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Three-dimensional instabilities of natural convection between two differentially heated vertical
plates: Linear and nonlinear complementary approaches
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The transition to the chaos of the air flow between two vertical plates maintained at different temperatures
is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow
consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear
predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient
linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding
to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the
lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear
simulations. The flow becomes temporally chaotic for Ra = 1.05Rac, but remains characterized by the spatial
patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis
and nonlinear simulation.
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I. INTRODUCTION

Natural convection between two infinite vertical differen-
tially heated plates is an idealized configuration of interest for
a large range of geophysical or industrial applications such as
water pollution, insulation, or cooling of electronic devices. In
order to minimize the energy expense and enhance the transfer
properties of these processes, which are generally complex, it is
important to achieve a thorough understanding of the instability
mechanisms in simplified geometries. The focus of the current
paper is the early transition of the flow, which shares some
similarities with that of a confined mixing layer, and not the
fully turbulent boundary layer regime. The idea is to map out
the first instabilities leading the flow to chaos.

Several earlier studies have been carried out in two-
dimensional (2D) configuration [1–20], however these studies
leave out potentially important three-dimensional (3D) effects.
One of our goals is to carry out three-dimensional stability
analysis of the natural convection between two infinite, verti-
cal, differentially heated plates, following an approach recently
used for other three-dimensional geometries, such as a cubic
cavity [21], as well as in a horizontal cylinder in the presence
of rotation [22].

In the vertical fluid layer, a few studies have already partially
investigated the sequence of instabilities in three dimensions
and brought to light the destabilizing effect of spanwise modes.
In these studies the Prandtl number defined as Pr = ν/κ , where
ν is the kinematic viscosity and κ is the thermal diffusivity,
is fixed and the varying parameter is the Rayleigh number
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defined as Ra = gβ�T D3/(νκ), with β the thermal expansion
coefficient, g the gravity, �T the temperature difference, and
D the distance between the plates. The pioneering study of
Nagata and Busse [23] investigated the sequence of instabilities
in a shear layer between two differentially heated sidewalls
in the limit of Pr = 0. The primary instability consisted of
2D transverse rolls. Three secondary instability mechanisms
for the rolls were identified: an Eckhaus instability in the
vertical direction, a monotone instability, and an oscillatory
instability. Above the Rayleigh number Ra = 5822, the 2D
flow bifurcates to a steady 3D pattern corresponding to “a
vortex-pairing instability with alternating pairing in the span-
wise direction” [23]. This 3D pattern becomes unstable when
Ra > 7852 and gives way to an oscillatory 3D pattern, which
corresponds to structures shifted back and forth periodically
in time in the transverse direction. The spanwise wavelength
of the structures is twice that of the steady pattern associated
with the monotone instability.

Chait and Korpela [24] also studied the stability of 2D
rolls for air (Pr = 0.71) convection between two vertical
differentially heated plates. Since Pr is not zero, the stability
map is somewhat different from Nagata and Busse’s [23],
although they do recover the three types of instabilities found
by these authors. They denote the first monotone instability
A. However they also identify a second monotone instability,
which they denote B. The pattern associated with
instability B consists of rolls periodically thickening and
thinning in the transverse direction y, which resembles the
skewed varicose instability in Rayleigh-Bénard convection.

Still another study by Clever and Busse [25] computed
equilibria and traveling wave solutions for air convection
between two vertical differentially heated plates. They also
recovered the monotone instability A. Using symmetry
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considerations, other possible solutions were charted at dif-
ferent Rayleigh numbers. They brought to light a pattern
consisting of a traveling wave of 3D invariant shape moving
downward, which is different from the oscillatory flow pattern
found by Nagata and Busse [23]. Both the instability A and
the traveling wave modes were found to exist at Ra = 7000.
This is in partial agreement with Wright et al.’s experiment in
air [26], which displayed 2D rolls at Ra = 6800 moving slowly
downwards. Two-dimensional rolls moving slowly downwards
were also identified in the experimental results and the 2D
numerical simulation of Lartigue et al. [20] in a tall air-filled
cavity.

Although similar 3D instability mechanisms were identified
in these three studies, it is not known which solutions are
actually found in the flow. To determine this, three-dimensional
direct numerical simulation (DNS) was carried out for the
air flow between two infinite, vertical, differentially heated
plates [27]. Due to the computational cost, the spanwise
periodic dimension of the domain was constrained to be equal
to the interplate distance. Successive flow bifurcations were
investigated from the one-dimensional base flow to the 3D
chaotic regime. As predicted by linear stability analysis, the
first bifurcation occurs at Rac = 5708 and is marked by the
onset of 2D corotating rolls. A second bifurcation takes place
at Ra = 9980 leading to a 3D steady flow. Above Ra = 11 270,
the flow becomes oscillating. Beyond Ra = 12 100, compe-
tition between a period-doubling cascade and an Eckhaus-
like instability in the vertical direction is observed. The
Eckhaus-like instability rapidly becomes dominant and leads
to a temporally chaotic regime. Although the small spanwise
extent of the configuration hampered the development of low-
wave-number instabilities in that direction, it was nonetheless
found that transverse effects characterized the development of
instabilities and transition to chaos.

This was confirmed by the recent study of Cimarelli and
Angeli [28], in which the flow pattern of natural convection
between two differentially heated, infinite, vertical plates was
investigated using DNS. Two different domain sizes were
considered. In the larger domain, the 2D steady flow consisting
of corotating rolls is observed from Ra = 5800 up to Ra ≈
10 200 where a second bifurcation occurs and rapidly leads
to flow to a fully chaotic regime. On the other hand, when
Rayleigh number is decreased from the chaotic regime to the
laminar regime, a hysteresis phenomenon was observed. In
a smaller domain with reduced spanwise length, the second
bifurcation at Ra = 10 200 leads to a unsteady 2D pattern up
to Ra = 14 000, where 3D structure appears. We note that this
last observation is different from the results found in [27] for a
channel of smaller spanwise extent. In addition, Cimarelli and
Angeli [28] found that finite amplitude disturbances led to a
second bifurcation at Ra = 10 200 towards a 3D steady flow
pattern while infinitesimal disturbances give rise to an unsteady
2D pattern. If Ra is further increased, the simulation with finite
disturbances recovers the 3D unsteady structure regime of
the simulation with infinitesimal disturbances at Ra = 14 000.
They conclude that the flow regimes are extremely sensitive to
the domain size, grid resolution, and perturbation amplitude.
This makes the prediction of nonlinear simulation results quite
difficult for a given set of parameters (Rayleigh number, plate
aspect ratio).

Given the limitations of both linear stability analysis and
nonlinear simulation, the motivation for the present paper is to
combine the two approaches to investigate three-dimensional
effects in the transition to chaos of natural convection. We
first use a fast linear approach based on the Arnoldi method to
determine the critical spanwise wave numbers characterizing
the secondary instability. This has not been done in [27,28].
In particular, we investigate the sensitivity of the secondary
instability with respect to a small deviation of vertical aspect
ratio of the chosen domain by considering two different
periodic lengths in the vertical direction. We note that the
Arnoldi method’s base flow is 2D, so that the eigenmodes are
not constrained to be pure Fourier in the vertical direction,
unlike earlier stability studies, but corresponds to combinations
of them, which allows more flexibility in the definition of
eigenmodes. The flow reconstructed from the most unstable
linear eigenmodes is then compared to that obtained by
nonlinear simulation when the Rayleigh number is slightly
above the secondary stability threshold. Finally, the route to
chaos is explored with nonlinear simulation using periodic
plate aspect ratios which are close to the critical wavelengths
provided by linear stability analysis.

II. PHYSICAL PROBLEM AND NUMERICAL
APPROACHES

We consider the three-dimensional flow of air between two
infinite vertical plates maintained at different temperatures.
The configuration is represented in Fig. 1. The distance
between the two plates is D, and the periodic height and depth
of the plates are Lz and Ly , respectively. The temperature
difference between the two plates is �T . The direction x is
normal to the plates, the transverse direction is y, and the
gravity g is opposite to the vertical direction z.
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FIG. 1. Left: Configuration. Air flow (Pr = 0.71) between two
vertical plates separated by a distance D and maintained at different
temperatures: the hot plate (left, in red) is at temperature �T

2 while the
cold plate (right, in blue) is at temperature −�T

2 . Periodic boundary
conditions are imposed in the vertical and in the spanwise direction.
The periodic height and width of the plates are, respectively, Lz and
Ly , and the corresponding aspect ratios are Ay = Ly/D and Az =
Lz/D. The gravity g is opposite to the vertical direction z. Right:
Steady laminar conduction solution profiles for the vertical velocity
W (x) and temperature �(x).
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The fluid properties of air, such as the kinetic viscosity ν,
thermal diffusivity κ , and thermal expansion coefficient β, are
supposed to be constant. The four nondimensional parameters

characterizing the flow are the Prandtl number Pr = ν

κ
, the

Rayleigh number based on the width of the gap between the
two plates Ra = gβ�T D3

νκ
, and the transverse and vertical aspect

ratios Ay = Ly/D and Az = Lz/D, respectively. The Prandtl
number of air is fixed to 0.71.

The flow is governed by the Navier-Stokes equations within
the Boussinesq approximation. Here t denotes time, −→

u =
(u,v,w) is the velocity vector, p is the pressure, and θ is the
temperature. D, �T , and κ

√
Ra/D are chosen as references

for length, temperature, and velocity, respectively. We note that
the velocity scale corresponds to the velocity scaling expected
in the laminar boundary layer of a vertical natural convection
plate, which comes from balancing buoyancy and diffusion
in the vertical momentum equation and balancing convection
and diffusion in the temperature equation (see [29] for a full
derivation).

The nondimensionalized equations are

∇ · −→
u = 0, (1)

∂
−→
u

∂t
+ −→

u · ∇−→
u = −∇p + Pr√

Ra
�

−→
u + Prθ−→

z , (2)

∂θ

∂t
+ −→

u · ∇θ = 1√
Ra

�θ (3)

with Dirichlet boundary conditions at the plates,

−→
u (0,y,z,t) = −→

u (1,y,z,t) = 0, θ (0,y,z,t) = 0.5,

θ (1,y,z,t) = −0.5, (4)

and periodic conditions in the y and z directions.
Equations (1)–(4) admit an O(2) × O(2) symmetry. One

O(2) symmetry corresponds to the translation in the trans-
verse direction y and the reflection y → −y, while the other
corresponds to the translations in the vertical direction z and
a reflection that combines centrosymmetry and Boussinesq
symmetry: (x,z,T ) → (1 − x, − z,−T ).

The equations of motion (1)–(4) admit an analytic steady
solution (U,V,W,�), the pure conduction state, which depends
only on the x direction and constitutes the base flow:

U = 0, V =0, W (x)= 1
6

√
Ra

[(
x − 1

2

)3− 1
4

(
x − 1

2

)]
,

×�(x) = −(
x − 1

2

)
. (5)

The velocity and temperature profiles corresponding to the
steady conduction solution are represented in Fig. 1 (right).
The derivation of linearized 3D Navier-Stokes equations and
a description of the Arnoldi-based linear stability analysis
approach are given in the Appendix. Both the fully nonlinear
and linearized equations are integrated in the current study with
spectral codes [30–32]. The Chebyshev-Fourier collocation
method is used for the spatial discretization. Incompressibility
is enforced by the projection-correction method. The equations
are integrated in time with a second-order mixed explicit-
implicit scheme. We established spatial convergence of the
flow resolution.

The cost of integration of the linearized 3D Navier-Stokes
equations [Eq. (A1) in the Appendix] for one typical config-
uration is about several hours. With the Arnoldi method, it
reduces to only tens of minutes for the same configuration
on an ordinary personal computer. In contrast, integration in
time of the full 3D nonlinear Navier-Stokes equation (1)–(4)
requires several hundred hours for a single configuration to
reach its asymptotic state on the IBM Intel-based cluster of the
French Institute for Development and Resources in Intensive
Scientific Computing (IDRIS).

III. LINEAR STABILITY ANALYSIS

The onset of the secondary instability leads the 2D flow to
a 3D steady state as established in the literature [23–25]. In
this section, we determine the critical spanwise wave number
associated with the roll size given by the periodic length of the
plate in the vertical direction, and the flow patterns associated
with the corresponding instabilities.

A. Base flow

Both linear stability analysis and nonlinear integration
confirm that the first instability occurs at Rac1 = 5708 and
is characterized by the appearance of 2D corotating rolls
[23–25,27] with a critical wave number kzc = 2.81. As men-
tioned in [27], the vertical translation invariance is replaced
with a D4 symmetry, and the centrosymmetry due to the
Boussinesq approximation is conserved.

To represent the flow structures, shown in Fig. 2, we use the
Q criterion devised in [33] to visualize coherent structures in
turbulent flows. The Q criterion is defined as Q = 1

2 (	k	k −
EijEij ), where 	k is the vorticity 	k = 1

2 ( ∂ui

∂xj
− ∂uj

∂xi
) and Eij

is the rate of strain tensor Eij = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
). Values of Q

therefore represents a measure of the local balance between

FIG. 2. Rolls visualized with the Q criterion using an isovalue of
Q = 0.1 at Ra = 6050, t = 2000, and Az = 9.
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the vorticity magnitude and the strain rate. A positive value of
Q provides an indication of strong vortical structures.

B. Methodology

We use the Arnoldi method to determine the critical
Rayleigh number Rac2 at which secondary instability in the
spanwise direction y first occurs, and the corresponding
eigenmodes. For a given vertical aspect ratio Az, we wish
to determine the critical Rayleigh number Rac2 at which the
secondary instability occurs and the corresponding spanwise
critical wave number kyc. At a given wave number kyi , the
code is run for different Raj . Each run yields several leading
eigenvalues. The real part of the first leading eigenvalue σij

determines the stability of the mode kyi at Raj . As σij increases
almost linearly with Raj , linear extrapolation can be used to
find the critical Rayleigh number Rac2i . Then the procedure
is repeated for a range of kyi to calculate the corresponding
Rac2i . The neutral curve can be obtained by plotting Rac2i as a
function of kyi . The minimum of the neutral curve corresponds
to Rac2.

The vertical ratio Az should be large enough to allow
interaction between the structures (i.e., low-wave-number
instabilities). We also wish to study the sensitivity of the
secondary instability to the roll size, i.e., the exact value of kz.
Since kzc = 2.81, where kzc is the critical wave number of the
primary instability, we chose to study the cases Az = Lz/D =
9 and Lz/D = 10, which both accommodate four rolls.

C. Case Az = 9 (kz = 2.79)

For the case Az = 9, the wave number associated with the
primary instability (2D rolls) is kz = 2.79, which is very close
to the critical wave number kzc = 2.81. Rac2 is found to be
6056, and kyc = 1.6 (see the neutral curve in Fig. 3), and σ

is real so the most unstable mode is stationary. This agrees
well with previous results [23,24]. The value of kyc appears to
correspond to that associated with monotone instability A.

The different components of the most unstable eigen-
mode (velocity components in u, v, and w and temperature
θ ) are represented on the vertical center plane x = 0.5 in
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FIG. 3. Neutral curve, σ (Rac2i) = 0, as a function of the wave
number ky , Az = 9
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FIG. 4. Arnoldi eigenmode at Ra = 6100 with Az = 9 on the
central plane x = 0.5. Left, from top to bottom: (a–d) Velocity
componentsu, v, and w and temperature θ . Right, from top to bottom:
Fourier modulus |û(iy,iz)|, |v̂(iy,iz)|, |ŵ(iy,iz)|, and |θ̂ (iy,iz)|.

Figs. 4(a)–4(d). We checked that similar remarks to those made
below would hold for any other vertical plane x = const.

Examination of the Fourier spectra allows direct identifica-
tion of the characteristic wavelengths of a given solution. The
Fourier transform of the eigenmode in the directions y and z

was therefore computed. Due to the periodic directions, any
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FIG. 5. Neutral curve, σ (Rac2i) = 0, as a function of the wave
number ky , Az = 10.

physical quantity q = (u,v,w,θ ) can be represented as

q(x,y,z) =
∑
iy

∑
iz

q̂x(iy,iz)exp

(
2iπizz

Lz

)
exp

(
2iπiyy

Ly

)

where iy and iz are horizontal wave numbers. In the rest of
the paper we drop the subscript x and will note q̂(iy,iz) for
q̂x(iy,iz). By construction, each eigenmode of the Arnoldi
method corresponds to a single value of |iy |. The modulus of the
most unstable eigenmode components |q̂(iy,iz)| is represented
in Figs. 4(e)–4(g). We see that the modes associated with the
pattern are all characterized by |iy | = |iz| = 2. This regular
flow pattern corresponds to the mode A which was identified
in [23,24] and corresponds to local roll pairing.

D. Case Az = 10 (kz = 2.51)

For the case Az = 10, we have kz = 2.51. The neutral curve
is shown in Fig. 5. The critical Rayleigh number is found to
be Rac2 = 6033, and the critical spanwise wave number kyc is
equal to 0.78. This also corresponds to a stationary mode, and
the value of the wave number is consistent with the monotone
instability B of Chait and Korpela [24].

The flow pattern associated with the unstable eigenmode
is represented in Fig. 6 for the central plane x = 0.5 along
with the corresponding spatial spectra. All components of the
eigenmode (velocity components u, v, and w and tempera-
ture θ ) are represented. Unlike the previous case (mode A),
different dominant wavelengths characterize the different flow
components: the vertical velocity w and the temperature θ are
dominated by a mode iz = 5, while the horizontal components
u and v are characterized by a lower wave number iz = 1.

This is consistent with the analysis of Chait and Ko-
rpela [24]. However, although there is a strong similarity
between this mode and the B instability of Chait and Korpela,
it is not entirely clear that our mode exactly corresponds to
mode B since, as mentioned earlier, Chait and Korpela’s study
only admits pure Fourier modes in the vertical direction. We
will therefore denote this mode C to avoid ambiguity.
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FIG. 6. Arnoldi eigenmode at Ra = 6050 with Az = 10 on the
central plane x = 0.5. Left, from top to bottom: (a–d) Velocity
componentsu, v, and w and temperature θ . Right, from top to bottom:
Fourier modulus |û(iy,iz)|, |v̂(iy,iz)|, |ŵ(iy,iz)|, and |θ̂ (iy,iz)|.

E. Comparison and discussion

Comparison of Figs. 3 and 5 shows the presence in both
cases of two similar lobes with two local minima around
ky ∼ 1.6 and 0.8. Each minimum appears to correspond to a
different instability mechanism. The minimal Rayleigh values
associated with each lobe are close for Az = 9 (kz = 2.8) but
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FIG. 7. (a) Time series of temperature at point (0.0381, 0.122, 4.96) in the boundary layer near the hot wall at Ra = 6100, Az = 9. (b) An
enlargement of (a) for 4000 < t < 6000 on a logarithmic scale.

the absolute minimum (critical Rayleigh number) is associated
with the higher wave number, while it corresponds to the lower
wave number in the case Az = 10 (kz = 2.5). We checked that
these different results were consistent with the straightforward
integration of the linearized equations.

The nature of the most unstable mechanism is therefore
quite sensitive to the exact value of the wave numbers allowed
in both the vertical and transverse directions. Moreover, since
the growth rate of each instability is relatively close, competi-
tion between the different mechanisms is likely to take place.
This will be examined in more detail using nonlinear simula-
tion in the next section for Ay = 8. Linear stability analysis
shows that this spanwise periodic length can accommodate
twice the pattern A (ky ∼ 1.6) or once the pattern C (ky ∼ 0.8)
in the spanwise direction.

IV. COMPARISON WITH 3D NONLINEAR SIMULATION
FOR AY = 8

In this section, we integrate the nonlinear Navier-Stokes
equations (1)–(4) and follow the various bifurcation branches,
starting from the fixed point corresponding to the 2D base flow.

A. Az = 9

The time series of the temperature perturbation �θ , defined
as the difference between the temperature field of the flow θ

and that of the base flow � (�θ = θ − �), is computed at the
location (0.0381, 0.122, 4.96), located close to the hot plate,
and represented in Fig. 7.

Three different steady or quasisteady states can be
identified. A plateau corresponding to 2D rolls is observed at
first, then the flow becomes three-dimensional as can be seen
in Fig. 8.

1. Transient 3D pattern associated with instability A: Wavy rolls

A blow-up of the temperature signal for the times 4000 <

t < 6000 is represented in logarithmic scale in Fig. 7(b). The
amplitude of temperature disturbance grows exponentially for
4000 < t < 4500, in agreement with linear stability theory,
then increases at a lower rate for t > 4700 before settling to a
steady value (saturation). As shown by [27,34,35], the temporal
evolution of the amplitude provides information about the local

normal form in the neighborhood of the bifurcation and there-
fore can help determine its nature (supercritical or subcritical).
Here examination of the amplitude shows that the coefficient of
the cubic term in the normal form of the pitchfork bifurcation
is negative, therefore this bifurcation is supercritical. We note
that it is also a circle bifurcation owing to the invariance of the
equations with respect to transverse translations.

The DNS results confirm the linear stability predictions
that the most unstable spanwise mode is ky = 1.6. The flow
structure consists of four steady corotating rolls with a wavy
distortion in the transverse direction. As can be seen in Fig. 8, at
the location of a crest, the streamlines escape from a roll to join
the adjacent roll above it. This connection between the rolls is
somewhat similar to the vortex pairing observed in the mixing
layer [36], which is also a subharmonic instability. Note that
there is no break in the Q contour, which means that the local
vorticity remains larger than the rate of strain.

FIG. 8. Isosurface of Q criterion Q = 0.1 and streamlines, at t =
6000, Ra = 6100, Az = 9.
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FIG. 9. (a) Temperature contour on the vertical plane x = 0.0381.
(b) Corresponding 2D spatial spectrum |θ̂ (iy,iz)| (iy,iz = −5,5) for
the fluctuations, t = 6000, Ra = 6100, Az = 9.

The temperature contour on the vertical plane x = 0.0381 is
represented in Fig. 9(a). The corresponding spatial spectrum is
shown in Fig. 9(b). It can be seen that θ̂(0,4) and θ̂(2,2), which,
respectively, represent the 2D rolls and the wavy distortion, are
the principal modes constituting the pattern.

2. Steady 3D pattern associated with instability B

As can be seen in Fig. 7(a), the temperature perturbation
with respect to the base flow shifts from the second plateau,
associated with the monotone instability A, to a third plateau
at t ∼ 7000. Using the normal-form analysis described above,
the local oscillation of time series in Fig. 7(a) at t ∼ 7000
indicates that the instability is subcritical, since the overshoot
of the oscillation following the period of exponential growth
shows that the coefficient of the cubic term in the normal
form of a bifurcation is positive (see [34,35]). The final flow
pattern is shown in Fig. 10. Although remains of pattern A

FIG. 10. Isosurface of Q criterion Q = 0.1 and streamlines for
the flow pattern at t = 9000, Ra = 6100, Az = 9.
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FIG. 11. Left: Flow pattern on plane x = 0.0381 at t = 10 000
and Ra = 6100 with Az = 9. (a–c) Velocity components u, v, and w.
(d) Temperature θ isocontours. Right, from top to bottom: Fourier
coefficients (e) |û(iy,iz)|, (f) |v̂(iy,iz)|, (g) |ŵ(iy,iz)|, and (h) |θ̂ (iy,iz)|.

are still present, the dominant feature of the flow consists
of transverse rolls with streamline excursions over a single,
limited portion of its spanwise extent—which we will call the
defect. The defects form an oblique line in the (x,z) plane.
The orientation of the line can be either from the top-right
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FIG. 12. (a): Time series of spanwise velocity v at point (0.0381, 0.585, 6.985) at Ra = 6050, Az = 10. (b) Enlargement of (a) for
8000 < t < 12 000. The red dots correspond to the instantaneous fields at times t = 10 000 and 25 000 shown, respectively, in Figs. 13 and 14.

to the bottom-left or from the top-left to the bottom right, since
the system (1)–(4) is invariant under a reflection with respect
to any plane perpendicular to the plates (y = const). Note that
at the location of the defect a strong decrease is observed in
the value of Q, which corresponds to a relative increase in the
local rate of strain, associated with roll thinning and possible
breaking. We also note the presence of secondary vortical
structures between the main rolls, suggesting the presence of
nonlinear interactions.

The velocity and temperature fields at t = 10 000 on the ver-
tical plane close to the hot plate (x = 0.0381) are represented
in Figs. 11(a)–11(d). The corresponding 2D spatial spectra
shown in Figs. 11(e)–11(h) confirm that the principal modes
associated with the pattern are θ̂ (0,4) (2D rolls) and θ̂ (1,−1)
(mode C). We note that, since Eqs. (1)–(4) are invariant by
reflection with respect to any vertical plane y = const, the
modes θ̂ (1,−1) and θ̂ (1,1) are equivalent solutions. The modes
θ̂ (±2,±2) are also present with slightly different amplitudes,
which confirms the coexistence of the two instability mecha-
nisms.

Although the Rayleigh number of the configuration is very
close to the critical Rayleigh of instability A, it seems that mode
A is in fact unstable to a low-wave-number instability (similar
to C). To check this, we integrated the nonlinear equations
at Ra = 6060—close to the critical Rayleigh number Rac2 =
6056—from an initial condition containing exclusively the
pattern A observed at Ra = 6100. We found that the flow
also converged towards a steady state consisting of a mixture
of modes A and C. This hysteresis phenomenon suggests
that the pattern A predicted by the linear stability analysis is
subcritically unstable to a low-wave-number instability. We
therefore suspect the presence of a cusp bifurcation involving
three equilibria: the straight (2D) rolls, the wavy rolls (higher-
wave-number instability A), and the thinning rolls (low-wave-
number instability C).

B. Az = 10

As in the case above, the fully nonlinear Navier-Stokes
equations are integrated in time at Ra = 6050 starting from
the base flow consisting of 2D rolls. The temporal evolution
of the spanwise velocity v at the point (0.0381, 0.585, 6.985),
located close to the hot plate, is represented in Fig. 12, and

shows that the flow reaches a steady state around t ∼ 20 000.
To study how the flow reaches its asymptotic state, we selected
the instant t = 10 000 (materialized by a red dot in Fig. 12),
which corresponds to a moment where the perturbations grow
exponentially, as can be seen in Fig. 12(b), and represented in
Fig. 13 the difference between the instantaneous flow and the
2D base flow. We see that the perturbation corresponds to the
most unstable eigenmode predicted by linear stability analysis,
i.e., mode C.

The pattern is very similar to the eigenmode displayed
in Fig. 6 except for the fact that a particular direction is
selected—the phase of the unstable mode is not imposed
in the nonlinear simulation, while a zero phase is imposed
in the Arnoldi calculation. The 2D spatial spectrum of the
perturbation, shown in the right column of Fig. 13, confirms
that the most energetic modes are �θ̂ (1,1) and �θ̂(1,5), which
is consistent with the linear stability prediction of mode C.

The final flow pattern at t = 25 000 is shown in Fig. 14 for a
vertical plane. As can be seen, this steady state is characterized
by localized thinning of rolls (defects) along an oblique
direction. Examination of the spectra in Fig. 14 confirms that
the mode iy = 1 is present. However, the mode (±2,±2) is
also noticeable, particularly in the spanwise component v and
the vertical component w. We note that the Fourier mode
(iy,iz) = (0,0) corresponding to the spatial average has been
omitted from the spectrum. It is not clear whether these modes
appear through nonlinear interaction of the modes associated
with instability C, or arise through a linear instability of type A.
We note that the modes characterizing the temperature pattern
for Az = 10 (last row of Fig. 14) are the same as in the case
Az = 9 (Fig. 11), but with different amplitudes. More modes
appear to be excited in the latter case, suggesting stronger
nonlinear interactions.

V. NONLINEAR EVOLUTION AND SUBSEQUENT
BIFURCATIONS OF THE FLOW FOR Ay = 8 and Az = 9

A. Characteristics of the simulations

In this section, we use DNS to study the sequence of
flow bifurcations leading to temporal chaos. Owing to the
cost of such a simulation, only one configuration is stud-
ied. We choose Ay = 8 and Az = 9, which has a large
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FIG. 13. Flow perturbation pattern on the central plane x = 0.5 at
t = 10 000 and Ra = 6050 with Az = 10. Left: Velocity components
(�u, v, �w) (a–c) and temperature (d) �θ contours. Right, from
top to bottom: Fourier coefficients (e) |�û(iy,iz)|, (f) |�v̂(iy,iz)|, (g)
|�ŵ(iy,iz)|, and (h) |�θ̂ (iy,iz)|.

enough spanwise dimension to accommodate both critical
spanwise wavelengths. The initial condition is taken to be
the steady conduction solution defined by Eq. (5). We used
40 and 160 Chebyshev modes for the spatial discretizations

0 2 4 6
0

2

4

6

8

y

z

)e()a(

0 2 4 6
0

2

4

6

8

y

z

)f()b(

0 2 4 6
0

2

4

6

8

y

z

)g()c(

0 2 4 6
0

2

4

6

8

y

z

)h()d(

FIG. 14. Flow field on the central plane x = 0.5 at t = 25 000 and
Ra = 6050 with Az = 10. Left: Velocity components u, v, w (a–c)
and temperature (d) θ contours. Right, from top to bottom: Fourier
modulus |û(iy,iz)|, |v̂(iy,iz)|, |ŵ(iy,iz)|, and |θ̂ (iy,iz)|.

in the directions x and z, respectively, and 130 Fourier
modes for the y direction. Calculations were carried out
at Ra = 6050,6070,6080,6100,6150,6180,6200,6250, and

053107-9



GAO, PODVIN, SERGENT, XIN, AND CHERGUI PHYSICAL REVIEW E 97, 053107 (2018)

time
0 5000 10000

Δ
θ

×10 -3

-6

-4

-2

0

f
0.01 0.02 0.03 0.04

|θ̂|

10 -2

10 -1

10 0

10 1

)b()a(

FIG. 15. (a) Time series of temperature at the point (0.0381, 0.122, 4.96) in the boundary layer near the hot wall, Ra = 6150.
(b) Temporal spectrum of the periodic portion t ∈ [8000,10 000] of the signal (a).

6300. We only show results for the three cases Ra =
6150,6250, and 6300, which present distinctive features.

B. 6150 � Ra � 6200: 3D oscillating flow

The 3D pattern becomes time dependent when Ra is
increased to 6150. The temperature time series at the point
(0.0381, 0.122, 4.96) in the hot boundary layer is plotted in
Fig. 15(a). Figure 15(b) shows that it corresponds to a periodic
signal of frequency f

Large
1 = 0.00536, which is much lower

than the value of f1 = 0.036 found in [27] for a constrained
configuration. Computations at Ra = 6180 and 6200 yielded
similar values of the frequency, which supports the conjecture
that this is a Hopf bifurcation.

Figure 16 represents the flow structures at two different
instants. They consist of corotating rolls with a local defect,
as can be seen in Fig. 16(a). In Fig. 16(b), the discontinuities
of the Q isosurface disappear, which indicates that the defect
region shrinks. The periodic oscillation is characterized by the
growth and shrink of the defect associated with roll thinning
and streamline excursions.

The temperature contours on the vertical plane x = 0.0381
are represented in Fig. 17 (left) at different instants. Local roll

FIG. 16. Nonlinear simulation of flow structures at two different
instants: isosurface of Q criterion Q = 0.1 and streamlines, Ra =
6150, Az = 9.
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FIG. 17. Left column: The temperature contours on the vertical
plane x = 0.0381. Right column: Corresponding spatial 2D Fourier
modes |θ̂ (iy,iz)| (iy,iz = −5,5) for the fluctuations, Ra = 6150.
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FIG. 18. Temporal evolution at Ra = 6150 of the spectral coef-
ficients |θ̂ (iy,iz)| on the vertical plane x = 0.0381 (close to the hot
plate) for the two most energetic modes.
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FIG. 19. (a) Time series at Ra = 6250 of the temperature perturbation at the point (0.0381, 0.122, 4.96) in the hot boundary layer.
(b) Temporal spectrum of the periodic portion of the signal represented in (a) for t ∈ [5000,8000].

thinning—defects—are noticeable, along with roll waviness,
indicating that modes associated with both low-wave-number
(C) and higher-wave-number (A) instabilities are present, as
can be confirmed in Fig. 17 (right). Similarity with Fig. 11 is
observed.

Figure 18 shows that the temporal evolution of the principal
modes θ̂ (0,4) and θ̂ (1,1) is periodic and that the modes have the
same phase. The amplitude of the mode θ̂ (0,4) corresponding
to the primary rolls is almost constant, while the mode θ̂ (1,1)
has a significant amplitude variation. These two modes capture
84.17% of the variance of the thermal fluctuations.

C. Ra = 6250: Period-doubling bifurcation

The temporal behavior of the flow is modified when Ra
is further increased to Ra = 6250. The time series of the
temperature perturbation at the point (0.0381, 0.122, 4.96) is
shown in Fig. 19(a). The temporal spectrum of the periodic
portion t ∈ [5000,8000] in Fig. 19(b) shows that the largest
amplitude is located at the frequency f

Large
1 = 0.00536, which

is identical to that found in Sec. V B at Ra = 6150, while
the second largest amplitude corresponds to the frequency
f

Large
1/2 = 0.00286 ∼ f

Large
1 /2.

The topology of the flow again consists of rolls which
are distorted in the transverse direction. The evolution of the
flow structure during half an oscillation period (the whole
oscillation period is twice as large as the previous case Ra =
6150) is represented in Fig. 20. At t = 7600 and 7780, the
flow patterns shown in Figs. 20(a) and 20(d) are similar
and characterized by strong roll thinning and roll waviness.
In contrast, roll distortion is weaker at t = 7660 and 7720
[Figs. 20(b) and 20(c)]. We note that the positions of the
defects are shifted about half a wavelength Ay/2 in the y

direction over half of the double-period cycle (they return to
their original positions after another half cycle). We note that a
similar behavior was found and studied in detail for a reduced
domain consisting of a single roll [37].

The temperature on the vertical plane x = 0.0381 and its
spatial spectrum are represented in Fig. 21 at selected times
indicated in Fig. 20. The observations made above are con-
firmed: at t = 7600 and 7780 [Figs. 21(a) and 21(d)], the flow is

characterized by the excitation of many modes corresponding
to instabilities A and C and nonlinear interactions.

The most energetic modes are θ̂ (0,4), θ̂(2,2), and θ̂ (1,1)
as well as the mode θ̂(1,3). The latter could result from the
interaction between the modes θ̂ (0,4) and θ̂ (1,1), but is also
present to a smaller extent in the eigenmode associated with
the low-wave-number instability C. In any case, nonlinear
interactions are still limited: the three principal modes and the

(a) t = 7600 (b) t = 7660

(c) t = 7720 (d) t = 7780

FIG. 20. Flow structures Ra = 6250 at different instants spanning
half of one temporal oscillation: isosurface of Q = 0.1 and stream-
lines. The four chosen times correspond to the dash-point lines in
Fig. 22.
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FIG. 21. Evolution at Ra = 6250. Left: Temperature contours at
Ra = 6250 on a vertical plane x = 0.0381 for four different times
(indicated in Fig. 20). Right: Corresponding spatial spectrum of the
temperature perturbation |�θ̂ (iy,iz)| (iy,iz = −5,5).

mode θ̂(1,3) represent, respectively, 84.87 and 7.37% of the
variance of the thermal fluctuations, so that these four modes
together capture 92.24% of the variance.

The temporal evolution of the principal modes θ̂ (0,4),
θ̂ (2,2), and θ̂ (1,1) is shown in Fig. 22. All three amplitudes
oscillate periodically with different phases. The mode θ̂ (0,4)
corresponding to the primary rolls has the largest amplitude.
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FIG. 22. Temporal evolution at Ra = 6250 of the four most
energetic spectral coefficients |θ̂ (iy,iz)| on the plane x = 0.0381. The
vertical dash-point lines correspond to the four instants shown in
Fig. 21.

The mode θ̂ (1,1) corresponding to instability mechanism C
has the second largest amplitude. The mode θ̂ (1,3) has almost
the same amplitude as the mode θ̂ (2,2).

D. Ra � 6300: Temporal chaos

When Ra is increased to Ra = 6300, the flow becomes
temporally chaotic, as evidenced by the temperature time series
at the point (0.0381, 0.122, 4.96) in Fig. 23(a). Figure 23(b)
shows that the temporal Fourier spectrum of the signal
corresponding to t ∈ [5000,8000] is broadband and nearly
continuous. Figure 24 confirms that the evolution of the flow
structure is more complex. At times t = 7200,7320, and 7600
[Figs. 24(a), 24(c) and 24(f)], the distortion of the rolls is mild,
while at times t = 7270 and 7400 the deformation is stronger,
characterized by both roll waviness and roll thinning (defects).
Pattern A can occasionally be dominant [see, for instance,
Fig. 24(e)].

Figure 25(a) shows the time-averaged 2D Fourier coeffi-
cients of the temperature 〈|θ̂ (iy,iz)|〉 on the vertical plane x =
0.0381 (the average is taken over the times t ∈ [7000,8000]).
The three most energetic modes are still θ̂(0,4), θ̂(2,2), and
θ̂ (1,1), which represent 78.75% of the variance of the thermal
fluctuations. Together with the mode θ̂ (1,3), the four modes
capture 87.81% of the total perturbation energy. This confirms
that the spatial organization of the flow is still dominated by
the few wave numbers corresponding to the most unstable
eigenmodes of linear stability analysis. However, the temporal
evolution of these four principal modes is chaotic, as shown in
Fig. 25(b).

VI. CONCLUSION

The goal of this paper is to examine the instabilities of
the natural convection in a fluid layer between vertical plates
maintained at different temperatures. In the first part of the
paper, linear stability analysis and nonlinear integration are
used to study the evolution of steady 2D corotating rolls,
which represent the primary bifurcation of the conduction
solution. While nonlinear integration requires several hundreds
of hours on a parallel computer, linear stability analysis based
on an Arnoldi method requires only tens of minutes on a
single-processor machine, and therefore constitutes a cheap,
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FIG. 23. (a) Time series of temperature perturbation at the point (0.0381, 0.122, 4.96) in the boundary layer near the hot wall, Ra = 6300.
(b) Temporal spectrum of the chaotic portion of the signal in (a) limited to t ∈ [5000,8000].

efficient investigation tool, which provides a more accurate
description of the most unstable patterns than standard Fourier
analysis. Results indicate that the 2D rolls are unstable to two
kinds of 3D steady disturbances: one corresponding to a local
pairing of the rolls (“wavy roll,” instability A) and the other
consisting of localized roll thinning (“defective or broken roll,”
instability C).

We find that the critical spanwise number and the corre-
sponding eigenmode are very sensitive to the exact value of

the roll size associated with the vertical wave number kz, and
that the critical Rayleigh numbers associated with the two
different mechanisms are close to each other. This results
in a competition between the two mechanisms in the full
simulation. For a vertical plate aspect ratio of Az = 9, we found
that the disturbance eigenmode predicted by linear stability
analysis (mode A) was in fact only a transient feature, leading
to a steady asymptotic nonlinear state which was a mixture of
modes A and C.

(a) t = 7200 (b) t = 7270 (c) t = 7320

(d) t = 7400 (e) t = 7500 (f) t = 7600

FIG. 24. Flow structures at Ra = 6300 for six different instants [indicated by vertical dash-point lines in Fig. 25 (right)]: isosurface of
Q = 0.1 and streamlines.
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FIG. 25. Temperature field at Ra = 6300 (the spatial average has been removed). (a) Time-averaged 2D Fourier coefficient of
the temperature |θ̂ (iy,iz)| (iy,iz = −5,5) on the vertical plane x = 0.0381; the average is performed over times t ∈ [7000,8000].
(b) Temporal evolution of the four most energetic spectral coefficients |θ̂ (iy,iz)| on the plane x = 0.0381. The vertical dash-point lines correspond
to the six instances of the flow pattern shown in Fig. 24.

In the second part of the paper, successive bifurcations
were determined from the nonlinear simulation as the Rayleigh
number was increased. The 3D steady flow associated with the
mixed mode becomes time dependent at Ra = 6150 through a
Hopf bifurcation. After a period-doubling bifurcation the flow
becomes temporally chaotic at Ra = 6300, i.e., at a Rayleigh
number which is less than 10% higher than the critical Rayleigh
number of the primary bifurcation. A notable result is that at the
onset of chaos the flow still consists of rolls characterized by
the two local deformations patterns predicted by linear stability
theory: vortex pairing and roll thinning. This highlights the
complementary role of linear stability analysis and nonlinear
simulation.
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APPENDIX: ARNOLDI METHOD

We now give a description of the Arnoldi method.
The stability of the base flow [U (x,z), V = 0, W (x,z),

�(x,z)] with respect to a 3D perturbation [u(x,y,z), v(x,y,z),
w(x,y,z), θ (x,y,z)] can be tested by integrating the linearized
3D unsteady Navier-Stokes equations, which take the follow-
ing form:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂u

∂t
+ U

∂u
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)
. (A1)

Equations (A1) can be integrated directly to obtain the
unstable disturbance patterns. However, in view of the periodic
boundary conditions, we can suppose that the 3D perturbation
takes a periodic form as u(x,z,t)cos(kyy), v(x,z,t)sin(kyy),
w(x,z,t)cos(kyy), θ (x,z,t)cos(kyy), where ky is the wave
number in the y direction. With this assumption of periodicity
for the perturbations, Eq. (A1) becomes
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Boundary conditions for Eqs. (A1) and (A2) are of Dirichlet
type and homogeneous.

Suppose now (U,0,W ) and (u,v,w) verifying the incom-
pressibility condition, with the following notations: X =
(U,0,W,�), x = (u,v,w,θ ), L represents the 2D Laplace
operator, N represents the advection terms and the linear
buoyancy term, and Nx is the Fréchet derivative of N on X.
We can recast Eq. (A2) into the following compact form:

∂x
∂t

=
[

C√
Ra

(L − k2I ) + Nx

]
x = Jxx (A3)

where Jx is the Jacobian and constant C is equal to 1 for θ and
equal to Pr for velocities.

The Arnoldi method has been used in several studies to
study hydrodynamic instability, as, for instance, for natural
convection in a rectangular cavity [30] or spherical Couette
flow [38].

To determine whether the perturbation x in Eq. (A3) grows
or decreases with respect to time t , we need to compute
the eigenvalues of the Jacobian JX. However, the dimension
of the discretized Navier-Stokes equation system is so large
that we cannot compute these eigenvalues exactly, due to the
available computing resources. Therefore, we used the Arnoldi
method, which provides approximates for them. The Arnoldi
iteration relies on the orthogonalization of a Krylov subspace
to provide a series of Hessenberg matrices which approximate
JX. The eigenvalues of these Hessenberg matrices constitute
the Ritz eigenvalues. In most circumstances the eigenvalues
converge to some of the eigenvalues of JX (typically the leading
ones). The convergence rate of the procedure is not fully
understood yet in the general case.

After applying a mixed implicit-explicit scheme to Eq. (A3)
and some algebraic calculations [30,31,38], we can show that
if the time step �t is sufficiently small then

xn+1 ≈ exp(�tJX)xn. (A4)

Therefore, we can compute the iterative action of JX on a
given vector (an initial flow state) to form the Krylov subspace
by successive time stepping of the linearized Navier-Stokes
system (A2).

If �t stays small enough, we can extend Eq. (A4) to xn+K =
exp(�tJx)xn+K−1 = . . . = exp(K�tJX)xn. Therefore, the se-
ries xn+K,xn+2K, . . . ,xn+lK is an approximation of a series
exp(K�tJX)xn, exp(2K�tJX)xn,..., exp[(l − 1)K�tJX]xn,
which forms a Krylov subspace. We can obtain a general
relation as following:

(xn+K,xn+2K, . . . ,xn+lK )

≈ exp(K�tJX)(xn,xn+K,xn+2K, . . . ,xn+(l−1)K ). (A5)

This relation shows that (xn+K,xn+2K, . . . ,xn+lK ) can be con-
sidered as a multiplication of operator exp(K�tJX) on the
Krylov subspace (xn, xn+K , xn+2K ,..., xn+(l−1)K ).

Supposing that q0,q1,q2,...,ql−1 and ql is the orthonor-
mal basis of the Krylov subspace spanned by xn, xn+K ,
xn+2K ,..., xn+(l−1)K and xn+lK , the Gram-Schmidt orthonor-
malization procedure can give us not only an orthonormal
basis q0,q1,q2, . . . ,ql−1 and ql but also QR factorization of
the Krylov subspace spanned by xn, xn+K , xn+2K ,..., xn+(l−1)K

and xn+lK . Therefore, we have

(xn,xn+K,xn+2K, . . . ,xn+(l−1)K,xn+lK )

= (q0,q1,q2, . . . ,ql−1,ql)R = QR (A6)

and

(xn,xn+K,xn+2K, . . . ,xn+(l−1)K )

= (q0,q1,q2, . . . ,ql−1)R̃ = Q̃R̃ (A7)

where Q̃ contains the first l columns of Q and R̃ is a l-order
submatrix of R. Compared to Eq. (A7), Eq. (A6) has one more
column and one more line. If we drop the first column of
Eq. (A6) and use the relation Eq. (A5), we get

exp(K�tJX)(xn,xn+K,xn+2K, . . . ,xn+(l−1)K )

= (q0,q1,q2, . . . ,ql−1,ql)R = QR (A8)

where R is the submatrix of R with its first column omitted,
which has dimension (l + 1) × l. As the last line of R has only
one nonzero term, the diagonal one, denoted rl,l , we can recast
the relation (A8) as following:

exp(K�tJX)(xn,xn+K,xn+2K, . . . ,xn+(l−1)K )

= (q0,q1,q2, . . . ,ql−1)H̃ + rl,lq
l = Q̃H̃ + cql. (A9)

Here the Hessenberg matrix H̃ represents the first l lines of R.
If c is small enough, we have

exp(K�tJX)Q̃R̃ = Q̃H̃ (A10)

which can be recast as exp(K�tJX)Q̃ = Q̃H̃ R̃−1. As R̃ and
R̃−1 are upper triangular matrices, H̃ R̃−1 is still a Hessenberg
matrix, which is noted as H. So we get the following relation:

exp(K�tJX)(q0,q1,q2, . . . ,ql−1) = (q0,q1,q2, . . . ,ql−1)H

(A11)

or simply exp(K�tJX)Q̃ = Q̃H
If H is diagonalizable, then H = S�S−1, where � is

the diagonal matrix containing the spectrum of H and S is
the matrix formed by the eigenvectors of H. So we have
exp(K�tJX)Q̃ = Q̃S�S−1, then

exp(K�tJX)Q̃S = Q̃S�, (A12)

which shows that �, the spectrum of H, corresponds to the
spectrum of the matrix exp(K�tJX), and Q̃S corresponds
to the eigenvectors of exp(K�tJX). Therefore, the leading
eigenvalues of H can give us those of exp(K�tJX), which can
be easily done by using the library LAPACK.

We use the Arnoldi iteration to compute approximate
eigenvalues of the Jacobian matrix JX using successive time
stepping of the linearized Navier-Stokes equations (A2). In
practice, the linearized unsteady Navier-Stokes equations (A2)
are integrated for a few dozen time steps in order to generate a
Krylov subspace. Then the Gram-Schmidt orthonormalization
method is applied to construct the Hessenberg matrix H. Once
H obtained, its leading eigenvalues can be calculated by using
the library LAPACK. This procedure should be repeated in a time
loop to determine the appropriate dimension of the Krylov sub-
space and the moment to stop the time integration. The mono-
tonic decrease of the residual c, which appears as the last term
in Eq. (A9), serves as a criterion to stop the time integration.
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