + r2
1

)
(r2 + r1). (30)

Substituting (r1,r2)= (21.4,30.0)×10−4 cm and Q0(run 1)=
0.477 cm−3 s−1, we obtain J0(run 1) = 3.49 × 10−8 s−1.

In addition to run 1, we conduct two additional experiments
in order to check the parameter dependence of the result. For
run 2, the particle number injection rate is reduced to 1/16 of
that of run 1, Q0(run 2) = 1/16 × Q0(run 1). For run 3, the
force amplitude is changed so that the mean energy injection
rate is increased from ε(run 1) = 17.5 cm2 s−3 to ε(run 3) =
85.8 cm2 s−3. The other turbulence and particle parameters are
summarized in Tables I and II, respectively.

For numerical simulations, we use a cloud microphysics
simulator, which is a DNS model for cloud turbulence and has
been developed in previous studies [22,27]. The supercomput-
ers used in the present study are the K-computer at the Research
Organization for Information Science and Technology (RIST)
in Kobe and the Fujitsu FX100 installed at Nagoya University.
Parallelization of the computer program was developed and
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FIG. 2. (a) Time-averaged kinetic energy spectra normalized by
Kolmogorov units: ε−1/4ν−5/4

a E(k). (b) Time-averaged dissipation
spectra normalized by Kolmogorov units: ε−1/4ν−5/4

a (kη)2E(k). The
results for runs 1–3 are indicated by the red, green, and blue curves,
respectively. Note that the red and green curves are almost identical.
The line in the left-hand panel indicates a slope of −5/3.

described in [22,27]. The time increment is chosen so that the
CFL condition for the turbulence is satisfied, and 
t = 10−3 s
for all runs. As explained later in Fig. 4, reaching a statistically
steady state takes a long time, over 8000 s (or eight million
steps with 
t = 10−3 s). These computations are conducted
with 4096 cores and the corresponding CPU time is over
110 h.

B. Results

Figure 2(a) shows the kinetic energy spectra for all runs
at steady states in terms of turbulence statistics. Curves are
normalized by Kolmogorov units. The time average of the
spectrum is calculated from the data every 10 s over 1000 s
(at least over 1500 large-eddy turnover times, see Table I) after
a statistically steady state is attained for turbulence statistics.
The peak of each spectrum is included in the wave-number
range in which the external force is applied. For higher wave
numbers, the slope of the spectra is steeper than−5/3, followed
by exponential decay near the cutoff wave number. An inertial
subrange with a slope of −5/3 is not clearly established
due to small Reynolds numbers Rλ. Figure 2(b) shows the
normalized dissipation spectra. Each spectrum in Fig. 2(b)
exhibits exponential decay at higher wave numbers, and values
near the cutoff wave number are at least 103 times smaller than
the peak value. All runs have kmaxη greater than 2, as shown
in Table I. These results indicate that turbulence is sufficiently
resolved [28,29].

Figure 3(a) shows the time average of the size distribution
n(σ,t) for run 1 in a statistically steady state. Here, the
time average is calculated from the data every 10 s over
5000 s (at least over 7500 large-eddy turnover times) after
a statistically steady state is attained for particle statistics.
The distribution accurately reproduces the predicted slope
of −2 in the volume range of 10−6–10−4 cm3, where the
effects of particle injection and removal are small. Theory
suggests that the transfer flux of the particle volume in this
range is approximately constant, resulting in the coagulation
subrange [2,30,31], which is analogous to the turbulence
inertial subrange. When the particle radius r is considered
instead of the volume σ for the size distribution, the theoretical
prediction for the slope is determined by the transforma-
tion formula: n(σ )dσ ∝ n(σ )r2dr = n(r)dr . Thus, we have
n(r) ≈ n(σ )r2 = σ−2r2 ∝ r−4.
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FIG. 3. (a) Time-averaged size distribution n(σ ) in a statistically
steady state. The results for runs 1–3 are indicated by the red, green,
and blue curves, respectively. The line indicates a slope of −2 from
the theoretical prediction. (b) Same as (a), but the distributions are
normalized by (34). The horizontal line indicates the nondimensional
constant K0 = 0.38 from the theoretical prediction (23).

The nondimensional constant K0 in (18) can be estimated
from Fig. 3(a). We use the data for run 1 in the range
5 × 10−6 < σ < 5 × 10−5. Substituting the parameters and
experimental results into (18), the mean value and standard
deviation are

KDNS
0 = 0.410 ± 0.005, (31)

for the case q = 2 in (16) considered in the present DNS. Since
the theoretical prediction for q = 2 is K0 = 0.38 as given in
(23), the agreement between the theory and DNS is within
7%, which is fairly good. However, in view of the standard
deviation of KDNS

0 , the DNS result slightly overestimates the
value of the nondimensional constant.

There are two possible causes for the above overestimation.
The first is that the overestimation comes from the overpredic-
tion in the Saffman-Turner kernel (2). Wang et al. [21] con-
sidered the monodispersed size distribution and demonstrated
that the form (2) for the monodispersed case,

�1 = (2r)3

(
8πε

15νa

)1/2

, (32)

tends to overpredict the kernel in comparison to the more
accurate form,

�2 = 2π (2r)2|w|, (33)

due to the assumptions in (32), where r is the particle radius and
|w| is the mean relative velocity in the longitudinal direction
between two points with a distance 2r . For example, in their
experiments with Rλ = 24, η/
x = 0.45, and r/
x = 0.4,
they showed that the overprediction is about 4.9%, where
0.8% is from the assumption R � η and 4.1% is from the
Gaussian assumption of statistics for the turbulent flow field.
In the present study, Rλ = 27.5, η/
x = 1.18, and 0.02 �
r/
x � 1. Thus, it is possible that Eq. (2) overpredicts the
collision rate by a few percent. The second possibility is
that the collision rate is underestimated in our DNS due
to the linear interpolation scheme used for calculating the
flow velocity at the particle position. Yokojima et al. [32]
compared the linear and cubic interpolation schemes and
demonstrated that DNSs with the linear interpolation scheme
tends to underestimate the collision rate as compared to
those with the cubic interpolation scheme. For example,
in their experiments where Rλ = 31.0, η/
x = 1.19, and
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FIG. 4. (a) Snapshots of the size distribution n(σ,t) for run 1 at
t = 500 s (red), 2000 s (green), 4000 s (blue), 6000 s (purple), and
8000 s (cyan) from left to right. The short line indicates a slope of
−2 from the theoretical prediction. (b) Same as (a), except that the
distributions are normalized by (34). The horizontal line indicates the
nondimensional constant K0 = 0.38 from the theoretical prediction
(23).

r/
x = 0.60, they showed that the underestimation is about
1.8%. Since the present DNS uses the linear interpolation
scheme, it is possible that the collision rate is slightly un-
derestimated. Both of the two possibilities discussed above
are consistent with the overestimation of the nondimensional
constant K0 in our DNS (31) in comparison with the prediction
(23).

According to the theoretical prediction (18), the size distri-
bution n(σ ) can be normalized as

n(σ ) = J
1/2
0 (νa/ε)1/4σ−2n̂(σ/σ0), (34)

where n̂(σ/σ0) is a nondimensional function, and σ0 is the
volume at which particles are removed. In the present sim-
ulation, σ0 is the volume of the sphere with a radius of
r = 1000 μm and σ0 = 4.19 × 10−3 cm3. Figure 3(b) shows
the normalized size distribution n̂(σ/σ0). In this figure, the
horizontal line corresponds to the theoretical prediction and
the nondimensional constant K0.

The slope of the size distribution for σ > 10−3 cm3 in
Fig. 3(a) is slightly shallower than −2, forming a small cusp
in the right tail of the distribution. The cusp is more clearly
seen in the normalized size distribution in Fig. 3(b). This cusp
is formed due to the effect of particle removal. Since particles
with radii greater than 1000 μm are removed in the present
simulation, coagulation growth of particles for σ > 10−3 cm3

in Fig. 3(a) through interaction with removed particles is sup-
pressed. In order to compensate for this suppression, the am-
plitude near the right tail becomes greater than the theoretical
prediction, resulting in the shallower slope and the small cusp.

The results for different parameters (such as J0, ε) are
expected to collapse onto a single curve after the normalization
described in (34). In order to confirm this, we conduct two
additional experiments, runs 2 and 3. In run 2, the particle
number injection rate Q0 (and hence the volume injection rate
J0) is decreased to 1/16 of that of run 1. On the other hand, in
run 3, the force amplitude is increased so that the mean energy
injection rate is ε = 85.8 cm2 s−3. The turbulence and particle
parameters for runs 2 and 3 are summarized in Tables I and II,
respectively. The normalized size distributions for runs 2 and 3
are plotted in Fig. 3(b) along with that for run 1, which exhibits
almost perfect collapse.

Figure 4(a) shows snapshots of the evolution of the size
distribution n(σ,t) for run 1. As shown in the figure, attaining
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a statistically steady state takes a long time, over 8000 s (or
13 000 large-eddy turnover time). The similarity between the
evolution of the size distribution shown in Fig. 4(a) and the
typical evolution of a power spectrum in turbulence theory
(for example, see Fig. 3 in [33]) is striking. The distribution
in Fig. 4(a) gradually broadens with time, extending the
coagulation subrange (the range of −2 slope of the spectrum)
as predicted from turbulence theory, and showing an approxi-
mately exponentially decaying right tail.

Let us estimate the timescale of the coagulation interaction
by a simple scaling argument. We consider the Smoluchowski
equation (1) with the Saffman-Turner kernel (2) without a
source and sink, and substitute into it the characteristic scales
for time (Tc) and particle volume (σc). Omitting constants,
we have

nc

Tc
≈ σc

(
ε

νa

)1/2

ncncσ
−1
c σcσc, (35)

wherenc is the characteristic magnitude for the size distribution
with volume σc. Since nc is estimated as

nc ≈ K0J
1/2
0

(
ε

νa

)−1/4

σ−2
c (36)

from (18), we obtain

Tc ≈ K−1
0 J

−1/2
0

(νa

ε

)1/4
= K−1

0 J
−1/2
0 τ

1/2
K , (37)

where τK is the Kolmogorov time for fluid turbulence. Substi-
tuting K0 = 0.38, J0 and τK for run 1 (Tables I and II), we have
Tc ≈ 4000 s, which is roughly consistent with the time period
(∼8000 s) taken for attaining a statistically steady state in run
1.

We note two points about the coagulation timescale (37).
First, the timescale is determined by three components: (1)
the particle volume injection rate, (2) the Kolmogorov time,
and (3) forced locality. The interpretation is as follows. The
greater particle volume injection rate J0 results in the greater
particle number density, hence the higher collision rate and
shorter timescale Tc. The shorter Kolmogorov time τK means
the greater velocity gradient of fluid turbulence [19], hence
the higher collision probability of particles and the shorter
coagulation timescale Tc. The effect of forced locality is
included in K0. Second, the coagulation timescale (37) does
not depend on the characteristic scale of particle volume σc.
This is supported by Fig. 4(a), where the size distribution
expands toward greater σ approximately 1 order of magnitude
every 2000 s from t = 2000 s to 8000 s. Interestingly, such a
relationship between the characteristic time and length scales
is similar to that in two-dimensional turbulence, where the
characteristic timescale for a given size of eddy in the enstrophy
inertial subrange is independent of the eddy size apart from the
logarithmic correction [34,35]. [This similarity suggests that
the divergence of the collision integral discussed in (14) could
be controlled by a logarithmic correction as in two-dimensional
turbulence. But we do not delve into this problem further in
the present study.]

Figure 4(b) shows the evolution of the nondimensional
size distribution n̂(σ/σ0,t) which has been normalized in the
same manner as in (34). In each snapshot for t � 4000 s,
the amplitude near the right tail is slightly greater than that

in the middle part, forming a small bump near the right end
of the distribution. Presumably, this bump is formed through
a mechanism similar to that which causes the cusp in Fig. 3,
which might correspond to the bottleneck effect, as observed
in DNSs and large-eddy simulations (LESs) of turbulence
[36–39].

IV. SUMMARY AND DISCUSSION

As the simplest model for the coagulation growth of
particles in a turbulent flow, we investigated the collision-
coalescence growth of noninertial particles advected in three-
dimensional homogeneous isotropic turbulence. In this case,
the probability of collision of a particle pair is given by
the Saffman-Turner collision kernel (2). We considered a
statistically steady state where particles are injected into the
system by a source around the size σI , grow in size by merging,
and are removed by a sink around the sizeσS . We considered the
size range σI � σ � σS , where the effects of source and sink
are assumed to be small. We applied a methodology developed
in previous studies [8–10], which is based on turbulence
theory, and derived a Kolmogorov-type power-law distribution
n(σ ) ≈ σ−2 as a formal solution of the Smoluchowski equation
with the Saffman-Turner kernel. We also showed that the
coagulation interaction associated with the derived solution is
nonlocal and that the solution is not established without forced
locality, a simplified model for hydrodynamic interaction that
restricts the coagulation interaction to similar-sized particles.
We then derived the analytical expression for the power-law
distribution including the nondimensional constant K0. We
conducted direct numerical simulations (DNSs) of nonin-
ertial particles advected in three-dimensional homogeneous
isotropic turbulence. The predicted slope of −2 was confirmed
to be reproduced accurately in a statistically steady state. In
addition, fairly good agreement between the theory and DNS
was confirmed for the nondimensional constant K0.

Although the present study is similar to the previous study
by HNS [9], the following aspects of our work should be noted.
The first is the accuracy of the steady-state size distribution
reproduced by our DNS. The distribution reproduced by DNS
in HNS (their Fig. 3) has sawtoothlike noise throughout the
entire size range, and, based on their results, it was unclear
whether this noise was of numerical origin. On the other hand,
as shown in Fig. 3, the steady-state size distribution in our DNS
accurately reproduced the theoretical prediction of the slope
−2 in the middle part of the spectrum, where the effects of the
source and sink are small. Such accurate results further made
it possible to estimate the nondimensional constant K0, which
was demonstrated to agree fairly well with the theoretical pre-
diction. The second is the difference in the mechanism which
affects the collision statistics of particles. In contrast to the sys-
tem considered in HNS where the collision statistics are mainly
determined by differences in terminal fall velocities of parti-
cles, we considered the system where the collision statistics are
affected by the randomness in the motion of fluid media due to
turbulence. Collision-coalescence of particles in turbulence is
relevant to various phenomena. Even though the present study
uses many simplifying assumptions, such as ignoring particle
inertia, the good agreement between theory and DNS shown in
our results provides further support for the wider applicability

053108-7



IZUMI SAITO, TOSHIYUKI GOTOH, AND TAKESHI WATANABE PHYSICAL REVIEW E 97, 053108 (2018)

of turbulence theory to coagulation growth of particles in those
phenomena, and encourages further studies in this direction.

We also found notable similarities between the size distribu-
tion of particles formed through collision growth in the present
study and the energy spectrum associated with nonlinear inter-
actions in turbulence. A bump was observed in the developing
edge of the size distribution during its time evolution (Fig. 4).
After a statistically steady state was attained, this bump was
replaced by a small cusp in the right end of the distribution,
where the sink effect occurs (Fig. 3). These bumps and cusps
are reminiscent of the bottleneck effect observed in DNSs
and LESs of fluid turbulence [36,37,39]. This is reasonable
because the bottleneck effect is also predicted theoretically
and confirmed by numerical simulations in wave turbulence,
as described in Sec. 3.4.2 of [11]. As far as we know, however,
the present study is the first to demonstrate the bottleneck effect
in DNSs of collision-coalescence growth of particles.

The present study also provides validation for the accuracy
of DNS, which uses a Lagrangian framework for particles and
includes collision-coalescence [17,22,23]. The consistency
between theory and DNS is confirmed with respect to the size
distribution spectrum which is formed by the coagulation of
various sizes of particles and derived as a formal solution of
the Smoluchowski equation.
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APPENDIX A: LOCALITY OF THE SOLUTION

Here, we check locality of the size interaction associated
with the solution (12) based on the kernel (2) by performing
the same analysis as described in Appendix 1 of HNS [9] (see
also Sec. 3.1.2 in [11]). We define f (σ1,σ2) = K(σ1,σ2)n1n2.
The collision integrals in the Smoluchowski equation (1) can
be rewritten as

∫ σ/2

σmin

f (σ1,σ − σ1)dσ1 −
∫ σmax

σmin

f (σ1,σ )dσ1, (A1)

where zero and infinity in the integration range are replaced
by σmin and σmax, respectively. We can further rearrange above
integrals to separate terms with σmin from those with σmax as∫ σ/2

σmin

[f (σ1,σ − σ1) − f (σ1,σ )]dσ1 −
∫ σmax

σ/2
f (σ1,σ )dσ1.

(A2)

If the first and second integrals in (A2) are finite for σmin →
0 and σmax → ∞, respectively, the coagulation interaction is
local on small and large sizes of particles.

We first consider the case σmin → 0. We should check the
contribution from the integrand for small σ1, or σ1 � σ . The
integrand in the first integral in (A2) is Taylor-expanded as

f (σ1,σ − σ1) − f (σ1,σ ) ≈ σ1∂σ [f (σ1,σ )]. (A3)

For σ1 � σ , we get f (σ1,σ ) ≈ σn1n from (2), and the first
integral in (A2) is approximately written as[∫ σ/2

σmin

n1σ1dσ1

]
∂σ (σn). (A4)

We next consider the case σmax → ∞. We should check
the contribution from the integrand for large σ1. For σ1 � σ ,
we get f (σ1,σ ) ≈ σ1n1n, and the second integral in (A2) is
approximately written as

−n

[∫ σmax

σ/2
n1σ1dσ1

]
. (A5)

Note that we obtain the same integrand as that in (A4).
From (A4) and (A5), the coagulation interaction is local on

small and large sizes of particles if the following integration,∫
n1σ1dσ1, (A6)

is finite for σ1 → 0 and σ1 → ∞, respectively.

APPENDIX B: ANALYTICAL FORM OF
THE CONSTANT COEFFICIENT

Here, we derive an analytical form of the constant coef-
ficient for the steady-state solution (12) with the collision
coefficient (16). We express the size distribution as

n(σ ) = Cσν, (B1)

and derive the form of a constant C for the case ν = −2. The
procedure is similar to that described in [8].

The continuity equation for the particle volume in σ space
is expressed as

∂

∂t
[σn(σ,t)] = − ∂

∂σ
J (σ,t), (B2)

where J (σ,t) is the flux of the particle volume. Substituting the
form (B1) into the Smoluchowski equation after the Zakharov
transformation and comparing the result with (B2), we have

∂

∂σ
J (σ,t) = C2σ 2ν+3λI (ν), (B3)

where λ = 2−1(3ε/10πνa)1/2, and I (ν) is defined as

I (ν) = −
∫ ∞

0

∫ ∞

0

(
1−σ−3−2ν

1 −σ−3−2ν
2

)
Eσ1σ2S1σ1σ2dσ1dσ2,

(B4)
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where

S1σ1σ2 = λ−1R1σ1σ2

= (
σ

1/3
1 + σ

1/3
2

)3
σ ν

1 σ ν
2 δ(1 − σ1 − σ2). (B5)

By integrating (B3), we have

J (σ,t) = C2λσ 2ν+4 ×
(

I (ν)

2ν + 4

)
. (B6)

We consider a steady state with ν = −2. From (B2) at a steady
state, the flux J is constant and equal to J0, the injection rate of
particle volume from the source. Since both the numerator and
denominator in the parenthesis in (B6) are zero for ν = −2,
we apply L’Hôpital’s rule and obtain

J0 = C2λ

2
× dI (ν)

dν

∣∣∣∣
ν=−2

. (B7)

Solving the above equation in terms of C and substituting λ =
2−1(3ε/10πνa)1/2, we have

C = K0J
1/2
0 (νa/ε)1/4, (B8)

where

K0 = 2

(
10π

3

)1/4[
dI (ν)

dν

∣∣∣∣
ν=−2

]−1/2

(B9)

is the nondimensional constant. Therefore, the steady-state
solution is

n(σ ) = K0J
1/2
0 (νa/ε)1/4σ−2. (B10)

APPENDIX C: DEFINITIONS OF TURBULENCE
PARAMETERS

The kinetic energy is defined by

E = 1

2

〈
u2

i

〉 =
∫ ∞

0
E(k)dk, (C1)

where ui (i = 1,2,3) are components of velocity vector u
(repeated indices are summed), the angle brackets 〈· · · 〉 rep-
resent the spatial and temporal averages, and E(k) is the
kinetic energy spectrum. The mean energy dissipation rate is
defined by

ε = νa

2
〈(∂iuj + ∂jui)

2〉. (C2)

The integral scale, Taylor microscale, and Kolmogorov scale
are respectively defined by

L =
(

3π

4E

)∫ ∞

0
k−1E(k)dk, (C3)

λ =
√〈

u2
1

〉
/〈(∂1u1)2〉, (C4)

η = (
ν3

a /ε
)1/4

. (C5)

The large-eddy turnover time and Kolmogorov time are re-
spectively defined by

Teddy = L/urms, (C6)

τK = (νa/ε)1/2, (C7)

where urms = √
2E/3 is the root-mean-square velocity. The

Taylor microscale Reynolds number is defined by

Rλ = urmsλ/νa. (C8)
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