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Thermophoretic force on nonspherical particles in the free-molecule regime
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The present paper is devoted to studying the thermophoresis of a nonspherical convex particle suspended in a
gas with nonuniform temperature distribution in the free-molecule regime. Based on the gas kinetic theory and the
assumption of a rigid-body collision for the gas-particle interaction, analytical expressions for the thermophoretic
forces are obtained for several typical nonspherical bodies, including cylinders, spheroids, needles, disks, and
cuboids. The orientation dependences of the thermophoretic forces and thermophoretic velocities are evaluated
based on these expressions. It is found that the influence of the pitching effect of the nonspheres can be significant.
The expressions for the orientation-averaged thermophoretic forces are also obtained under the assumption of a
uniform particle orientation distribution.

DOI: 10.1103/PhysRevE.97.053106

I. INTRODUCTION

Thermophoresis describes the particle motion caused by
a nonuniform temperature distribution in the surrounding
fluid (usually a gas) [1–4]. The gas molecules with higher
kinetic energy in the hot region usually impinge on the
particle with greater momenta than those coming from the
cold region, which results in a net force (thermophoretic
force) in the direction from the hot to the cold side, as well
as a drag opposite to the particle movement direction. The
thermophoretic velocity of the particle is usually defined as
the terminal velocity induced by the balance between the ther-
mophoretic and drag forces. The thermophoresis phenomenon
has been widely studied over the past decades, because it can
find applications in numerous practical applications, includ-
ing aerosol science [5,6], manufacturing of microelectronics
[7–10], nuclear reactor safety [11], and combustion [12–16].
However, the underlying physics of thermophoresis is far from
clear, not only for the evaluation of the thermophoretic force
but also for its direction (negative thermophoresis is reported
under some particular conditions) [17–24].

Theoretically, the thermophoretic force can be considered as
the net momentum transfer from the gas molecules over the en-
tire particle surface in unit time. The challenge is to obtain the
molecule velocity distribution of a gas with nonuniform tem-
perature distribution, which might be influenced by the pres-
ence of the particle. This difficulty could be greatly reduced in
the free-molecule regime, where the Knudsen number Kn � 1.
Here, Kn = λ/Lc, λ is the mean free path of the gas, and Lc

is the characteristic size of the particle. In the free-molecule
regime, the gas molecules reflected by the particle surface
can usually move for a long distance before colliding with
other gas molecules; i.e., the interactions between the incident
gas molecules and those reflected by the particle surface can
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be neglected. Therefore, the macroscopic motion of the gas
induced by the presence of the particle is also neglected.
Therefore, it is reasonable to assume that the gas molecule
velocity distribution is uninfluenced by the particle. In the
continuum (Kn � 1) and transition (Kn ∼ 1) regimes, the
influence of the particle on the molecule velocity distribution
of the gas cannot be neglected, and there exist several analytical
approaches based on different approximation methods for the
Boltzmann transport equation [25–31]. However, the validity
of these approaches still remains debatable [32,33].

In the free-molecule regime, based on the gas kinetic theory
[34,35], Waldmann [36] determined the thermophoretic force
on a spherical particle suspended in a gas under the assumption
of rigid-body collisions between the gas molecules and the
particle. The Waldmann equation for the thermophoretic force
is given by [36]

FT = −8κ

15

√
2πm

kBT
R2

0∇T , (1)

where, κ is the thermal conductivity of the gas, m is the gas
molecule mass, kB is the Boltzmann constant, T is the gas
temperature, R0 is the radius of the spherical particle, and
∇T is the temperature gradient of the gas (here, the positive
direction of ∇T is from the cold to the hot side). It is clearly
seen that the thermophoretic force is in the direction opposite
to the temperature gradient, i.e., from the hot to the cold
side. Experimental [37–43] and numerical [29,44] studies have
shown that the Waldmann equation predicts the thermophoretic
forces quite well for larger Knudsen numbers. However,
negative thermophoresis (thermophoretic force is from low
to high temperature) becomes possible as the particle size
decreases from micro- to nanoscale [21]. Moreover, negative
thermophoresis can also be observed as the flow regime is
in the continuum regime, when the particle has a thermal
conductivity much higher than that of the surrounding fluid
[23].
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It should be noted that the majority of the previous investi-
gations on thermophoresis are for spheres, even though most
aerosol particles of practical interest are definitely nonspheres.
It is a general and convenient theoretical method to simplify
a real particle into a sphere. However, the effect of the
particle shape and orientation on its transport is reported to
be significant according to the available literature [45–61].
In the free-molecule regime, Garcia-Ybarra and Rosner [45]
analyzed the thermophoresis of a spherocylinder (a cylinder
with two hemispherical caps at both ends) and evaluated
the thermophoretic force on the cylinder particle. The ther-
mophoretic force on the cylindrical part is given by [45]

FT = −κ

5

√
2πm

kBT
R0L

[
σ∇T‖ +

(
2 − σ

2

)
∇T⊥

]
, (2)

where R0 is the cylinder radius; L is the cylinder length;
the subscripts “⊥” and “‖” indicate the temperature gradient
components perpendicular and parallel to the cylinder axis,
respectively; and σ is the momentum accommodation coef-
ficient. It is found that the thermophoretic velocity of the
spherocylindrical particle with its axis aligned with ∇T is
higher than that of a sphere with radius R0 by about 31%, and
the direction of the thermophoretic velocity can deviate from
∇T by an angle of 12° [45]. As for other nonspherical particles,
few theoretical studies on thermophoresis are available in the
free-molecule regime.

This paper is devoted to derive the expressions for the
thermophoretic forces on the nonspherical particles of convex
shapes in the free-molecule regime. The rest of the paper is or-
ganized as follows. In Sec. II, the molecule velocity distribution
of a gas with a nonuniform temperature distribution is given
based on the Chapman-Enskog thoery. In Sec. III, the explicit
expressions for the thermophoretic forces on several typical
nonspherical bodies, including cylinders, spheroids, needles,
disks, and cuboids, are obtained on the basis of the gas kinetic
theory. Finally, we conclude our paper in Sec. IV.

II. GAS MOLECULE VELOCITY
DISTRIBUTION FUNCTION

As mentioned in Sec. I, in the free-molecule regime, the gas
molecule velocity distribution is uninfluenced by the presence
of the particle. According to the Chapman-Enskog theory
[34,35], for a gas with nonuniform temperature distribution,
the gas molecule velocity distribution reads

f = f0(1 + �), (3)

where f0 is the equilibrium Maxwellian velocity distribution
function,

f0 = n

(
h√
π

)3

exp(−h2C ′2), (4)

and � is the correction owing to the temperature gradient,

� = −8h4κ

5ρ

(
h2C ′2 − 5

2

)
C′ · ∇T . (5)

FIG. 1. The coordinate systems for a nonspherical particle sus-
pended in a nonuniform temperature field of a highly rarefied gas.

Here, h = √
m/(2kBT ), n is the molecular number density of

the gas, and C′ is the thermal velocity of the gas molecule.
Consider a nonspherical particle with arbitrary convex

surface suspended in a gas with nonuniform temperature field.
A global coordinate system {X, Y , Z} with its origin located
at the center of the particle is established, as shown in Fig. 1(a),
wherein X is in the direction of the temperature gradient. Let
I, J, and K be the unit vectors in the X, Y , and Z directions,
respectively. The thermal velocity of the gas molecule is C′ =
U ′I + V ′J + W ′K = (U ′,V ′,W ′)T, and the temperature gra-
dient is ∇T = (∇T ,0,0)T. A local coordinate system {x, y, z}
with its origin fixed to the surface element dS of the particle
is also introduced, as shown in Fig. 1(b), wherein y is in the
inward normal direction of dS, and x and z are tangent to dS.
Let i, j, and k be the unit vectors in the x, y, and z directions,
respectively. In the system {x, y, z}, the thermal velocity of
the gas molecule is c′ = u′i + v′j + w′k = (u′,v′,w′)T. Then,
the transformation between the above two coordinate systems
can be expressed as

x = M · X, (6)

where x = (x,y,z)T,X = (X,Y,Z)T, and the transformation
matrix

M =
⎡
⎣αX αY αZ

βX βY βZ

γX γY γZ

⎤
⎦. (7)

Here, �X,�Y , and �Z(� = α,β,γ ) are the direction cosines
of I, J, and K in the coordinate system {x, y, z}, respectively.

According to the above definitions, the thermal velocity
components in the global coordinate system can be expressed
by those in the local coordinate system, U ′ = u′αX + v′βX +
w′γX, V ′ = u′αY + v′βY + w′γY , and W ′ = u′αZ + v′βZ +
w′γZ . Thus, the gas molecule velocity distribution function
can be rewritten as

f = f0
{
1 + A∇T

[
h2(u′2 + v′2 + w′2) − 5

2

]
× (u′αX + v′βX + w′γX)

}
, (8)

where the Maxwellian velocity distribution function f0 is

f0 = n

(
h√
π

)3

exp[−h2(u′2 + v′2 + w′2)], (9)

and A = −8h4κ/(5ρ).
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FIG. 2. The transformation between the global and local coor-
dinate systems: (a)–(c) the global and auxiliary coordinate systems;
(d) the auxiliary and local coordinate systems.

III. ANALYTICAL EXPRESSIONS FOR
THERMOPHORETIC FORCES ON THE

NONSPHERICAL PARTICLES

A. General integral expressions for the thermophoretic forces
on rigid particles in the free-molecule regime

Based on the gas kinetic theory, the thermophoretic force
can be considered as the net momentum transfer from the gas
molecules over the entire particle surface in unit time, which
consists of two contributions: momentum exchange due to
the incident gas molecules and reflected ones [62–64]. In
the present paper, we assume that the mass of the particle is
much larger than that of the gas molecule. The net momentum
transfer of the incident gas molecules can be calculated by an
integration of the momentum transfer on the surface element,
which depends on the velocity distribution function given
by Eq. (8). The contribution by the reflected gas molecules
depends on the reflection scenarios of the gas molecules
upon collisions with the particle. There are two limiting
cases of reflection: specular and diffuse reflections. For the
specular reflection, the collision between the gas molecule
and the particle is elastic and there is no tangential momentum
transfer. For the diffuse reflection, the incident gas molecule
is reemitted with an equilibrium Maxwellian distribution
specified at the particle surface temperature Tw (assumed to
be equal to the gas temperature T ). Usually, the reflection is a
mixing of specular and diffuse scatterings. It is conventional
to introduce a momentum accommodation coefficient, which
denotes the fraction of molecules reflected in a diffuse
manner.

In the local coordinate system, the force on the surface
element of the particle in the y direction is given by

p = pi + pr = (2 − σp)pi + σppw, (10)

FIG. 3. The coordinate systems for a cylinder.

and the tangential forces in the x and z directions are

τx = τxi − τxr = στ τxi, (11)

τz = τzi − τzr = στ τzi . (12)

Here, pi,τxi , and τzi are the normal and tangential forces
induced by the impinging gas molecules, while pr,τxr , and
τzr are attributed to the reflection of the gas molecules. σp =
(pi–pr )/(pi–pw) and στ = (τi–τr )/(τi–τw) are the normal and
tangential momentum accommodation coefficients. pw and
τw are the normal and tangential forces due to the diffusely
reflected gas molecules. Clearly, τw = 0 and

pw

Nw

=
∫ +∞
−∞

∫ 0
−∞

∫ +∞
−∞ mv2f0dudvdw∫ +∞

−∞
∫ 0
−∞

∫ +∞
−∞ (−v)f0dudvdw

= m
√

π

2h
, (13)

where Nw is the number of the diffusely reflected gas
molecules. For completely diffuse reflection, Nw is equal to
the total number of the impinging gas molecules Ni ,

Ni =
∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
vf dudvdw. (14)

Then, the normal and tangential forces due to the impinging
and outgoing gas molecules are expressed by

pi =
∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
mv2f dudvdw, (15)

τxi =
∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
muvf dudvdw, (16)

τzi =
∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
mvwf dudvdw, (17)

pw = m
√

π

2h

∫ +∞

−∞

∫ +∞

0

∫ +∞

−∞
vf dudvdw. (18)

By substituting Eqs. (8) and (9) into Eqs. (15)–(18), the
parts of normal and tangential thermophoretic forces on the
surface element are rewritten as

pi = ρA∇T βX

4
√

πh3
exp

(−h2v2
0

)
, (19)

τxi = ρA∇T

8
√

πh3
(αX − 2βXh2u0v0) exp

(−h2v2
0

)
, (20)

τzi = ρA∇T

8
√

πh3
(γX − 2βXh2w0v0) exp

(−h2v2
0

)
, (21)

pw = −ρA∇T βXv0

8h2
exp

(−h2v2
0

)
, (22)
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FIG. 4. The coordinate systems for a spheroid.

where u0,v0, and w0 are the mass velocity components of the
gas in the local coordinate system. Here, we focus our attention
on subsonic gas flow, in which only the first order term of
hv0 is taken into account and the influence of higher order
terms can be neglected. Finally, the thermophoretic force acting
on the particle can be obtained by integrating the elementary
force components (p, τx , and τz) over the whole surface of the
particle,

FX =
∫

S

{στ τxiαX+[(2 − σp)pi + σppw]βX + στ τziγX}dS,

(23)

FY =
∫

S

{στ τxiαY +[(2 − σp)pi + σppw]βY + στ τziγY }dS,

(24)

FZ =
∫

S

{στ τxiαZ + [(2 − σp)pi + σppw]βZ+στ τziγZ}dS,

(25)

which are expressed in the global coordinate system. Equa-
tions (23)–(25) could be considered as the general integral
expressions for the thermophoretic forces on rigid nonspherical
particles with a convex surface in the free-molecule regime.
Note that the above derivation is restricted to the particle with
a convex surface; otherwise multiple collisions should be taken
into account.

B. Transformation matrices

Considering the influence of the particle’s orientation on the
thermophoresis, it is necessary to specify the orientation of the
particle. An auxiliary coordinate system {X1,Y1,Z1} has to be
introduced with its origin also fixed at the center of the particle
as show in Figs. 1 and 2. Let I1,J1, and K1 be the unit vectors
in the X1,Y1, and Z1 directions, respectively. The coordinate
system {X1,Y1,Z1} are related to coordinate systems {x, y, z}
and {X, Y , Z} by

x = M1 · X1, (26)

and

X1 = M2 · X, (27)

FIG. 5. Variation of the reduced thermophoretic force as a func-
tion of ψ for a prolate spheroid: (a) the orientation dependence of the
parallel thermophoretic force; (b) the orientation dependence of the
transverse force.

where X1 = (X1,Y1,Z1)T, and M1 and M2 are the transforma-
tion matrices from {X1,Y1,Z1} to {x, y, z} and from {X, Y ,
Z} to {X1,Y1,Z1}, respectively.

By substituting Eqs. (26) and (27) into Eq. (6), the transfor-
mation matrix

M = M1 · M2. (28)

Here, the transformation matrix M1 is particle shape dependent
and independent of the particle orientation, while the transfor-
mation matrix M2 is independent of the particular shape of the
particles and depends on the particle orientation.

As shown in Fig. 2(d), a general transformation matrix M1

can be given by

M1 =

⎡
⎢⎣

sin φ 0 cos φ

cos φ sin ξ − cos ξ − sin φ sin ξ

cos φ cos ξ sin ξ − sin φ cos ξ

⎤
⎥⎦, (29)
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FIG. 6. Orientation dependence of the deviation angle β⊥ for a
prolate spheroid.

where φ denotes the angle between X1 and the projection of
y in the X1OZ1 plane and ξ denotes the supplementary angle
between y and Y1. Here, the solid angles (φ, ξ ) depend on the
shape of particles.

For the nonspherical particles, the transformation matrix
M2 can be expressed by the Euler angle (ϕ, θ , ζ ) defined by
the three successive rotations, as shown in Figs. 2(a)–2(c). The
rotation sequence is as follows:

(a) Rotating the global coordinate system {X,Y,Z} by an
angle ϕ clockwise about the Y axis to generate the coordinate
system {X′,Y ′,Z′} [see Fig. 2(a)].

(b) Rotating the coordinate system {X′,Y ′,Z′} by an angle
θ clockwise about the Z′ axis to generate the coordinate system
{X′′,Y ′′,Z′′} [see Fig. 2(b)].

(c) Rotating the coordinate system {X′′,Y ′′,Z′′} by an
angle ζ clockwise about the Y ′′ axis to generate the auxiliary
coordinate system {X1,Y1,Z1} [see Fig. 2(c)].

Therefore,

M2 =
⎡
⎣ cos ζ cos ϕ cos θ − sin ζ sin ϕ − cos ζ sin θ cos ζ sin ϕ cos θ + sin ζ cos ϕ

cos ϕ sin θ cos θ sin ϕ sin θ

− sin ζ cos ϕ cos θ − cos ζ sin ϕ sin ζ sin θ − sin ζ sin ϕ cos θ + cos ζ cos ϕ

⎤
⎦. (30)

Actually, rotation (c) is unnecessary for axisymmetric parti-
cles (including, cylinders, spheroids, disks, and needles) if Y1 is
set to be in the direction of the particle axis. The angle between
X and Y1 is denoted by ψ (the angle between the temperature
gradient and the axis of particles), and cosψ = cosϕsinθ (see
Fig. 1).

Then, in the following subsections, the thermophoretic
forces on several typical nonspherical particles are calcu-
lated, including cylinders, spheroids, disks, needles, and
cuboids.

C. Cylinders

Consider a cylinder of length L and radius R0(L � R0),
wherein the end effect of the cylinder can be neglected. As
shown in Fig. 3, the solid angles ξ = 0 and 0 � φ � 2π . Then,
the transformation matrix M1 for a cylinder

M1,cy =
⎡
⎣sin φ 0 cos φ

cos φ 0 − sin φ

0 1 0

⎤
⎦. (31)

The surface element

dS = R0dφdY1. (32)

By substituting Eqs. (19)–(22), (28), and (30)–(32) into
Eqs. (23)–(25), the instantaneous thermophoretic force com-
ponents {FX,FY ,FZ} on a cylinder can be obtained as follows:

FX = −κ

5

√
2πm

kBT
R0L∇T

[
στ +

(
2 − σp − στ

2

)
sin2ψ

]
,

(33)

FY = κ

5

√
2πm

kBT

(
2 − σp − στ

2

)
R0L∇T cos ψ cos θ, (34)

FZ = κ

5

√
2πm

kBT

(
2 − σp − στ

2

)
R0L∇T cos ψ sin ϕ sin θ.

(35)

Then, the expression for the thermophoretic force on a
cylinder in the free-molecule regime is given by

FT = −κ

5

√
2πm

kBT
R0L

[
στ∇T‖ +

(
2 − σp + στ

2

)
∇T⊥

]
,

(36)

which is consistent with Eq. (2) [45], if σt = σp = σ . Here, the
total thermophoretic force are decomposed in the directions
parallel and perpendicular to the cylinder axis, respectively,
i.e., FT = FT ,‖ + FT ,⊥. The thermophoretic force can also be
decomposed in the directions parallel and perpendicular to
∇T ,FT = FT ,p + FT ,t . Here, FT,p = FT,‖ cos ψ + FT,⊥sinψ

denotes the thermophoretic force parallel to ∇T (aligned with
∇T ), and FT,t = FT,‖sinψ − FT,⊥cosψ denotes the transverse
thermophoretic force. Then,

FT,p

= −κ

5

√
2πm

kBT
R0L

[
στ cos2ψ +

(
2−σp + στ

2

)
sin2ψ

]
∇T ,

(37)
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FIG. 7. Variation of the reduced thermophoretic force as a func-
tion of ψ for an oblate spheroid: (a) the orientation dependence of the
parallel thermophoretic force; (b) the orientation dependence of the
transverse force.

FT,t = κ

5

√
2πm

kBT
R0L

(
2 − σp − στ

2

)
∇T cos ψ sin ψ. (38)

As shown by Eqs. (37) and (38), the total thermophoretic
force on the cylinder is not opposite to the direction of
temperature gradient ∇T , because a transverse force, FT ,t ,
is induced by the pitching effect of cylinder. In the present
paper, the thermophoretic force component opposite to ∇T is
called the parallel thermophoretic force, while the component
perpendicular to ∇T is called the vertical thermophoretic force
or transverse force, for short.

For a small particle undergoing Brownian rotation in the
free-molecule regime, it is expected to rotate freely in the
absence of a strong external force field [50,55]. Under this
assumption, the orientation of the particle undergoes a uni-
formly random distribution. The average force acting on the

FIG. 8. Orientation dependence of the deviation angle β⊥ for an
oblate spheroid.

particle can be obtained by the orientation averaging,

〈F 〉 = 1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0
F sin θdθdϕdζ . (39)

By substituting Eqs. (33)–(35) into Eq. (39), the transverse
force vanishes. Thus, the orientation-averaged thermophoretic
force on a cylinder is given by

〈FT 〉 = −2κ

15

√
2πm

kBT
(2 − σp + στ )R0L∇T , (40)

which is consistent with Wang’s result [47] in the rigid-body
limit.

D. Spheroids

Consider a spheroid with semiequatorial axis (or radius)
a and semipolar axis (or half length) b. As shown in Fig. 4,
0 � ξ � π and 0 � φ � 2π . The transformation matrix M1

for a spheroid can be expressed as

M1,sr =
⎡
⎣ sin φ 0 cos φ

cos φ sin ξ − cos ξ − sin φ sin ξ

cos φ cos ξ sin ξ − sin φ cos ξ

⎤
⎦. (41)

The surface element

dS = rdφds = rdφ
dY1

sin ξ
= aDdY1dφ, (42)

FIG. 9. The coordinate systems for a cuboid.
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and the distance between the surface element and the axis

r = a

√
1 − Y 2

1

b2
= aD sin ξ, (43)

where

D =
√

1 +
(

a2

b2
− 1

)
Y 2

1

b2
,

sin ξ =
√

1 − Y 2
1

b2

/
D,

cos ξ = a

b2
Y1

/
D. (44)

By substituting Eqs. (19)–(22), (28), (30), and (41)–(44)
into Eqs. (23)–(25), the instantaneous thermophoretic force
components {FX,FY ,FZ} on the spheroid are given by

FX = −κ

5

√
2πm

kBT
a∇T

{
στ

∫ b

−b

DdY1 +
(

2 − σp − στ

2

)[∫ b

−b

sin2ξDdY1 + cos2ψ

∫ b

−b

(2cos2ξ − sin2ξ )DdY1

]}
, (45)

FY = −κ

5

√
2πm

kBT

(
2 − σp − στ

2

)
a∇T cos ψ cos θ

∫ b

−b

(2cos2ξ − sin2ξ )DdY1, (46)

FZ = −κ

5

√
2πm

kBT

(
2 − σp − στ

2

)
a∇T cos ψ sin ϕ sin θ

∫ b

−b

(2cos2ξ − sin2ξ )DdY1. (47)

Thus, the thermophoretic force on a spheroid in the free-molecule regime reads

FT = −κ

5

√
2πm

kBT
a

{
[στ∇T⊥ + 2(2 − σp)∇T‖]

∫ b

−b

DdY1 +
(

2 − σp − στ

2

)
(∇T⊥ − 2∇T‖)

∫ b

−b

sin2ξDdY1

}
, (48)

where the direction of thermophoretic force also deviates from the opposite direction of ∇T . Being similar to cylinders, the
transverse force must vanish after orientation averaging. Thus, the orientation-averaged thermophoretic force

〈FT 〉 = −2κ

15

√
2πm

kBT
(2 − σp + στ )a∇T

∫ b

−b

DdY1, (49)

which is opposite to ∇T . Note that integral terms in Eqs. (48) and (49) depend on a and b. Then, the explicit expressions for the
themophoretic force on spheres, prolate spheroids, and oblate spheroids can be obtained based on Eq. (48), respectively.

1. Sphere (a = b = R0)

For a sphere, ∫ b

−b

DdY1 = 2R0,

∫ b

−b

sin2ξDdY1 = 4

3
R0. (50)

Thus, Eq. (48) becomes

FT = −4κ

15

√
2πm

kBT
(2 − σP + στ )R2

0∇T , (51)

which is consistent with Eq. (1), if σt = σp = σ [36].

2. Prolate spheroid (b > a)

For a prolate spheroid, ∫ b

−b

DdY1 = a + b2

√
b2 − a2

arcsin

√
b2 − a2

b
,

∫ b

−b

sin2ξDdY1 = b2

b2 − a2

(
a + b2 − 2a2

√
b2 − a2

arcsin

√
b2 − a2

b

)
. (52)
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If b/a � 1, the prolate spheroid is like a needle in shape. Then, Eq. (52) can be simplified to∫ b

−b

DdY1 = π

2
b,

∫ b

−b

sin2ξDdY1 = π

2
b. (53)

Thus, the thermophoretic force on the needle is given by

FT = −πκ

10

√
2πm

kBT
ab

[
στ∇T‖ +

(
2 − σp + στ

2

)
∇T⊥

]
. (54)

In this case, the thermophoretic force for an extremely
prolate spheroid (a needle) given by Eq. (54) is proportional
to that for a cylinder given by Eq. (36) by a coefficient of π/4
(a = R0, and b = L/2).

Figure 5 presents the orientation dependence of the reduced
thermophoretic force at different aspect ratios for prolate
spheroids. Here, the orientation is denoted by the angle
between ∇T (X) and the particle axis (Y1), ψ . We choose
σp = στ = 0.9 for the momentum accommodation coeffi-
cients [62]. The reduced thermophoretic forcesF ∗

T ,p = FT,p/S,
F ∗

T ,t = FT,t /S, and F ∗
T = FT /S are calculated for spheroids

and spheres, respectively. According to Fig. 5(a), the maximum
parallel thermophoretic force appears in the case of ψ = π/2,
(i.e., the axis of the spheroid is perpendicular to ∇T ), while the
minimum is at ψ = 0 (i.e., the axis of the spheroid is parallel
to ∇T ). This is because the gas-particle collision cross section
against the temperature gradient decreases from ψ = π/2 to
ψ = 0 or ψ = π , which results in an enhanced momentum
transfer at ψ = π/2. As for the transverse force F ∗

T ,t , its mag-
nitude is small compared to the parallel thermophoretic force,
but its influence might be significant because it is perpendicular
to ∇T . The deviation angle of the total thermophoretic force
with respect to −∇T ,β⊥, is defined by tanβ⊥ = FT ,t /FT ,p, as
shown in the inset of Fig. 6, and its maximum is about 15.4°.
There is no deviation in the cases ofψ = 0 orψ = π/2 because
of the symmetry. With increasing b/a, the thermophoretic
force and the deviation angle for a prolate spheroid vary gently
from those for a sphere to a needle.

3. Oblate spheroid (a > b)

For a oblate spheroid,∫ b

−b

DdY1 = a + b2

√
a2 − b2

ln
a + √

a2 − b2

b
,

∫ b

−b

sin2ξDdY1 = − b2

a2 − b2

(
a + b2 − 2a2

√
a2−b2

ln
a + √

a2 − b2

b

)
.

(55)

If a/b � 1, the oblate spheroid is like a disk in shape. Then,
Eq. (55) can be simplified to

∫ b

−b

DdY1 = a,

∫ b

−b

sin2ξDdY1 = 0. (56)

Thus, the thermophoretic force is given by

FT = −κ

5

√
2πm

kBT
a2[στ∇T⊥ + 2(2 − σp)∇T‖]. (57)

Here, the thermophoretic force on the disk with negligible
thickness can also be obtained by the linear superposition of
this force on the leading and trailing surfaces.

FIG. 10. The reduced thermophoretic velocity versus ψ for non-
spheres: (a) the parallel reduced thermophoretic velocities; (b) the
transverse reduced thermophoretic velocities.
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FIG. 11. The deviation angle χ (drift direction with respect to
−∇T ) versus ψ for nonspheres.

Figure 7 shows the orientation dependence of the reduced
thermophoretic force at different aspect ratios for oblate
spheroids. Again, the momentum accommodation coefficients
σp = στ = 0.9. It is found that the maximum parallel ther-
mophoretic force appears at ψ = 0, while the minimum is
at ψ = π/2 which is different from the prolate spheroids.
However, the explanation is in the same manner, i.e., because
there is a maximum gas-particle collision cross section against
the temperature gradient if the axis is parallel to ∇T . Being
similar to the prolate spheroids, the transverse force is small

in magnitude and vanishes in the case of ψ = 0 or ψ =
π/2. With varying orientation, the magnitude of the reduced
transverse force for the oblate spheroid is larger than that for a
prolate spheroid, so the influence of the pitching effect is very
significant (with a maximum angle around 24.8°; see Fig. 8).
The thermophoretic force and the deviation angle for an oblate
spheroid are close to those on a disk for very small b/a, and
turn into those on a sphere if b/a = 1, as it should be.

E. Cuboids

Consider a cuboid with length, width, and height equal to
l1,l2, and l3, respectively. The thermophoretic force on the
cuboid consists of six parts, i.e., forces on the top, bottom,
front, back, left, and right surfaces. It is clear that the rota-
tion angle ζ (0 � ζ � 2π ) in Sec. III B has to be considered
in the transformation matrix M2 because a cuboid is not
axisymmetric.

In the front surface, the solid angles φ = π/2 and ξ = π/2,
as shown in Fig. 9(b). Therefore, the transformation matrix

M1,cu =
⎡
⎣1 0 0

0 0 −1
0 1 0

⎤
⎦. (58)

The surface element

dS = dX1dY1. (59)

For the other five surfaces, the transformation matrix M1

can also be obtained in the same way. Finally, the total force
is the linear superposition of the forces on these six surfaces,

FX = −κ

5

√
2m

πkBT
στ∇T (l1l2 + l2l3 + l3l1) − 2κ

5

√
2m

πkBT

(
2 − σp − στ

2

)
∇T [l1l2cos2ϕsin2θ

+ l2l3(cos ζ sin ϕ + sin ζ cos ϕ cos θ )2 + l3l1(cos ζ cos ϕ cos θ − sin ζ sin ϕ)2], (60)

FY = −2κ

5

√
2m

πkBT

(
2 − σp − στ

2

)
∇T [l1l2 cos ϕ sin θ cos θ − l2l3 sin ζ sin θ (cos ζ sin ϕ + sin ζ cos ϕ cos θ )

− l3l1 cos ζ sin θ (cos ζ cos ϕ cos θ − sin ζ sin ϕ)], (61)

FZ = −2κ

5

√
2m

πkBT

(
2 − σp − στ

2

)
∇T [l1l2 sin ϕ cos ϕsin2θ + l2l3(sin ζ cos ϕ cos θ + cos ζ sin ϕ)

× (sin ζ sin ϕ cos θ − cos ζ cos ϕ) + l3l1(cos ζ cos ϕ cos θ − sin ζ sin ϕ)(cos ζ sin ϕ cos θ + sin ζ cos ϕ)] . (62)

Then, the total thermophoretic force can be written as

FT = −κ

5

√
2m

πkBT

{
2(2 − σp)

(
l1l2∇T⊥1 + l2l3∇T⊥2 + l3l1∇T⊥3

) + στ

[
(l2l3 + l3l1)∇T⊥1 + (l1l2 + l3l1)∇T⊥2

+ (l1l2 + l2l3)∇T⊥3

]}
, (63)

and the orientation-averaged thermophoretic force is given by

〈FT 〉 = −2κ

15

√
2m

πkBT
(l1l2 + l2l3 + l3l1)(2 − σp + στ )∇T , (64)
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where the subscripts “⊥1”, “⊥2” and “⊥3” denote that temperature gradient vector is perpendicular to the planes l1l2,l2l3, and
l3l1, respectively.

In the case of l1 = l2 = l3 = l, the cuboid turns into a cube, and the thermophoretic force is given by

FT = −2κ

5

√
2m

πkBT
(2 − σp + στ )l2∇T . (65)

Note that the thermophoretic force on a cube is exactly in the direction opposite to the temperature gradient; i.e., there is no
transverse force for a cube.

F. Thermophoretic velocity

As mentioned in Sec. I, the balance between the thermophoretic and drag forces results in a thermophoretic velocity. For a
nonspherical particle, it has been shown that the thermophoretic force is not aligned with the temperature gradient ∇T , and there
is a transverse force due to the pitching effect. Therefore, the thermophoretic velocity of the nonspherical particle is supposed
to deviate from the negative direction of ∇T . Following Ref. [36], the expression for thermophoretic velocity is obtained by
balancing the thermophoretic force with the drag force (see Appendix), i.e., FD + FT = 0.

For cylinders, the thermophoretic velocity components parallel and perpendicular to the cylinder axis are given by

VT,‖ = − κ∇T‖
5nkBT

, (66)

VT,⊥ = − κ∇T⊥
5nkBT

(
8 − 4σp + 2στ

8 − 4σp + πσp + 2στ

)
, (67)

which is consistent with Ref. [47] if σt = σp = σ . It is found that the thermophoretic velocity is independent of the cylinder size.
To clearly illustrate the influence of the particle shape on its thermophoretic motion under a temperature gradient, Eqs. (66) and
(67) are rewritten in the directions parallel and perpendicular to ∇T , i.e., VT ,p and VT ,t ,

VT,p = − κ

5nkBT

(
cos2ψ + 8 − 4σp + 2στ

8 − 4σp + πσp + 2στ

sin2ψ

)
∇T , (68)

VT,t = − κ

5nkBT

(
πσp

8 − 4σp + πσp + 2στ

)
∇T sin ψ cos ψ. (69)

For spheroids, the thermophoretic velocity components parallel and perpendicular to the axis can be obtained as

VT,‖ = − κ∇T‖
5nkBT

[
4(2 − σp)

∫ b

−b
cos2ξDdY1 + 2στ

∫ b

−b
sin2ξDdY1

(8 − 4σp + πσp)
∫ b

−b
cos2ξDdY1 + 2στ

∫ b

−b
sin2ξDdY1

]
, (70)

VT,⊥ = − κ∇T⊥
5nkBT

[
4στ

∫ b

−b
cos2ξDdY1 + (8 − 4σp + 2στ )

∫ b

−b
sin2ξDdY1

4στ

∫ b

−b
cos2ξDdY1 + (8 − 4σp + πσp + 2στ )

∫ b

−b
sin2ξDdY1

]
. (71)

The thermophoretic velocity components parallel and perpendicular to ∇T are given by

VT,p = − κ

5nkBT

[
4(2 − σp) − (8 − 4σp − 2στ )�

(8 − 4σp + πσp) − (8 − 4σp + πσp − 2στ )�
cos2ψ + 4στ + (8 − 4σp − 2στ )�

4στ + (8 − 4σp + πσp − 2στ )�
sin2ψ

]
∇T ,

(72)

VT,t = − κ

5nkBT

[
4(2 − σp) − (8 − 4σp − 2στ )�

(8 − 4σp + πσp) − (8 − 4σp + πσp − 2στ )�
− 4στ + (8 − 4σp − 2στ )�

4στ + (8 − 4σp + πσp − 2στ )�

]
∇T sin ψ cos ψ,

(73)

respectively. Here, � = ∫ b

−b
sin2ξDdY1/

∫ b

−b
DdY1, and other integrals in Eqs. (70)–(73) have been given in

Sec. III D.
Figure 10(a) presents the orientation dependence of the reduced thermophoretic velocities for spheres, spheroids, needles, and

disks. Here, the reduced thermophoretic velocity is defined as V ∗
T = VT /VT ,sphere, where VT ,sphere is the thermophoretic velocity
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for spheres,

VT,sphere = − 4(2 − σp + στ )κ∇T

5(8 − 4σp + πσp + 4στ )nkBT
. (74)

The momentum accommodation coefficients σp = στ = 0.9. For spheres, the reduced parallel thermophoretic velocity
component V ∗

T ,p is equal to unit and the reduced transverse component V ∗
T ,t is zero. For nonspheres, V ∗

T ,p is unambiguously
orientation dependent, while V ∗

T ,t is small in magnitude and is expected to vanish after orientation averaging. At ψ = 0 (with the
particle axis aligned with ∇T ), V ∗

T ,p of a prolate spheroid (including a needle) is larger than unit (by 35.3% for a needle), and V ∗
T ,p

of an oblate spheroid (including a disk) is less than unit (by 17.6% for a disk) because of the suppressed (enhanced) friction on a
prolate (oblate) spheroid when the axis is aligned with its moving direction. At ψ = π/2 (with the particle axis perpendicular to
∇T ), the parallel thermophoretic velocity of a prolate particle is less than that of an oblate particle. Figure 11 plots the deviation
angle of the thermophoretic velocity with respect to −∇T (see the inset in Fig. 11). The maximal deviation angle is as high as
14° for a disk at about ψ = π/4, which highlights the influence of the particle shape on the thermophoretic motion because the
moving direction can be changed by the transverse forces.

For cuboids, the thermophoretic velocity components read

VT,⊥1 = −κ∇T⊥1

5nkBT

[
4(2 − σp)l1l2 + 2στ (l2l3 + l3l1)

(8 − 4σp + πσp)l1l2 + 2στ (l2l3 + l3l1)

]
, (75)

VT,⊥2 = −κ∇T⊥2

5nkBT

[
4(2 − σp)l2l3 + 2στ (l1l2 + l3l1)

(8 − 4σp + πσp)l2l3 + 2στ (l1l2 + l3l1)

]
, (76)

VT,⊥3 = −κ∇T⊥3

5nkBT

[
4(2 − σp)l3l1 + 2στ (l1l2 + l2l3)

(8 − 4σp + πσp)l3l1 + 2στ (l1l2 + l2l3)

]
. (77)

Here, the thermophoretic velocity is size dependent. In the case of l1 = l2 = l3 = l, the cuboid turns into a cube. Its thermophoretic
velocity is size independent and reads

VT = − 4(2 − σp + στ )κ∇T

5(8 − 4σp + πσp + 4στ )nkBT
. (78)

G. Thermophoretic torque

For a general particle orientation with angle (ϕ, θ , ζ ), the thermophoretic torque T on the particle can be calculated by
integration of the torque dT on the surface element dS over the whole particle surface,

T =
∫

S

dT =
∫

S

(r × τ x + r × p + r × τ z)dS, (79)

where p, τ x , and τ z are the normal and tangential forces and r = rX1 I1 + rY1 J1 + rZ1 K1 the position vector from the mass center
of the particle to the surface element.

For the cylinder, the thermophoretic torque components {TX1,TY1 ,TZ1} are given by

TX1 =
∫ L/2

−L/2

∫ 2π

0
(Y1τx cos φ − Y1p sin φ − R0τz sin φ)R0dφdY1 = 0, (80)

TY1 =
∫ L/2

−L/2

∫ 2π

0
τxR

2
0dφdY1 = 0, (81)

TZ1 =
∫ L/2

−L/2

∫ 2π

0
(−Y1τx sin φ − Y1p cos φ − R0τz cos φ)R0dφdY1 = 0, (82)

which is consistent with results of Ref. [45].
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For the spheroid, the thermophoretic torque components read

TX1 =
∫ b

−b

∫ 2π

0
(Y1τx cos φ + rp cos ξ sin φ − Y1p sin ξ sin φ − rτz sin ξ sin φ − Y1τz cos ξ sin φ)aDdφdY1 = 0, (83)

TY1 =
∫ b

−b

∫ 2π

0
τxraDdφdY1 = 0, (84)

TZ1 =
∫ b

−b

∫ 2π

0
(−Y1τx sin φ+rp cos ξ cos φ−Y1p sin ξ cos φ − rτz sin ξ cos φ − Y1τz cos ξ cos φ)aDdφdY1 = 0, (85)

where, r , sinξ , cosξ , and D are given in Eqs. (43) and (44).
For the cuboid, the thermophoretic torque components {TX1,TY1 ,TZ1} on the front surface (see Fig. 9) can be written as

TX1,f =
∫ l3/2

−l3/2

∫ l2/2

−l2/2

(
−Yp − l1

2
τz

)
dX1dY1 = κ

10

√
m

2πkBT
l1l2l3∇T cos ϕ sin θ, (86)

TY1,f =
∫ l3/2

−l3/2

∫ l2/2

−l2/2

(
l1

2
τx + X1p

)
dX1dY1 = − κ

10

√
m

2πkBT
l1l2l3∇T (cos ζ cos ϕ cos θ − sin ζ sin ϕ), (87)

TZ1,f =
∫ l3/2

−l3/2

∫ l2/2

−l2/2
(−Y1τx + X1τz)dX1dY1 = 0. (88)

In the back surface, both x and y directions are reversed, and the thermophoretic torque components read

TX1,b =
∫ l3/2

−l3/2

∫ l2/2

−l2/2

(
Yp + l1

2
τz

)
dX1dY1 = − κ

10

√
m

2πkBT
l1l2l3∇T cos ϕ sin θ, (89)

TY1,b =
∫ l3/2

−l3/2

∫ l2/2

−l2/2

(
l1

2
τx − X1p

)
dX1dY1 = κ

10

√
m

2πkBT
l1l2l3∇T (cos ζ cos ϕ cos θ− sin ζ sin ϕ), (90)

TZ1,b =
∫ l3/2

−l3/2

∫ l2/2

−l2/2
(−Y1τx + X1τz)dX1dY1 = 0, (91)

which can be counteracted by the thermophoretic torques on
the front surface. Similarly, the thermophoretic torques for the
other four surfaces counteract each other due to the symme-
try. Finally, the cuboid experiences zero net thermophoretic
torque.

According to the above calculations, there is no net ther-
mophoretic torque on cylinders, spheroids, and cuboids, which
can be attributed to the symmetry of their particular shape.
In fact, it has been reported that any particle that has three
mutually perpendicular planes of symmetry will experience
zero net thermophoretic torque [45].

IV. CONCLUSION

In summary, we have theoretically studied the thermophore-
sis of the nonspherical rigid particles in the free-molecule
regime based on the gas kinetic theory. The formulas for
the thermophoretic forces acting on the convex particles,
especially several typical nonspherical bodies, including cylin-
ders, spheroids, needles, disks, and cuboids, are obtained by
considering the influence of the particle shape and orientation.
The expressions for the thermophoretic forces on the cylinders
and spheres (a special case of spheroids) are consistent with
those in the open literature. Due to the pitching effect of

nonspheres, there exist transverse forces perpendicular to
the temperature gradient, which might significantly affect
the thermophoresis (especially its direction) of nonspherical
particles even though it is small in magnitude compared to the
force component opposite to the temperature gradient. Under
a uniformly random distribution of the particle orientation, the
expressions for the orientation-averaged thermophoretic forces
are obtained by orientation averaging.
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APPENDIX

A particle suspended in a gas with a nonuniform
temperature distribution is subjected to a thermophoretic
force as well as a drag. In the steady state, the particle
moves with a thermophoretic velocity by balancing the
thermophoretic force with the drag force on the particle. The
normal and tangential drag forces on the surface element are
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given by

pi = ρ

2
√

πh2

{
hv0 exp

(−h2v2
0

) + √
π

(
h2v2

0 + 1

2

)
[1 + erf(hv0)]

}
, (A1)

τxi = ρu0

2
√

πh

{
exp

(−h2v2
0

) + √
πhv0[1 + erf(hv0)]

}
, (A2)

τzi = ρw0

2
√

πh

{
exp

(−h2v2
0

) + √
πhv0[1 + erf(hv0)]

}
, (A3)

pw = ρ

4h2

{
exp

(−h2v2
0

) + √
πhv0[1 + erf(hv0)]

}
, (A4)

where erf(x) = (2/
√

π )
∫ x

0 e−η2
dη is the error function. Thus, the drag force on a cylinder is given by

FD = −n
√

2πmkBT R0L

[
στ V‖+

(
2 − σp + π

4
σp + στ

2

)
V⊥

]
. (A5)

The drag force on a spheroid reads

FD = −n
√

2πmkBT a

{[
στ V⊥ + 2

(
2 − σp + π

4
σp

)
V‖

] ∫ b

−b

DdY1 +
(

2 − σp + π

4
σp − στ

2

)
(V⊥ − 2V‖)

∫ b

−b

sin2ξDdY1

}
,

(A6)

and the drag force on a cuboid can be written as

FD = −n

√
2mkBT

π

{
2

(
2−σp+π

4
σp

)(
l1l2V⊥1+l2l3V⊥2+l3l1V⊥3

)+στ

[
(l2l3+l3l1)V⊥1+(l1l2 + l3l1)V⊥2 + (l1l2 + l2l3)V⊥3

]}
.

(A7)

The above results are consistent with the drag expressions given in Ref. [62] if we assume that στ = σp.
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