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Stress-stress fluctuation formula for elastic constants in the NPT ensemble

Dominik Lips and Philipp Maass*

Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany

(Received 11 September 2017; revised manuscript received 29 January 2018; published 25 May 2018)

Several fluctuation formulas are available for calculating elastic constants from equilibrium correlation
functions in computer simulations, but the ones available for simulations at constant pressure exhibit slow
convergence properties and cannot be used for the determination of local elastic constants. To overcome these
drawbacks, we derive a stress-stress fluctuation formula in the NPT ensemble based on known expressions in
the NVT ensemble. We validate the formula in the NPT ensemble by calculating elastic constants for the simple
nearest-neighbor Lennard-Jones crystal and by comparing the results with those obtained in the NVT ensemble.
For both local and bulk elastic constants we find an excellent agreement between the simulated data in the two
ensembles. To demonstrate the usefulness of the formula, we apply it to determine the elastic constants of a
simulated lipid bilayer.
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I. INTRODUCTION

The possibility to determine elastic properties of solid and
soft materials from computer simulations [1,2] has signif-
icantly advanced our understanding of how noncrystalline
materials react under loading. This includes strongly inhomo-
geneous systems such as glasses [3], polymer fibers [4], and
granular materials [5]. Particularly useful is the access to local
elastic constants and their spatial variation, which, for example,
can provide important information on the change of elastic
properties close to interfaces, grain boundaries, and surfaces
[6,7]. For obtaining the elastic constants one can directly
simulate stress-strain curves by applying small deformations
(or stresses) [1,8], or analyze equilibrium correlation functions
by resorting to the fluctuation-dissipation theorem [1,9], or
introduce phenomenological expressions of free energies with
parameters, which can be determined in simulations and related
to the constants of the free energy expansion with respect to
strain [10,11].

Most straightforward procedures for calculating elastic
constants are the evaluations of proper equilibrium correlation
functions in fluctuation formulas (FFs). Various approaches
with different levels of complexity have been established to
this end. Among them, the FFs applicable in constant pressure
simulations neither exhibit good convergence properties upon
averaging nor do they allow one to determine local elastic
constants, which are important for the characterization of
inhomogeneous materials [2,12]. A FF with good convergence
properties and access to local elastic constants has been derived
for the NVT ensemble [13,14], but no corresponding FF is yet
available for the NPT ensemble. The goal of this work is to fill
this gap.

After given an overview of the existing methods to calculate
elastic constants from FFs in Sec. II, we derive the FF in the
NPT ensemble in Sec. III. In Sec. IV we then validate the
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FF by calculating the elastic constants of the nearest-neighbor
Lennard-Jones fcc solid and comparing results with those
reported earlier in the literature. We further show that, to obtain
well-converged values for the elastic constants, one needs to
perform averages over a comparable number of equilibrated
particle configurations in the NPT and NVT ensemble. We
demonstrate the usefulness of the FF by determining the elastic
constants of a simulated lipid bilayer based on the model
developed in Ref. [15] in Sec. V. In this model, the bilayer
is stabilized by a surrounding gas of solvent beads, reflecting
the pressure exerted by an aqueous environment. Thus, the
access to local elastic constants allows us to selectively extract
the elastic properties of the lipid bilayer, without the need to
modify the most convenient simulation procedure of such a
system at constant pressure. As pointed out in the concluding
Sec. VI, this possibility will be one of the main advantages of
the FF.

II. FLUCTUATION FORMULAS FOR ELASTIC
CONSTANTS

For calculating elastic constants in molecular dynamics
simulations, a special molecular dynamics ensemble with a
fixed external stress tensor τ , the NτT ensemble (N : number
of particles, T : temperature) was introduced [16]. In this
ensemble the shape of the simulation cell, and accordingly
the instantaneous strain tensor ε, is allowed to fluctuate. In
general, the pressure is given by the trace of τ , and the special
choice ταβ = −Pδαβ corresponds to the NPT ensemble. The
geometry of the rectilinear simulation cell is described by a
scaling matrix h, whose columns are the vectors along the
edges of the cell. The first order bulk elastic constants Cαβμν

can be calculated from the strain-strain FF [9]

C−1
αβμν = kBT

〈V 〉τ 〈εαβεμν〉τ , (1)

where kB is the Boltzmann constant, V the instantaneous
volume, and 〈· · · 〉τ denotes the average in the NτT ensemble;
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C−1
αβμν is the inverse of Cαβμν in the sense that C−1

αβμνCμνγη =
δαγ δβη. The strain tensor ε is given by the scaling matrix
h in the instantaneous geometry and a reference geometry
characterized by h0, which corresponds to the mean of the
scaling matrix under a given external stress τ . Specifically ε =
(h-1T

0 hTh h−1
0 − 1)/2. The approach only requires a simulation

in the NτT ensemble to calculate the full tensor of isothermal
elastic constants and no evaluation of specific particle inter-
actions is necessary. Information about the specific system
under consideration enters indirectly through the phase space
measure of the ensemble average. Unfortunately, application of
the strain-strain FF results in poor convergence when averaging
the strain-strain fluctuations.

To address this problem, Gusev et al. introduced the stress-
strain FF in the NτT ensemble [13],

Cαβμν = 〈εαβ t̂λγ 〉τ 〈ελγ εμν〉−1
τ , (2)

where t̂αβ is the tension operator whose average 〈t̂αβ〉τ gives the
thermodynamic tensions (or second Piola-Kirchhoff stress).
Here and in the following we denote phase space operators,
which are functions of the particle positions and momenta, by
a caret. The tension operator t̂ is related to the (Cauchy) stress
operator �̂ by [1]

�̂ = V0

V
hh−1

0 t̂ h−1T
0 hT, (3)

where V = det h and V0 = det h0 is the volume of the ref-
erence geometry. At low temperatures this approach offers
improved convergence properties [13]. When using Eq. (2),
the specific form of interactions in the system enters directly
via �̂ and in turn t̂ in Eq. (3). The stress operator depends on
the first derivatives of the potential energy (i.e., the forces) and
for pairwise interactions is given by

�̂αβ = − 1

V

⎡
⎣∑

i

pi,αpi,β

mi

−
∑
i<j

∂Û

∂rij

xij,αxij,β

rij

⎤
⎦, (4)

where �ri and �pi are, respectively, the positions and momenta
of the N particles, Û = (1/2)

∑N
i,j û(�rij ) is the potential en-

ergy with �rij = (�ri − �rj ) = (xij,1,xij,2,xij,3), and rij = |�rij |. In
molecular dynamics simulations, the stress-strain FF increases
the computational costs only insignificantly, since the forces
are calculated anyway.

In the NVT ensemble, the determination of the first order
elastic constants can be achieved with the stress-stress FF
[17,18]. It requires more computational effort, because second-
order derivatives of the potential need to be evaluated. For
truncated forces, these second-order derivatives lead to δ-
function contributions that must be properly dealt with [19].
The advantage of the stress-stress FF is that the numerical
averaging of the respective correlation functions can converge
by orders of magnitude more rapidly compared to the strain-
strain and stress-strain FF. Furthermore, Lutsko showed [14]
that it is possible to combine this method with Irving and
Kirkwood’s definition of a local stress tensor [20], to obtain
a local form of the stress-stress FF:

Cαβμν(�r) = CK
αβμν(�r) + CB

αβμν(�r) − CN
αβμν(�r), (5a)

CK
αβμν(�r) = 2〈ρ̂(�r)〉V kBT (δαμδβν + δανδβμ), (5b)

CB
αβμν(�r) =

〈∑
i<j

B̂
(ij )
αβμν g(�r; �ri,�rj )

〉
V

, (5c)

CN
αβμν(�r) = V

kBT
[〈σ̂αβ(�r) �̂μν〉V − 〈σ̂αβ(�r)〉V 〈�̂μν〉V ], (5d)

where 〈· · · 〉V denotes the equilibrium average in the NVT
ensemble; CK is the ideal gas contribution, CB is the Born
term describing the response to affine deformations, and the
nonaffine term CN accounts for internal relaxation. In Eq. (5b),
the density function is

ρ̂(�r) =
∑

i

δ(�r − �ri). (6)

For pairwise interactions, the Born functions B̂(ij ) in Eq. (5c)
are

B̂
(ij )
αβμν =

(
∂2Û

∂r2
ij

− 1

rij

∂Û

∂rij

)
rij,αrij,βrij,μrij,ν

r3
ij

, (7)

and the local stress operator in Eq. (5d) is given by

σ̂αβ(�r) = −
∑

i

pi,αpi,β

mi

δ(�r − �ri)

+
∑
i<j

∂Û

∂rij

xij,αxij,β

rij

g(�r; �ri,�rj ). (8)

Here g(�r; �ri,�rj ) is a weighting function, which corresponds to
a Dirac δ function of �r with support on the line segment joining
the points �ri and �rj divided by the distance rij ,

g(�r; �ri,�rj ) = 1

rij

∫ 1

0
dλ δ[�r − (1 − λ)�ri − λ�rj ]. (9)

The expressions in Eqs. (5a)–(5d) and (8) correspond to
microscopic (operator-like) continuum fields, from which by
a local spatial averaging (coarse-graining) smooth continuum
fields are obtained. In practice, the system is partitioned into a
grid of cells and the elastic constants are calculated for each cell
[3,21]. Upon spatial averaging over the whole volume V , one
obtains from Eq. (8) the bulk stress tensor �̂ and from Eq. (5)
the bulk elastic constants. This amounts to replace 〈ρ̂(�r)〉V by
the bulk density N/V in Eq. (5b), to set g = 1 in Eq. (5c), and
to replace σ̂ by �̂ in Eq. (5d).

III. LOCAL ELASTIC CONSTANTS IN THE NPT
ENSEMBLE

Local elastic constants at a given pressure can be obtained
if one first performs a simulation in the NPT ensemble
and determines the bulk density, and thereafter adjusts the
volume in the NVT ensemble to that density [22–25]. Here
we are interested in enabling a direct determination of local
elastic constants in the NPT ensemble. To this end we will
in the following transform the stress-stress FF in the NVT
to the NPT ensemble. A similar approach was given in
Refs. [26–28].

Let us first note that the average yielding the Born term
in Eq. (5c) is independent of the chosen ensemble in the
thermodynamic limit as long as the interaction potential
between the particles is sufficiently short-ranged [29]. This

053002-2



STRESS-STRESS FLUCTUATION FORMULA FOR ELASTIC … PHYSICAL REVIEW E 97, 053002 (2018)

is because the Born function in Eq. (7) can, for sufficiently
short-range interactions, be viewed as a sum over independent
particle contributions with the g(· · · ) function scaling with
1/V . The same reasoning applies to the density function in
Eq. (6), yielding, in the thermodynamic limit, the ensemble-
independent local density in the kinetic term in Eq. (5b).

However, correlations of phase space functions, like they
occur in the nonaffine term in Eq. (5d), are in general not
equal for different ensembles in the thermodynamic limit.
In Ref. [30], a formalism to relate correlations in different
ensembles was worked out. Applying this formalism to the
covariance of the local and bulk stresses in Eq. (5d) yields

〈�σ̂αβ (�r)��̂μν〉V = 〈�σ̂αβ(�r)��̂μν〉P + kBT

(
∂〈V 〉P

∂P

)−1

×
(

∂

∂P

〈
σ̂αβ(�r)

〉
P

)(
∂

∂P

〈
�̂μν

〉
P

)

+ O(1/N), (10)

where �X = X − 〈X〉 denotes the deviation of the quantity X

from its average, and 〈· · · 〉P is the average in the NPT ensemble
[31].

The three derivates in the second line of Eq. (10) are readily
obtained from the fluctuation dissipation theorem,

kBT
∂〈σ̂αβ(�r)〉P

∂P
= −〈�σ̂αβ (�r)�V 〉P , (11a)

kBT
∂〈�̂αβ〉P

∂P
= −〈��̂αβ�V 〉P = −kBT δαβ, (11b)

where Eq. (11b) also follows by resorting to the expression
〈�̂αβ〉P = −Pδαβ for hydrostatic pressure. Putting everything
together, we obtain the following stress-stress FF for the local
elastic constants in the NPT ensemble:

Cαβμν(�r) = CK
αβμν(�r) + CB

αβμν(�r) − CN
αβμν(�r), (12a)

CK
αβμν(�r) = 2〈ρ̂(�r)〉P kBT (δαμδβν + δανδβμ), (12b)

CB
αβμν(�r) =

〈∑
i<j

B̂
(ij )
αβμν g(�r; �ri,�rj )

〉
P

, (12c)

CN
αβμν(�r) = 〈V 〉P

kBT
〈�σ̂αβ(�r)��̂μν〉P

− K

kBT
〈�σ̂αβ(�r)�V 〉P δμν. (12d)

In Eq. (12d) we have replaced the volume V from Eq. (5d) by
the corresponding average 〈V 〉P in the NPT ensemble (in the
thermodynamic limit, V = 〈V 〉P ) and inserted the isothermal
bulk modulus

K = −V
∂P

∂V
= kBT

〈V 〉P

〈�V 2〉P

. (13)

All quantities in Eqs. (12) can be sampled in a single simulation
run in the NPT ensemble.

Finally, we point out that the elements Cαβμν give the
coefficients of the second order term in an expansion of the free
energy with respect to strain, while elastic constants C̃αβμν in
the sense of Hooke’s law relate the stress σ to the linearized

strain ε̃ = (hT -1
0 hT + hh−1

0 )/2 − 1 valid for small deformation
gradients. In an initial stress-free configuration (vanishing first
order term of the free energy expansion), the two tensors agree,
C̃ = C. However, in a stressed reference configuration, an
extra linear term has to be taken into account in the free energy
expansion. This implies that the two tensors are no longer equal
but are related via [32]

C̃αβμν(�r) = Cαβμν(�r) + 1
2 [〈σ̂αμ(�r)〉δβν + 〈σ̂αν(�r)〉δβμ

+ 〈σ̂βμ(�r)〉δαν + 〈σ̂βν(�r)〉δαμ − 2〈σ̂αβ(�r)〉δμν].

(14)

In particular, the additional term on the right-hand side has to
be taken into account for simulations under a finite pressure.

The expansion coefficient Cαβμν and the elastic constants
C̃αβμν in both their local form and bulk form exhibit the
symmetries Cαβμν = Cβαμν = Cαβνμ. These symmetries re-
duce the 34 = 81 coefficients to 36 independent ones that
in the usual Voigt notation [33] are represented by a 6 × 6
matrix, which generally can be asymmetric. The bulk ex-
pansion coefficients Cαβμν exhibit the additional symmetry
Cαβμν = Cμναβ , which implies that the corresponding matrix
in Voigt notation becomes symmetric. The elastic constants
C̃αβμν in general do not have this additional symmetry, unless
for hydrostatic pressure, where 〈�̂αβ〉 = −Pδαβ (including
stress-free reference configurations). Additional symmetries
are reflecting symmetries of the material structure.

Let us finally note that care should be taken when integrating
out the momenta in the nonaffine term CN

αβμν in Eq. (5d) or
(12d). The local stress tensor operator σ̂αβ(�r) from Eq. (8) in
the respective formulas must not be replaced by the sum of its
kinetic part [−kBT ρ̂(�r)] plus the remaining interaction part, as
was sometimes done in the literature (for the respective formula
in the NVT ensemble). Instead, the full expression in Eq. (8)
needs to be inserted in the averages in Eq. (5d) or (12d) in
order to take into account correctly the four-point momentum
correlations.

If one is integrating out the momenta in the stress tensor
operator, one can define

σ̂ ′
αβ(�r) = −kBT ρ̂(�r)δαβ +

∑
i<j

∂Û

∂rij

xij,αxij,β

rij

g(�r; �ri,�rj ),

(15a)

�̂′
αβ = −kBTρbδαβ + 1

V

∑
i<j

∂Û

∂rij

xij,αxij,β

rij

, (15b)

where ρb = N/V is the bulk density. Note that this a fluctu-
ating quantity in the NPT ensemble. The correlation between
the local and bulk stress then becomes

V

kBT
〈�σ̂αβ (�r)��̂μν〉 = kBT 〈ρ̂(�r)〉(δαμδβν + δανδβμ)

+ V

kBT
〈�σ̂ ′

αβ(�r)��̂′
μν〉. (16)

This can be used in Eq. (5d), or in Eq. (12d) if replacing V by
〈V 〉P . In the correlator 〈�σ̂αβ(�r)�V 〉

P
appearing in Eq. (12d)

one can replace σ̂αβ(�r) by σ̂ ′
αβ(�r) from Eq. (15a).
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IV. VALIDATION FOR THE LENNARD-JONES FCC SOLID

To validate the stress-stress fluctuation formula (12) in the
NPT ensemble, we consider the nearest-neighbor Lennard-
Jones fcc solid. This model has often been used in the
literature to determine elastic constants [6,13,16,34–36] and
thus evolved to a kind of standard test case. The pair potential
between two nearest neighbors in this model reads

û(�rij ) = 4εLJ

[(
σLJ

rij

)12

−
(

σLJ

rij

)6]
. (17)

We use εLJ as the energy unit and σLJ as the length unit. Hence,
temperatures are given in units of εLJ/kB, pressures and elastic
constants in units of εLJ/σ

3
LJ, and volumes in units of σ 3

LJ.
All presented results are obtained from a system containing

N = 4000 particles, corresponding to 103 cubic unit cells,
with periodic boundary conditions. We work at T = 0.3 in
the low-temperature regime, where the particles form an fcc
lattice, and compare results obtained in the NPT ensemble
for two pressures P = 0 and P = 1.4 with that in the NVT
ensemble with the corresponding volumes V = 〈V 〉P=0

∼=
4282 (ρb

∼= 0.934) and V = 〈V 〉P=1.4
∼= 4107 (ρb

∼= 0.974).
The simulations were carried out using standard Monte Carlo
techniques [37] for the both NVT and NPT ensembles in the
configuration space, i.e., without momenta. Therefore we used
Eqs. (15) to calculate the nonaffine contributions in Eqs. (5d)
and (12d). In the following, our results for the elastic constants
C̃αβμν are given in the usual Voigt notation [33], where we omit
the tilde in the notation.

For the bulk elastic constants, the matrix must have the form⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤
⎥⎥⎥⎥⎥⎦ (18)

because of the cubic symmetry of the fcc lattice [38]. the three
independent elastic constants C11, C12, and C44, calculated
with Eq. (5) in the NVT ensemble and with Eq. (12) in the
NPT ensemble (from their respective bulk version, see note at
the end of Sec. II), are shown in Table I. For both ensembles,
there is perfect agreement at both simulated pressures. The
results for zero pressure are also in agreement with earlier
published work [13,34]. Because the crystal under the higher
pressure has a stronger resistance against deformation changes,
the corresponding values for the elastic constants are larger
than for zero pressure.

If we ignore the ensemble transformation of the nonaffine
contribution to the FF and use Eq. (12d) without the second
term on the right-hand side, the bulk elastic constant C44 =
C̃2323 = ∂σ23/∂ε̃23 remains unchanged, because it refers to
the shear strain ε̃23, where the second term ∝ δμν = δ23 in
Eq. (12d) vanishes. The agreement of the expressions for the
shear moduli in the NVT and NPT ensembles is expected
also from the decoupling of pure deviatoric and dilatational
strains [26]. However, for the bulk elastic constants C11 =
C̃1111 and C12 = C̃1122 referring to normal strains, we obtain
C11 = 16.50 and C12 = −8.25 for zero pressure, i.e., there is

TABLE I. Bulk elastic constants of the nearest-neighbor Lennard-
Jones fcc solid in dimensionless Lennard-Jones units for two pres-
sures P calculated from Monte Carlo simulations in the NVT and
NPT ensembles (N = 4000, T = 0.3). The values were obtained by
averaging over 4.5 × 109 particle configurations and an additional
symmetry-averaging over equivalent elastic constants was performed,
e.g., C11 = (C11 + C22 + C33)/3 [cf. Eq. (18)]. The numerical un-
certainties were estimated by subdividing the sequence of simulated
Monte Carlo configuration into independent blocks, and analyzing
the fluctuations between the block averages.

P Cαβ NVT NPT

0.0 C11 44.25 ± 0.03 44.26 ± 0.07
C12 19.50 ± 0.03 19.50 ± 0.07
C44 23.04 ± 0.01 23.04 ± 0.01

1.4 C11 60.22 ± 0.03 60.19 ± 0.09
C12 29.65 ± 0.03 29.62 ± 0.09
C44 30.24 ± 0.01 30.24 ± 0.01

a drastic deviation compared to the values C11 = 44.26 and
C12 = 19.50 listed in Table I.

To compare the convergence behavior of the stress-stress FF
in the two ensembles, we analyze the mean relative deviation
of the bulk elastic constants with respect to their converged
values in dependence of the number n of configuration samples
used for the ensemble averaging. This mean relative deviation
was determined as follows. After averaging over n equilibrated
configurations (separated by 20 Monte Carlo steps) in one
simulation run i, one obtains a value C

(i)
αβ(n). This exhibits

a relative deviation |C(i)
αβ(n) − Cref

αβ |/Cref
αβ , where Cref

αβ refers
to the converged value given in Table I. The mean relative
deviation �Cαβ(n) is obtained from averaging over a number
m = 500 of independent simulation runs i = 1, . . . ,m, i.e.,
�Cαβ(n) = (

∑m
i=1 |C(i)

αβ(n) − Cref
αβ |/Cref

αβ )/m. As can be seen
from Fig. 1, the rate of convergence in both ensembles, i.e.,
the decrease of �Cαβ(n) with n, shows similar behavior. In the
case of C44, the mean relative deviations are almost the same

2000 3000 4000 5000 6000 7000 8000 9000

10−2

10−1

n

Δ
C

11
(n

)

2000 3000 4000 5000 6000 7000 8000 9000

10−2

10−1

n

Δ
C

12
(n

)

2000 4000 6000 8000 10000

10−3

10−2

n

Δ
C

44
(n

)

FIG. 1. Mean relative deviation �Cαβ after averaging over n

independent configurations in the NVT (blue squares) and NPT
ensemble (red circles) for pressure P = 0 (N = 4000, T = 0.3).
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FIG. 2. Simulated profiles of the nonzero local elastic constants in the NVT (blue squares) and NPT ensemble (red circles) at (a) P = 0 and
(b) P = 1.4 (N = 4000, T = 0.3). The lattice constants of the cubic unit cells are a = 1.6241 for P = 0 and a = 1.6016 for P = 1.4.

for the two ensembles, and in the case of C11 and C12, they are
by a factor of about two larger for the NPT ensemble. After
averaging over n = 104 samples, the mean relative deviation
is of the order 1% in both the NVT and NPT ensemble
for C11 and C12, and about an order of magnitude smaller
for C44.

Finally, we compare the variation of the local elastic
constants along one principal axis of the cubic unit cell in
the two ensembles. To this end, we partition the simulation
box into 500 thin slabs of equal thickness in the z direction,
that means 50 slabs per length of the cubic unit cell and
calculate the local elastic constants for each slab. In the NPT
ensemble, where the size of the simulation box fluctuates, the
slab thickness is always adjusted accordingly. Additionally,
we average over the periodicity of the crystal, which here
means that we perform an average over the elastic constants
of every 50th slab. Generally, one should be careful with the
physical interpretation of fields of elastic constants on spatial
scales comparable to atomic distances; see the analysis and
discussions in Refs. [2,21,39,40]. For the nearest-neighbor
Lennard-Jones fcc crystal, however, it has been shown before
[6] that the elastic constants still relate stresses and strains
linearly according to Hooke’s law even on such small scales.

Symmetry considerations for this arrangements predict that
in total 12 local elastic constants are nonzero, where six of
them are independent. For the partitioning in the z direction,
these nonzero constants are C11(z) = C22(z), C12(z) = C21(z),
C13(z) = C23(z), C31(z) = C32(z), C33(z), C44(z) = C55(z),
and C66(z). The results from the simulations confirm these
predictions for both ensembles.

Figure 2 shows the profiles of the nonzero elastic constants
Cαβ(z) in the NVT (blue squares) and the NPT ensemble
(red circles) for (a) P = 0.0 and (b) P = 1.4. For all elastic
constants there is excellent agreement of the simulated data in
the two ensembles. Due to the crystal symmetry, the profiles
are symmetric with respect to the center of the cubic unit cell
with lattice constant a, i.e., Cαβ(z − a/2) = Cαβ(−z − a/2).
We furthermore checked that an integration over the profiles
gives bulk values, which exhibit the symmetries of the matrix
in Eq. (18) and agree with the values listed in Table I. As for the
bulk values, the local elastic constants are larger for the higher
pressure. The profiles C13(z) and C44(z) change their shape
with the pressure change, where C13(z) shows an additional
local maximum at z = a/2 at the higher pressure, and C44(z)
exhibits a shallow local maximum at z = a/2 for P = 0 and a
local minimum at P = 1.4.
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TABLE II. Parameters of the interaction potentials in Eqs. (19)–
(21) [42], in units of the Lennard-Jones parameters vLJ = 1 and σLJ =
1 for the tail-tail interactions.

Interaction type Potential Parameters

Tail-tail Vsc vLJ = 1, σLJ = 1, rc = 2
Head-tail vLJ = 1, σLJ = 1.05, rc = 1.05
Solvent-tail
Head-head vLJ = 1, σLJ = 1.1, rc = 1.1
Solvent-head

Solvent-solvent None
Bond length VFENE vFENE = 100, r0 = 0.7, �rm = 0.2
Bond angle Vba vba = 4.7

V. APPLICATION TO A LIPID BILAYER MODEL

As an example for the application of the stress-stress FF
in the NPT ensemble, we calculate the elastic constants for a
simple coarse-grained model of a lipid bilayer as developed
by Lenz and Schmid (LS model) [15,41,42]. This model
is a coarse-grained representation of single-tail amphiphilic
molecules, where the hydrophilic part is represented by one
head bead and the long aliphatic tail by six tails beads. Adjacent
beads in one molecule are connected by finitely extensible
nonlinear elastic (FENE) springs [43] with potential

VFENE(r) = −vFENE

2
(�rm)2 log

[
1 −

(
r − r0

�rm

)2
]
, (19)

where vFENE specifies the strength of the springs and r the bead
distance; r0 is the bond length for the unstretched spring and
�rm is the maximal stretching distance. Three adjacent beads
of a molecule with bond angle θ interact via the bond-angle
potential

Vba(θ ) = vba(1 − cos θ ), (20)

where vba regulates the stiffness of the chain molecules. Both
the nonbonded beads belonging to the same molecule and the
beads belonging to different molecules interact via a truncated
Lennard-Jones potential

Vsc(r) = [VLJ(r) − VLJ(rc)]H (rc − r), (21a)

VLJ(r) = vLJ

[(σLJ

r

)12
− 2

(σLJ

r

)6
]
, (21b)

where H (·) is the Heaviside step function [H (x) = 1 for x > 0
and zero otherwise]. The parameter vLJ is the same for all types
of the interacting beads and used as the energy unit. The σLJ are
different for different types of beads; see Table II. The length
unit is set by σLJ for the tail-tail bead interactions. These units
correspond to vLJ � 0.36 × 10−20 J and σLJ � 6 Å [41,42]. The
cutoff parameters rc correspond to the minimum of VLJ(r) for
head-head and head-tail bead interactions (i.e., rc = σLJ in that
case), leading to a purely repulsive interaction between these
types of beads. For the tail-tail bead interactions, rc has a larger
value, giving an attractive pair interaction for σLJ < r < rc.
This attractive part facilitates a self-organization of the chain
molecules into a double-layer structure.

FIG. 3. Snapshot of an equilibrated particle configuration of a
lipid bilayer in the fluid phase together with the surrounding solvent
from Monte Carlo simulations of the LS model. Solvent beads are
colored in blue, head beads in red, and tail beads in green.

To stabilize a lipid bilayer structure, the bead-spring chains
representing the molecules are brought into contact with a
solvent, which is also represented by simple beads. These
interact with all lipid beads via Vsc(r) with parameters given
in Table II (solely repulsive interactions), but they do not
interact with themselves. All parameters of the LS model are
summarized in Table II. Units of temperature and pressure (as
well as the elastic constants) are vLJ/kB and vLJ/σ

3
LJ, with σLJ for

tail-tail bead interactions. As mentioned above in Sec. II, the
truncation of the Lennard-Jones at the radii rc in Table II gives
rise to discontinuities in the second-order derivatives of the
respective potential and accordingly δ function contributions
in the Born term; see Eqs. (7) and (12c). The corresponding
impulsive contributions were taken into account for bead with
pair distances r in an interval [rc − �r/2,rc + �r/2] with
�r = 0.02 [44].

Monte Carlo simulations were performed as described in
Refs. [41,42] under constant temperature T = 1.3 and pressure
P = 2 for lipid bilayers with upper and lower leaflets consist-
ing of N = 10 × 10 lipid molecules; 7692 solvent beads were
chosen for the solvent model. The lipid bilayer is oriented in
the xy plane and the center of mass of the lipid beads defines
the origin of the coordinate system.

A representative example of an equilibrated configuration
of the system with lipid bilayer and solvent beads is shown
in Fig. 3. Because of the rotational symmetry around the z

axis, the elastic constants of the full lipid bilayer should exhibit
transverse symmetry, corresponding to the block diagonal form⎡

⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎦ (22)

of the tensor in Voigt notation.
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FIG. 4. (a) Density profiles ρ(z) of head beads (dashed line), tail
beads (solid line) and solvent beads (dotted line). (b–d) Representative
profiles Cαβ (z) of elastic constants. The vertical lines mark the
boundaries of the lipid bilayer region [see text and Eq. (23)]. Results
were obtained from Monte Carlo simulations at T = 1.3 and P = 2.

To determine the Cαβ of the full lipid bilayer, we can
now take advantage of the access to local elastic constants,
which allows us to selectively average them over the region
of the bilayer. Technically, we calculate the local constants
with respect to the z coordinate using Eqs. (12) by dividing the
simulation box in 100 slabs with respect to the (instantaneous)
box length in z direction; i.e., we use the same method as
described above in Sec. IV. The average slab thickness was
�z = 0.47. The three-body contributions to the stress tensor
and the Born term resulting from the bond-angle potential in
Eq. (20) are decomposed into pairwise contributions according
to Ref. [45]. In Eq. (12d) we take the ideal gas value K =
ρskBT = P , with ρs the constant density of the solvent beads
far from the lipid bilayer; see Fig. 4(a) [46].

Examples of the resulting profiles Cαβ(z) are shown in
Figs. 4(b)–4(d), together with the density profiles of the head
beads (dashed line), tail beads (solid line), and solvent beads
(dotted line) in Fig. 4(a). The two profiles in Figs. 4(b) and 4(c)
are representative of Cαβ belonging to the first block diagonal
element of (22) [α,β ∈ {1,2,3}]: They are positive in the tail
bead region and show an oscillation near the lipid-solvent
interface, where the head beads have noticeable density; see
Fig. 4(a). Near the interface a small z interval exists, where
C11 and C12 become negative. The profile in Fig. 4(d) is
representative of the nonzero Cαβ belonging to the second
block diagonal element of (22) [α = β ∈ {4,5,6}]. Here the
impact of the head beads at the lipid-solvent interface is
much less pronounced. All profiles in Figs. 4(b)–4(d) exhibit
a small dip close to the midplane of the bilayer at z = 0
(“leaflet-interface”) and reflect well the spatial symmetry with
respect to this midplane.

In the present case, the zero elements in (22) should give
zero values also on the local scale. Indeed, we found the profiles
calculated from the simulations to fluctuate around zero with a
standard deviation of 0.42. In the solvent region, all profiles in

Figs. 4(b)–4(d) are flat with value kBTρ(z) = K = P = 2 for
the Cαβ(z), 1 � α,β � 3, and zero value for the other Cαβ(z).
This is the expected behavior for the mutually noninteracting
solvent beads, which correspond to an ideal gas. Since we are
interested in the elastic constants of the full lipid bilayer, we are
not investigating further here on which spatial scale the profiles
in Figs. 4(b)–4(d) reflect a linear relation between local stresses
and strains according to Hooke’s law.

By a spatial averaging over the profiles Cαβ(z) the elastic
constants of the full lipid bilayer are obtained,

CLB
αβ = 1

(d+ − d−)

∫ d+

d−
dz Cαβ(z), (23)

where d± = z± ± σLJ with σLJ the value for head-solvent
interactions (see Table II), and z− and z+ are the average z

coordinates of the head bead in the lower and upper leaflet,
respectively. By shifting these position with σLJ we take into
account the soft core interaction range between head and
solvent beads. The positions d− = −4.33 and d+ = 4.30 are
marked by the vertical lines in Figs. 4(a)–4(d). As can be seen
from Fig. 4(a), they represent well the lower and upper limit of
the bilayer. In Figs. 4(b)–4(d) we see that they mark also the
points, where the profiles of the local elastic constants cross
over to the flat solvent regime.

The tensor of elastic constants of the full lipid bilayer
obtained from Eq. (23) is

CLB =

⎡
⎢⎢⎢⎢⎢⎣

5.11 3.00 2.80 −0.14 −0.22 −0.02
3.03 5.34 3.08 −0.04 0.01 −0.03
2.67 2.94 4.15 −0.06 −0.34 0.02

−0.15 −0.04 −0.05 0.91 0.02 −0.02
−0.21 0.01 −0.33 0.02 0.70 −0.04
−0.03 −0.03 0.03 −0.03 −0.04 1.18

⎤
⎥⎥⎥⎥⎥⎦.

(24)

We see that the large elements are the Cαβ with 1 � α,β � 3,
while values an order of magnitude smaller are obtained for
those matrix elements, which should be zero according to the
expected form in (22). From these elements we can estimate
that the numerical uncertainty is about ±0.3. In terms of this
numerical uncertainty, the diagonal elements C44 and C66,
despite being small, have significant values, and the structure
of (24) agrees with the expected symmetry of (22).

VI. CONCLUSIONS

We derived a stress-stress FF to calculate the tensors
of bulk and local elastic constants in the NPT ensemble
based on formerly derived expressions for the NVT ensemble
and transformation rules for correlation functions between
different ensembles. This FF allows the determination of
elastic constants from simulations in the NPT ensemble. We
validated the FF for the nearest-neighbor Lennard-Jones solid
and showed the agreement of the results with those obtained
from corresponding simulations in the NVT ensemble. As an
application, we calculated the tensor of elastic constants for a
simulated lipid bilayer in the fluid phase.

For solid materials, the FF for the NPT ensemble can
facilitate the analysis of the pressure dependence of elastic
constants. An efficient procedure to calculate elastic constants
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in the NPT ensemble should in particular be useful for systems,
which naturally need to be held under an external pressure.
These are often soft matter structures forming in aqueous
environments and exhibiting an elastic response behavior for
small deformations, for example, lipid membranes or cell
organelles. The access to local elastic constants provides a
means for detailed analyses of heterogeneous systems, for
which the studied lipid bilayer gives an example. As was shown
recently, it is possible also to extend the methodology for
studying time-dependent relaxation behavior of elastic moduli
[47].

Other interesting systems are structured composite mate-
rials, for example, sandwich materials with layer structure.
A typical approach to calculate the elastic properties of such
a composite is to perform a weighted average over elastic
properties of a homogeneous material assigned to each layer.
Below a certain layer thickness, where the properties inside a
layer become strongly influenced by interfacial effects, such
calculation based on a simple layer representation will break
down and the FF could then be used. From the theoretical
point of view, one can study such composite systems with

particle-based models and systematically analyze how large
the substructures must be that a calculation based on a simple
substructure representation becomes valid. Here it would be
interesting to see whether one can find simple approximate
rules, e.g., with respect to the influence of the particle interac-
tion range.

Self-organized structures are often formed by complex
molecules with interactions involving many-body forces, and
these occur also for atomic systems when using accurate
effective potentials derived from first-principle calculations.
In the bulk, the stress-stress FF in the NVT ensemble can be
formulated for arbitrary many-body forces [18] and based on
this, it is possible to take over the formulas in the NPT ensemble
as described. However, in the presence of many-body forces,
it becomes more difficult to define a local stress tensor and
associated stress-stress FF for local elastic constants. In some
cases, e.g., for the bond-angle potential in Eq. (20), it is possible
to decompose many-body forces into pair forces [45,48,49].
For the general case, it would be desirable to investigate in
more detail how many-body forces can be effectively handled
in the determination of elastic constants.
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