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Disentangling α and β relaxation in orientationally disordered crystals with theory and experiments
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We use a microscopically motivated generalized Langevin equation (GLE) approach to link the vibrational
density of states (VDOS) to the dielectric response of orientational glasses (OGs). The dielectric function
calculated based on the GLE is compared with experimental data for the paradigmatic case of two OGs: freon-112
and freon-113, around and just above Tg . The memory function is related to the integral of the VDOS times a
spectral coupling function γ (ωp), which tells the degree of dynamical coupling between molecular degrees of
freedom at different eigenfrequencies. The comparative analysis of the two freons reveals that the appearance
of a secondary β relaxation in freon-112 is due to cooperative dynamical coupling in the regime of mesoscopic
motions caused by stronger anharmonicity (absent in freon-113) and is associated with the comparatively lower
boson peak in the VDOS. The proposed framework brings together all the key aspects of glassy physics (VDOS
with the boson peak, dynamical heterogeneity, dissipation, and anharmonicity) into a single model.
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I. INTRODUCTION

Structural glass (SG) formers, which are usually obtained
from supercooled liquids in which translational and orienta-
tional degrees of freedom are frozen below the glass transition
temperature Tg , exhibit a complex response function on vibra-
tional excitations [1–4]. When they undergo a rapid cooling
to avoid crystallization, some anomalous physical properties
emerge. For example, as temperature decreases, the relaxation
time generally shows a stronger increase, faster than what is
given by the Arrhenius law (super-Arrhenius behavior). For
such cases, the temperature (T ) dependence of relaxation time
(τ ) is given through the empirical Vogel-Fulcher-Tammann
law [5,6] or by physically motivated double-exponential de-
pendence of τ on T , which includes the dependence on the
steepness of interatomic repulsion and on thermal expansion
via the more recent Krausser-Samwer-Zaccone relation [7].
To account for the deviation of the Arrhenius temperature
dependence, i.e., for the faster increase in the relaxation time
(or viscosity), the kinetic fragility index is defined as m =
∂ log10 τ

∂(Tg/T ) |T =Tg
, ranging between ≈16 (strong glasses) and 200

(fragile glasses) [8,9].
In addition to the structural glasses, orientational glasses

(OGs) can be obtained from orientationally disordered (OD)
phases or plastic phases [10–12]. OD phases are crystal lattices
in which weakly interacting molecules are orientationally dis-
ordered. On cooling, some OD phases exhibit the same features
as structural (canonical) glass formers [11,13–15]. With re-
spect to the fragility index, OGs are usually strong [8], whereas
for SGs a wide range of fragility values are found, the most
fragile being the cis- or trans-decahydronaphthalene (m ≈
147) [16]. The most fragile OGs known to date include freon-
112 [CCl2F-CCl2F, hereinafter (F112)] with m = 68 [15].

On the other hand, for freon-113 [CCl2F-CClF2, hereinafter
(F113)], the kinetic fragility index was calculated to be m =
127, which is the highest so far reported for an OG [17].

In an effort to explain the various glassy anomalies and
dynamical behavior, mode-coupling theory provides, among
other predictions, a good description for the dielectric re-
laxation of liquids for temperatures higher than the liquid
crossover temperature Tc [18]. Despite this, the main relaxation
mechanism by which supercooled liquids undergo a liquid-
solid transition, at or around Tg , has remained elusive [19]. The
α relaxation, typically associated with collective and strong
cooperative motions of a large number of entities rearranging
in a long-range correlated way, is related to the slowest decay
of density correlations and is widely observed in dielectric and
mechanical responses.

For supercooled liquids, the empirical Kohlrausch
stretched-exponential function ∼ exp [−(t/τ )β] provides a
good empirical fit for the dielectric loss of the α relaxation upon
taking the Fourier transform from the time into the frequency
domain. Furthermore, starting from the first principles assump-
tion that the microscopic Hamiltonian can be modeled using a
classical particle-bath coupling of the Caldeira-Leggett type,
a simple and explicit relation between the dielectric relaxation
function and the vibrational density of states (VDOS) of the
SGs has been presented to provide a good interpretation of the
α peak and stretched-exponential relaxation through a memory
function of friction [20].

In addition to α relaxation, an extra shoulder or wing also
decorates the imaginary part of the dielectric response, which
is referred to as the β relaxation, as Johari-Goldstein, or as the
secondary relaxation. As discovered by Johari and Goldstein
[21] in glasses of rigid molecules and as described by the Ngai
coupling model [22], the secondary relaxation involves the
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motion of the entire molecule. Knowing the underlying mech-
anism of β relaxation is of great importance for understanding
many crucial unresolved issues in glassy physics and materials
science and consequently for a wide potential application in
technologies, ranging from glass transitions and deformation
mechanisms to diffusion and the breakdown of the Stokes-
Einstein relations, physical aging, as well as the conductivity
of ionic liquids and the stability of glassy pharmaceuticals
and biomaterials. Yet, the nature and mechanism of the β

relaxations are still not clear [23–26].
In order to understand the puzzling origin of the β relaxation

it is instructive to consider systems with very similar molec-
ular structures and yet exhibiting widely different relaxation
behaviors. Such systems can be found in the realm of OGs.

Previous study on thermal conductivities of F112 and F113
reveals the existence of quasilocalized low-energy vibrational
modes (soft harmonic oscillators as described through the soft
potential model [27]) at energies lower than the values of the
maximum of the boson peak compared with other OGs, which
results in an increase in the VDOS [13]. It was thought that the
high values of kinetic (m = 127) fragility of F113 are produced
by strong orientational correlations, which is evidenced by low
values of the stretching exponent in the Kohlrausch stretched-
exponential function close to Tg where only α relaxation is
observed with no sign of the β relaxation. On the contrary, in
dielectric spectra of F112, β relaxation emerges as temperature
decreases to Tg and becomes evident below Tg .

The above experimental facts are the origin of our interest
in applying a microscopic theoretical model to plastic crys-
tals. In particular, freons F112 and F113 are chemically and
molecularly similar compounds displaying glassy states (they
both belong to the series C2X(6−n)Yn with X,Y = Cl, F, Br,
and n = 0, . . . ,6) but with completely different dynamics and
relaxation. This provides a unique opportunity to explain, from
a microscopic point of view, the physical origin of secondary
β relaxation.

We therefore developed a modified theoretical model in the
spirit of Ref. [20] to account for both α and β relaxations,
and we apply it to OG states of freons F112 and F113.
From the analysis of experimental data, it is evident that:
(i) The proposed generalized Langevin equation (GLE) theory
successfully describes both α- and β-relaxation processes
in the dielectric response by using the experimentally mea-
sured VDOS as input; (ii) the model provides a different
insight into the dynamical origin of the secondary relaxation;
(iii) the model also clarifies which eigenmodes dynamically
couple with the secondary relaxation process. This framework
presents a microscopic model of the glassy relaxation in
orientationally disordered crystals for which no theoretical
framework existed so far.

II. THEORY

Focusing on a tagged particle (e.g., a molecular subunit car-
rying a partial charge which reorients under the electric field), it
is possible to describe its motion under the applied field using
a particle-bath Hamiltonian of the Caldeira-Leggett type in
the classical dynamics regime [20]. The particle’s Hamiltonian
is bilinearly coupled to a bath of harmonic oscillators which
represent all other molecular degrees of freedom in the system

[28]. Any complex system of oscillators can be reduced to a
set of independent oscillators by performing a suitable normal-
mode decomposition. This allows us to identify the spectrum of
eigenfrequencies of the system, i.e., the experimental VDOS,
with the spectrum of the set of harmonic oscillators forming
the bath.

A. Particle-bath Hamiltonian and GLE

The particle-bath Hamiltonian under a uniform ac electric
field is given by [20] H = HP + HB where HP = P 2/2m +
V (Q) − qeQE0 sin (ωt) is the Hamiltonian of the tagged par-
ticle with the external electric field (qe is the charge carried by

the particle) and HB = 1
2

∑N
α=1 [ P 2

α

mα
+ mαω2

α(Xα − Fα (Q)
ω2

α
)
2
] is

the Hamiltonian of the bath of the harmonic oscillators that
are coupled to the tagged particle [28]. Two parts in HB are
of physical interest: The first part is the ordinary harmonic
oscillator; the second is the coupling term between the tagged
particle position Q and the bath oscillator position Xα . The
coupling function is taken to be linear in the displacement of
the particle Fα(Q) = cαQ, where cα is known as the strength
of the coupling between the tagged atom and the αth bath
oscillator. Hence, there is a spectrum of coupling constants
cα by which each particle interacts with all other molecular
degrees of freedom in the system. This spectrum of coupling
strengths will play a major role in the subsequent analysis. The
equation of motion for the tagged particle can then be derived
straightforwardly, which leads to the following GLE:

q̈ = −V ′(q) −
∫ t

−∞
ν(t ′)

dq

dt ′
dt ′ + qeE0 sin (ωt). (1)

where the non-Markovian friction or memory kernel ν(t) is
given by

ν(t) =
∑

α

c2
αmα

ω2
αm

cos (ωαt). (2)

Note we have converted into rescaled coordinates for standard
normal-mode analysis: q = Q

√
m. This means V (Q) and

V (q) are basically different functions. We have also redefined
qe = e/

√
m as the (partial) reduced charge in rescaled coordi-

nates. Then we can let the spectrum be continuous and cα be
a function of eigenfrequency ωp, which leads to the following
expression for the friction kernel:

ν(t) =
∫ ∞

0
dωpD(ωp)

γ (ωp)2

ω2
p

cos (ωpt), (3)

where γ (ωp) is the continuous spectrum of coupling constants,
i.e., the continuous version of the discrete set {cα} averaged
over all tagged particles.

For any given (well-behaved) VDOS function D(ωp), the
existence of a well-behaved function γ (ωp) that satisfies
Eq. (3) is guaranteed by the fact that we can always decom-
pose ν(t) into a basis of {cos (ωpt)} functions, by taking a
cosine transform. The inverse cosine transform in turn gives
the spectrum of coupling constants γ (ωp) as a function of the
memory kernel,

γ 2(ωp) = 2ω2
p

πD(ωp)

∫ ∞

0
ν(t) cos (ωpt)dt. (4)
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This coupling function contains information on how strongly
the particle’s motion is coupled to the motion of other particles
in a mode with vibrational frequency ωp. This is important
information because it tells us about the degree of long-range
anharmonic couplings in the motion of the molecules.

B. Memory function modeling

Looking at Eq. (3), it is evident that the particle-bath
Hamiltonian does not provide any prescription to the form of
the memory function ν(t), which can take any form depending
on the values of the coefficients cα [28]. Hence, a shortcoming
of particle-bath models is that the functional form of ν(t)
cannot be derived a priori for a given system because, whereas
the VDOS is certainly an easily accessible quantity from
simulations of a physical system, the spectrum of coupling
constants {cα} is basically a phenomenological parameter.

However, for a supercooled liquid, the time-dependent
friction, which is dominated by slow collective dynamics,
has been famously derived within kinetic theory (Boltzmann
equation) using a mode-coupling type approximation by Sjo-
gren and Sjolander [29], and is given by the following elegant
expression:

ν(t) = ρkBT

6π2m

∫ ∞

0
dk k4Fs(k,t)[c(k)]2F (k,t), (5)

where c(k) is the direct correlation function of liquid-state
theory, Fs(k,t) is the self-part of the intermediate scatter-
ing function (ISF) F (k,t) [29]. All of these quantities are
functions of the wave-vector k. Clearly, the integral over k

leaves a time dependence of ν(t), which is controlled by the
product Fs(k,t)F (k,t). For a chemically homogeneous system,
Fs(k,t)F (k,t) ∼ F (k,t)2, especially in the long-time regime.

From theory and simulations, we know that in supercooled
liquids F (k,t) ∼ exp [−(t/τ )b] for some τ and b when only
α relaxation is present. When both α and β relaxations are
present, the ISF has a two-step decay (one for α and one for β)
[2]. It is easy to check that a two-step decay of the ISF within
Eq. (5) is perfectly compatible with a memory function ν(t)
given by a sum of two stretched-exponential terms.

Whereas the elegant relation by Sjogren and Sjolander
Eq. (5) relies on mode-coupling type assumptions which may
be questionable below Tg , we also point out that a more
physically meaningful justification comes from its ability to
generate an ISF F (k,t) with a two-step decay in time for F112
upon taking ν(t) as a sum of two stretched exponentials, which
is also compatible with the dielectric data (see the fittings
below). This qualitative behavior for the ISF with a two-step
decay has been demonstrated for the freon-112 system in
simulations, e.g., Ref. [30], and in experiments [31]. Hence,
despite the fact that the Sjogren and Sjolander relation relies on
assumptions of mode-coupling type, the relationship between
our memory function and the intermediate scattering function
is physically meaningful and supported by data in the literature.

Hence, in light of the above discussion, we will take
the following phenomenological expression for our memory
function:

ν(t) = ν0

∑
i

e−(t/τi )bi
, (6)

FIG. 1. Experimental VDOS for freon-112 (blue) and feon-113
(yellow). The data for freon-112 were published in Ref. [14], whereas
the data for freon-113 were taken from Ref. [17].

where τi is a characteristic time scale with i = 1 for pure α

relaxation and i = 1,2 for coexisting α and β relaxations. ν0

is a constant prefactor.

C. Dielectric response and link with the VDOS

Following the same steps as those described in Ref. [20],
upon taking the GLE Eq. (1) as the starting point, we obtain
the complex dielectric function as

ε∗(ω) = 1 − A

∫ ωD

0

D(ωp)

ω2 − iων̃(ω) − ω2
p

dωp, (7)

where A is an arbitrary positive rescaling constant, ωD is the
Debye cutoff frequency (i.e., the highest eigenfrequency in
the VDOS spectrum), and the tilde over ν denotes Fourier
transformation. As one can easily verify, if D(ωp) were given
by a Dirac delta function, one would recover the standard
simple-exponential (Debye) relaxation.

The VDOS is an important key input to the theoretical
framework. The experimental VDOS were measured by means
of inelastic neutron scattering using the direct spectrometer
MARI of the ISIS facility (United Kingdom) and are shown
in Fig. 1. The VDOS of F113 clearly exhibits a much more
significant excess of low-frequency (boson-peak) modes with
respect to F112 in the range of 2–5 meV.

For F113, we use only one stretched-exponential term in
the memory function ν(t), hence i = 1 in Eq. (6). For F112,
instead, ν(t) is the sum of two terms [i = 1,2 in Eq. (6)], both
of which are stretched exponentials. The first term represents
mainly the α process, although it also affects the β relaxation
(hence the two are coupled as one can anticipate in the spirit
of the Ngai coupling model [25]). The second term describes
only β relaxation. Thus, the time scale of β relaxation is not
identically equal to the time scale of the second stretched-
exponential parameter, which is τ2. This amounts to the fact
that β relaxation is a process which is cooperative (hence
coupled to α) and at the same time quasilocalized.

In terms of physical meaning, τ1 represents the time
scale of α relaxation, and the stretching exponent is related
to the distribution of escape times from larger metastable
basins in the glassy energy landscape. This is because the
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TABLE I. Parameters of the memory function for freon-112.

Temperature 91 K 115 K 131 K

b1 0.45 0.625 0.7
τ1 (s) 0.558 3.12×10−7 6.99×10−9

b2 0.2 0.56
τ2 (s) 1.55×10−2 5.48×10−8

ν0 4×106 3.9×106 6.3×106

stretched-exponential form arises from the integral average of
simple-exponential decays weighted by a distribution of time
scales; the broader the distribution, the lower the resulting
stretching exponent [32]. Similarly, the second stretched
exponential required to describeβ relaxation is possibly related
to the distribution of smaller wells within the same metabasin.

III. COMPARISON WITH THE EXPERIMENTAL
DATA OF DIELECTRIC LOSS

Fitting parameters for F112 and F113 at different tempera-
tures are listed in Tables I and II, and resulting fittings of the
dielectric loss are displayed in Fig. 2.

For the fitting procedure, we have assumed that D(ωp) and
the overall scaling for the height of curve A are T independent.

IV. PHYSICAL MECHANISM OF
SECONDARY RELAXATION

To physically understand the difference between F112 and
F113, their dynamical coupling functions [Eq. (4)] have been
analyzed (see Fig. 3). In general, the coupling spectrum decays
from the highest Debye cutoff frequency of short-range high-
frequency in-cage motions down to the low eigenfrequency
part where the coupling goes up with decreasing ωp towards
zero due to phonons or phononlike excitations, which are
collective and long wavelength and hence result in a larger
value of γ .

There is a substantial difference between F112 and F113,
especially in the middle part of the coupling spectrum where
F112 shows much stronger coupling, which corresponds to
medium-range correlated motions. This means that motions
are strongly coupled also in the intermediate eigenfrequency
domain where modes are typically quasilocalized, which cor-
responds to mesoscopic stringlike motions [33] typically asso-
ciated with β relaxation [34]. In addition, the F113 spectrum is
overall comparatively much lower in that energy regime, which
clearly indicates that, for F113, the intermediate part of the
coupling spectrum, i.e., the one of mesoscopic and stringlike
motions, is scarcely populated, and one has a steep decay from
the short-range high-frequency in-cage motions to the long-

TABLE II. Parameters of the memory function for freon-113.

Temperature 72 K 74 K 76 K

b 0.26 0.3 0.35
τ (s) 7.133 0.326 2.38×10−2

ν0 8.28×106 7.28×106 6.28×106
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FIG. 2. Fitting of experimental dielectric loss data using the
proposed theoretical model for (a) freon-112 at 91 K (red circles),
115 K (brown squares), and 131 K (blue diamonds) and for (b)
freon-113 at 72 K (red circles), 74 K (brown squares), and 76 K
(blue diamonds). The solid lines are the theoretical model presented
here. A rescaling constant was used to adjust the height of the curves
since the data are in arbitrary units. Experimental data for freon-112
were taken from Ref. [15], whereas the data for freon-113 were taken
from Ref. [17].

wavelength phononlike excitations with not much in between
in the mesoscopic range. Hence in F113, the anharmonicity
is much less prominent, and intermediate excitations are not
important. This origin of the secondary relaxation aligns with
the simulation results of Refs. [35,36], which point at the
cooperative, although localized or quasilocalized, nature of
secondary relaxation.

This also gives insight into the difference in the form of
the memory function used for the fittings of the two freons.
Upon focusing on the integration in Eq. (4): The integral of
ν(t) from 0 to ∞ increases from high ωp (short range and fast
vibration) to low ωp (long range and slow vibration) since for
slow collective vibration there is clearly much more extended
friction due to contact between many particles all moving at
the same time. Thus, the integral factor definitely contributes
to the coupling being overall stronger for F112 than for F113.
However, also the boson peak contributes to the coupling of
F112 being larger than that of F113 [via the VDOS in the
denominator of Eq. (4)] in the specific frequency range that
corresponds to the boson peak. The boson-peak maximum [in
D(ω)/ω2, not shown] for both materials is on the order of 2 to
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FIG. 3. Spectrum of coupling constants of (a) freon-112 and
(b) freon-113 as a function of the vibrational eigenfrequency com-
puted according to Eq. (4) using the phenomenological memory
functions ν(t) used in the fitting of dielectric response in Fig. 2 with
same color settings for the different temperatures. In (a), from top to
bottom: 91 K, 131 K, 115 K, while in (b) from top to bottom: 72 K,
74 K, 76 K.

3 meV, i.e., ≈0.5–0.7 THz, which corresponds virtually to the
lowest minimum in the coupling function (see Fig. 3) where,
in addition, the minimum value is much lower for F113 (with
a larger boson peak) than for F112. That means that in such a
region not only we have larger dynamical coupling for F112
due to stronger medium-range correlations or anharmonicity,
in general, but also we have the additional effect of the boson
peak (soft weakly coupled modes, see Fig. 1) being smaller for
F112 in that regime of vibrations.

As far as temperature effects on the coupling strength are
concerned, we must point out first that, due to the fragility
difference between the two freons, the temperature range in
which fittings were performed is noticeably different. For F113
(Tg = 71 K) experimental dielectric functions are available
at the highest reduced temperature of Tr = 76/71 = 1.07,
whereas for F112 (Tg = 90 K) the highest value is around Tr =
131/90 = 1.46. Bearing this in mind, it can be noted that, upon
increasing temperature, the “going up” tail at decreasing ωp

towards zero becomes smaller, which means less phononlike
modes. In general, absolute coupling values shift down (lower
coupling) with the increase in temperature as expected, and the

decay of correlated motions from high ωp to low ωp becomes
also somewhat steeper with increasing T .

V. DISCUSSION AND CONCLUSIONS

The stronger coupling between collective and individual
motions for F112 could be a physical explanation, of why in
the dielectric study of F112 in Ref. [15] the authors described
so many problems to disclose α from β relaxation. For F112,
collective vibrations, medium-ranged and slow motions are
much more important than for F113 in such a way that individ-
ual molecular motions (β relaxation) should correlate, i.e., are
much more coupled, with motions of surrounding molecules
(collective motions associated with the α relaxation). And,
even more, if slow vibrations are more important and more
heterogeneous in F112, this should mean stronger coupling
between collective and individual motions, so then, much
more phonon scattering for F112 and, as a consequence, lower
thermal conductivity for F112 than for F113 as has been
experimentally shown (see Fig. 5 in Ref. [13]). In addition, it
should be emphasized that the higher thermal conductivity for
F113, analyzed in terms of the soft-potential model, was also
attributed to the low coupling strength between sound waves
and the soft quasilocalized modes. Moreover, the dynamical
coupling function γ extends over a frequency range much
broader than that of the boson peak, and thus the role of the
boson peak is confined to a specific frequency range, which
is around the minimum in the coupling spectrum. The fact
that boson peak is stronger for F113 leads to a lower coupling
in that region and contributes to the already lower coupling of
F113 compared to F112 in that region. Because the boson peak
is associated with soft modes, which “break” the coherence of
phonons (hence more phonon scattering), it leads to even lower
coupling in the boson-peak frequency range for F113.

In conclusion, we have presented an approach which makes
it possible to directly link the vibrational density of states
of orientational glasses measured experimentally with the
macroscopic dielectric response and the underlying heteroge-
neous dynamics. Furthermore, the model effectively accounts
also for the medium- and long-range anharmonic coupling
among molecular degrees of freedom and allows one to
disentangle α and β relaxations on the basis of the extent
of dynamical coupling in different eigenfrequency sectors
of the vibrational spectrum. The appearance of secondary β

relaxation is associated with higher values of the dynamical
coupling strength of correlated particle motions in the regime
of mesoscopic quasilocalized motions (e.g., stringlike motions,
vortices, etc. [34]) and is promoted by a lower excess of soft
modes in the boson-peak frequency range.

In our model, we require two forms of stretched expo-
nentials in the memory function in the generalized Langevin
equation, hence two relaxation times, to fit both α and β

relaxations. The β-relaxation process cannot be recovered
with only one stretched exponential (i.e., with only one term
in the memory function). One of the stretched exponentials
dominates the α peak whereas the coexisting effect of two
stretched exponential terms in the memory function gives rise
to the β or secondary relaxation. In other words, the two
terms of memory function both affect the secondary relaxation,
whereas only one of them controls the α relaxation. This
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implies that there is indeed a deep microscopic dynamical
coupling between the two relaxation processes, which has not
been unveiled so far. In future work this framework will be
used to provide more microscopic insight into the dynamical
nature of this coupling, also in the context of the Ngai coupling
model [26].
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