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We consider condensation in a capillary groove of width L and depth D, formed by walls that are completely
wet (contact angle θ = 0), which is in a contact with a gas reservoir of the chemical potential μ. On a mesoscopic
level, the condensation process can be described in terms of the midpoint height � of a meniscus formed at the
liquid-gas interface. For macroscopically deep grooves (D → ∞), and in the presence of long-range (dispersion)
forces, the condensation corresponds to a second-order phase transition, such that � ∼ (μcc − μ)−1/4 as μ → μ−

cc

where μcc is the chemical potential pertinent to capillary condensation in a slit pore of width L. For finite values
of D, the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than
μcc with a difference of the order of D−3. For sufficiently deep grooves, the meniscus growth initially follows the
power law � ∼ (μcc − μ)−1/4, but this behavior eventually crosses over to � ∼ D − (μ − μcc)−1/3 above μcc, with
a gap between the two regimes shown to be δ̄μ ∼ D−3. Right at μ = μcc, when the groove is only partially filled
with liquid, the height of the meniscus scales as �∗ ∼ (D3L)1/4. Moreover, the chemical potential (or pressure)
at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at
D ≈ 3L/2 and coincides with μcc when L ≈ D. Finally, we show that condensation in finite grooves can be
mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart
with potential strengths depending on L. All these predictions, based on mesoscopic arguments, are confirmed by
fully microscopic Rosenfeld’s density functional theory with a reasonable agreement down to surprisingly small
values of both L and D.
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I. INTRODUCTION

Capillary condensation, i.e., the phenomenon whereby an
undersaturated gas confined by solid walls condenses to a
high-density, liquidlike phase, is perhaps the most fundamental
manifestation of surface tension and finite-size effects [1,2].
For sufficiently wide pores, the difference in the chemical
potential μcc at which the fluid condenses in an open slit
pore formed of two parallel plates from the saturated chemical
potential μsat is provided by the classical Kelvin equation,
which can be derived by combining the geometric properties
of the pore with the properties of a meniscus formed at the
gas-liquid interface. According to this macroscopic viewpoint,
the meniscus is of a circular cross section with a Laplace radius
and meets both walls at Young’s contact angle θ . However,
the Kelvin equation becomes increasingly less reliable as
the pore width L is decreased towards a molecular scale,
especially when the side walls are completely wet θ = 0.
In this case, the slit walls are covered by liquidlike layers
of width �π , so that the space between the walls available
for the gas molecules is effectively reduced. The importance
of the presence of the wetting layers on the location of
capillary condensation was first recognized by Derjauguin’s
school using the concept of disjoining pressure [3], which
has been later put into a more general picture of interfacial
phenomena by Evans et al. [4,5] within the framework of
density functional theory [6]. It follows that the location of the
capillary condensation phase transition in a slit exerting van
der Waals (dispersion) forces is given by the modified Kelvin

equation

μcc(L) = μsat − 2γ

�ρ(L − 3�π )
, (1)

where γ is the gas-liquid surface tension and �ρ = ρl − ρg is
the difference between the particle densities of the coexisting
bulk phases. Note that the presence of the factor 3 in the
denominator does not reflect the geometric restriction of the
volume available to the gas molecules but rather the nature of
the asymptotic behavior of the wall-fluid interaction.

More recently, fluid condensation in a much more exper-
imentally realistic model of capillary grooves etched into a
solid surface has attracted substantial attention [7–21]. Within
this model, one considers an infinitely long slit of width L and
depth D which is in contact with the bulk gas via the open
top. For macroscopically deep grooves D → ∞, the recent
theoretical and experimental studies revealed that the nature
of condensation in grooves differs considerably from that in
open slits. Perhaps most importantly, the transition remains
first-order only when the contact angle of the groove wall
is finite θ > 0. However, above the wetting temperature Tw

when the walls are completely wet by liquid, i.e., θ = 0, the
condensation turns to be continuous (critical). In this case, the
wetting layers at the side and bottom walls merge to form a
meniscus, the midheight � of which increases continuously
as μcc is approached from below and eventually diverges
according to the power law

� ∼ δμ−βC , (2)
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as δμ ≡ μcc − μ → 0+. The critical exponent βC depends on
the asymptotic behavior of the microscopic interactions and
for van der Waals forces βC = 1/4.

In this work, we consider microscopically deep grooves
formed of walls interacting with the fluid via long-range
dispersion forces, and we ask what the repercussions of finite-
ness of D are on the fluid condensation. As has been shown
recently [22], the condensation remains continuous, although
not critical since � cannot diverge anymore, so that the process
does not exhibit any singular behavior. However, we will show
that condensation in finitely deep grooves in the presence of
long-range forces experiences some new aspects, not present in
the case of macroscopically deep groves, as a consequence of
the competition between effective repulsions from the groove
top and groove bottom acting on the meniscus. To this end,
we will compare analytic predictions based on a mesoscopic
slab model with a microscopic fundamental measure density
functional theory (DFT) which takes the packing effects, which
for the highly geometrically restricted systems are of crucial
importance, accurately into account and obeys the statistical
mechanical sum rules, as opposed to some less sophisticated
DFT versions.

In the remainder of this paper we will first formulate the
microscopic model based on DFT and determine the external
field exerted by the groove walls (Sec. II). In Sec. III we
revisit the slab model used previously to study the criticality
of condensation in infinitely deep grooves [13] which we
extend for finite D and compare with the results obtained
numerically from DFT. We conclude by summarizing and
discussing the main results in Sec. IV and show some details
of our calculations based on the slab model in Appendix.

II. MICROSCOPIC MODEL

In the classical density functional theory [6], the equilibrium
density profile minimizes the grand potential functional


[ρ] = F[ρ] +
∫

drρ(r)[V (r) − μ], (3)

where μ is the chemical potential, and V (r) is the external
potential. The intrinsic free energy functional F[ρ] can be
separated into an exact ideal gas contribution and an excess
part:

F[ρ] = β−1
∫

drρ(r){ln[ρ(r)�3] − 1} + Fex[ρ], (4)

where � is the thermal de Broglie wavelength and β = 1/kBT

is the inverse temperature. As is common in the modern DFT
approaches, the excess part is modeled as a sum of hard-sphere
and attractive contributions where the latter is treated in a
simple mean-field fashion:

Fex[ρ] = Fhs[ρ] + 1

2

∫ ∫
dr dr′ρ(r)ρ(r′)ua(|r − r′|), (5)

where ua(r) is the attractive part of the fluid-fluid interaction
potential.

The fluid atoms are assumed to interact with one another
via the truncated (i.e., short-ranged) and nonshifted Lennard-
Jones-like potential:

ua(r) =
⎧⎨
⎩

0 ; r < σ,

−4ε
(

σ
r

)6
; σ < r < rc,

0 ; r > rc.

(6)

which is cut off at rc = 2.5 σ , where σ is the hard-sphere
diameter.

The hard-sphere part of the excess free energy is approx-
imated using the (original) Rosenfeld fundamental measure
functional [23],

Fhs[ρ] = 1

β

∫
dr �({nα}), (7)

which accurately takes into account the short-range correla-
tions between the fluid particles.

We assume that the confining walls are formed by atoms
distributed uniformly with a density ρw and interact with the
fluid particles via Lennard-Jones 12-6 potential φw(r) with the
parameters εw and σ :

φw(r) = 4εw

[(σ

r

)12
−

(σ

r

)6
]
. (8)

The wall potential containing a single groove of depth D and
width L, which is located at 0 < x < L and 0 < z < D, can
be expressed as follows:

V (x,z) = V9−3(z) + VD(x,z) + VD(L − x,z), (9)

except for the region corresponding to the domain of the wall in
which case V (x,z) = ∞ meaning the wall is impenetrable. We
assume that the groove is macroscopically long, and the system
is thus translation invariant along the y axis. Here V9−3(z) is
the well-known 9-3 Lennard-Jones potential due to a planar
wall placed at z < 0:

V9−3(z) = 4πεwρwσ 3

[
1

45

(
σ

z

)9

− 1

6

(
σ

z

)3
]
. (10)

The potential VD(x,z), corresponding to a semi-infinite slab
of height D placed at x < 0 and 0 < z < D, is determined by
evaluating the triple integral:

VD(x,z) = ρw

∫ 0

−∞
dx ′

∫ ∞

−∞
dy ′

∫ D

0
dz′

×φw[
√

(x − x ′)2 + y ′2 + (z − z′)2]

= α6[ψ6(x,z) + ψ6(x,D − z)]

+α12[ψ12(x,z) + ψ12(x,D − z)], (11)

where

ψ6(x,z) = 2x4 + x2z2 + 2z4

2x3z3
√

x2 + z2
− 1

z3
(12)

and

ψ12(x,z) = 1

128

128 x16 + 448 x14z2 + 560 x12z4 + 280 x10z6 + 35 x8z8 + 280 x6z10 + 560 x4z12 + 448 z14x2 + 128 z16

z9x9(x2 + z2)7/2
− 1

z9

(13)
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with α6 = −πεwρwσ 6/3 and α12 = 2πεwρwσ 12/45.
Minimization of (3) leads to the Euler-Lagrange equation

V (r) + δFhs[ρ]

δρ(r)
+

∫
dr′ρ(r′)ua(|r − r′|) = μ, (14)

which can be solved iteratively on an appropriately discretized
two-dimensional grid (0,xm) × (0,zm). The system size is
determined by the values xm > L and zm > D that are chosen
large enough to justify the following boundary conditions that
we impose: ρ(x,zm) = ρb and ρ(0,z) = ρ(xm,z) = ρπ (z) for
z > D where ρb is the reservoir gas density and ρπ (z) is a
one-dimensional density profile of the model fluid near a planar
wall.

Prior to applying our microscopic model to study condensa-
tion in capillary grooves, we investigate the bulk phase behav-
ior of the model fluid by setting V (r) = 0 in Eq. (14); in partic-
ular we obtain that the bulk critical temperature corresponds to
kBTc/ε = 1.414. Furthermore, by setting V (r) = V9−3(z) with
a parameter ρwεw = 1εσ−3 we find that the wall-fluid system
exhibits a first-order wetting phase transition at temperature
Tw = 0.8 Tc. Finally, a slit model formed by a pair of parallel
walls with the total potential V (r) = V9−3(z) + V9−3(L − z)
for the slit width L = 20 σ and temperature T = 1.15 Tw (to be
considered later for the groove models) experiences capillary
condensation at the chemical potential μcc = −4.018 ε. We
note that although the external potentials and thus the resulting
equilibrium density profiles vary only in one dimension in these
systems, we treat them in the same way as the groove model,
i.e., we determine ρ(r) = ρ(x,z) for the sake of numerical
consistency.

III. RESULTS

In this section we present the DFT results of the condensa-
tion in grooves of finite depth D and width L formed of com-
pletely wet walls and compare with predictions based on a slab
model [24]. The slab model has been used previously [13,18] to
analyze the critical behavior of condensation and evaporation
in infinitely deep grooves, and it is straightforward to extend
the analysis for grooves of finite depths. Within the model
one assumes that the one-body fluid density ρ(r) = ρ(x,z)
adopts only three values: (1) ρ(r) = ρl , the liquid density at
bulk two-phase coexistence, if the fluid occupies the volume
near the side and bottom walls as described in Fig. 1; here the
meniscus is approximated by a flat interface of height � above
the groove bottom, while the width of the wetting layers at
each of the side walls is �π ; (2) ρ(r) = ρg , the vapor density
at bulk two-phase coexistence, if the fluid occupies the region
of the cross-sectional area Vg = (L − 2�π )(D − �); and (3)
ρ(r) = 0 otherwise, since the groove walls are impenetrable.
As in our microscopic model described in the previous section
we consider grooves that are macroscopically long, so that we
assume that the system is translation invariant along the y axis
normal to the sketch of Fig. 1.

The groove is in contact with a gas reservoir of pressurep, so
that the adsorbed liquid phase which is metastable in bulk must
have a lower pressure p†. For this model, the excess (relative
to the groove completely filled with liquid) grand potential per

FIG. 1. Illustration of the slab model applied for a groove of depth
D and width L. The adsorbing wetting layers are of the width �π ,
and the height of the “meniscus” is �. The remaining volume Vg is
occupied by a gaslike phase.

unit length is given by

ωex(�̃) = (p† − p)(L − 2�π )(D − �̃)

+ γ [2(D − �̃) + (L − 2�π ]

−�ρ

∫ D

�̃

dz

∫ L−�π

�π

dxV (x,z), (15)

where V (r) = V (x,z) is the external potential of the groove
walls as given by Eq. (9). Approximating the pressure differ-
ence p − p† ≈ �ρ(μsat − μ), obtained by Taylor expansion
of p(μ) around μsat to first order, the equilibrium mean height
of the liquid slab � is determined by minimizing ωex(�̃), which
leads to

μ(�) ≈ μcc(L) + a

[
2

(D − �)3
− 9

8

L

�4

]
. (16)

Here we made use of Eq. (1) and introduced a = πεwρwσ 6/3
related to the Hamaker constant. The corresponding thermo-
dynamic excess grand potential can be expressed in the form
of the series:

ωex

(L − 2�π )
= δμ�ρ� + πLεw

8�3
+ · · ·

+ πεw

3(D − �)2
+ · · · , (17)

where the ellipses denote the higher order terms in 1/�

and 1/(D − �) and where we ignored irrelevant terms not
dependent on �. In deriving Eq. (16), all the contributions
beyond the leading order terms in 1/� and 1/(D − �) have
been neglected, which suggests that (16) is reliable only for (1)
sufficiently deep grooves and (2) near μcc; it is only in this case
when both � and D − � are supposed to be large (compared,
e.g., to σ ).

For infinitely (macroscopically) deep grooves, D → ∞,
Eq. (16) immediately reproduces the value of the critical
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FIG. 2. A log-log plot for condensation in grooves of depth
D = 30 σ and D = 50 σ , each of width L = 20 σ , above the wetting
temperature T = 1.15 Tw . The upper panel describes the regime
μ < μcc, and the straight line has a slope −1/4, while the lower
panel describes the regime μ > μcc and the straight line has a slope
−1/3.

exponentβC = 1/4, corresponding to a divergence of � asμ →
μ−

cc; in this case the terms O[(D − �)−3] can be neglected.
Moreover, it also implies a divergence of D − � as μcc is
approached from above pertinent to evaporation of capillary
liquid, characterized by a critical exponent βE = 1/3, in which
case the terms O(�−4) can be neglected. For grooves of
finite depths both O[(D − �)−3] and O(�−4) are relevant and
represent competing repulsions from the groove bottom and
groove top acting effectively on the meniscus of height �.
Hence, condensation in grooves of finite depths undergoes two
regimes: μ < μcc, in which case the term L/�4 in Eq. (16)
representing repulsion from the groove bottom is dominating,
and μ > μcc, in which case the repulsion from the groove
top ∝ 1/(D − �)3 prevails. The repulsion from the groove top
implies that grooves of finite depths become largely filled with
liquid at a chemical potential μf which is higher than μcc as
for infinitely deep grooves. Introducing a small parameter α

by defining a meniscus height of a filled groove � = (1 − α)D
where α � 1 and substituting to Eq. (16), we find that μf ≈
μcc + 2a/(αD)3.

The impact of the finite depth of grooves has been inspected
by considering two systems with D = 50 σ and D = 30 σ ,
both of width L = 20 σ , at temperature T = 1.15 Tw. The DFT
results are displayed in Fig. 2 where we show the dependence
of �(μ) below and above μcc as a log-log plot. We observe
a crossover from the � ∝ δμ−1/4 behavior to the D − � ∝
|δμ|−1/3 dependence, such that the two regimes are separated
by a gap of the order of δ̄μ. In the Appendix we show that

δ̄μ = a

D3
, (18)

as follows from our slab model. This result can be quanti-
tatively verified by substituting the values corresponding to
the DFT model at the considered temperature, which yields
a ≈ 0.3. It then follows that ln(δ̄μ) ≈ −9 for D = 30 σ and

FIG. 3. Two-dimensional DFT equilibrium density profiles cor-
responding to condensation in the capillary groove of depth D = 50 σ

and width L = 20 σ , at temperature T = 1.15 Tw . The departure
δμ = μcc − μ from the chemical potential pertinent to capillary
condensation in an infinite slit of the same width is (in units of ε):
(a) 0.07, (b) 0, (c) −0.001, and (d) −0.004.

ln(δ̄μ) ≈ −10.5 for D = 50 σ , with a fairly good agreement
with the DFT results.

Some more details of the fluid behavior inside our capillary
groove model can be revealed by determining two-dimensional
density profiles as shown in Fig. 3 for several illustrative chem-
ical potentials. We observe that in line with our expectations
a well-pronounced meniscus forms at the liquid-gas interface
despite strong packing effects near the walls that make the fluid
distribution strongly inhomogeneous. The meniscus indeed
shifts continuously upwards as the chemical potential increases
from μ < μcc to μ > μcc, and also note that thin wetting layers
form at the side walls consistent with our slab model, unless
the meniscus is located near the groove top.

Since grooves of finite D are only partially filled with
liquid at μ = μcc, one may inquire what the dependence of
the meniscus height �∗ = �(μcc) is on the groove parameters.
This height characterizes a location at which the condensation
regime changes from � ≈ δμ−1/4 to � ≈ D − |δμ|−1/3 and
when the effective repulsive forces just balance. From the slab
model it follows directly that

�∗

L
∼

(
D

L

) 3
4

, (19)

for sufficiently large D. We test this result by comparing with
the microscopic DFT model as is shown in Fig. 4 as a log-log
plot; we observe that the scaling form of Eq. (19) is obeyed
accurately even down to very small values of D of the order of
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FIG. 4. A log-log plot of the dependence of the meniscus height
�∗ = �(μcc) on groove depth D as obtained from DFT (symbols). The
dashed line is the fit y = y0 + 0.75x, a dependence corresponding to
the slab model as given by Eq. (19), to the DFT data.

just units of molecular diameters. This is surprising, sice one
would expect any mesoscopic predictions to break down when
D < L/2 not allowing for a meniscus formation. It suggests
that the nature of the condensation is governed by the presence
of the long-range microscopic interactions (precisely included
in our slab model) rather than by a meniscus shape which was
approximated rather crudely.

The previous result, namely, the nonlinear dependence of
�(D), is a consequence of the asymmetry in the range of the two
effective repulsions. Another implication of this, also absent
for infinitely deep grooves, can be addressed by determining
the dependence of the chemical potential μ 1

2
at which the

groove is half-filled with liquid on groove depth D. This is
obtained by substituting for � = D/2 into Eq. (16), which
yields

μ 1
2

= μcc + 2a

(
8

D3
− 9 L

D4

)
. (20)

From here it follows that μ 1
2
(D) asymptotically approaches

μcc from above as 1/D3. However, the function reaches its
maximum at D = 3L/2 below which the last term in (20)
becomes dominating and μ 1

2
decreases rapidly with decreasing

D. This also implies that there exists a unique finite value D∗
(for the given L and T ) for which the groove is half filled
exactly at μcc. These predictions have been tested against the
DFT model, and the comparison is displayed in Fig. 5. There is
a good overall agreement between the two theories, although
the location of the maximum of μ 1

2
given by DFT is shifted to

slightly larger values of D. Nevertheless, both theories agree
almost precisely that D∗ ≈ L, meaning that grooves of square
cross sections become half filled with liquid at the pressure
of the condensation of the capillary slits and macroscopic
grooves.

The previous results revealing the importance of the com-
petition between the two effective interactions suggest that
there exists a close analogy between condensation in capillary
grooves and in slit pores formed by a pair of plates with

0 1 2 3 4 5
-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

(μ
1/
2-

μ c
c)
/ε

D/L

FIG. 5. Dependence of the chemical potential μ 1
2

at which the
groove is half-filled with liquid, i.e., � = D/2, on the groove depth
D. The symbols denote DFT results, and the solid line denotes the
prediction of the slab model [Eq. (16)].

competing interactions. Within the latter model one considers
a strongly attractive wall favoring the liquid phase and a wall
favoring the gas phase, a distance D apart. Such a system may
adopt three stable configurations [25,26]: a low-density state,
when the slit is filled with capillary gas, a high-density state,
when the slit is filled with capillary liquid, and a delocalized
state, when the slit is partially filled with liquid and partially
filled with gas. From a mesoscopic viewpoint, the three states
can be characterized by a liquid-gas interface which is either
localized near one of the walls or delocalized near a midpoint of
the slit. In a bulk two-phase coexistence, μ = μsat, a transition
corresponding to the depinning of the interface from either of
the walls to the delocalized state may occur [25,26], the nature
of which depends on the nature of the pertinent wetting (or
drying) transition. For the walls exhibiting first-order transi-
tion, the localized-delocalized transition occurs at finite-size
shifted wetting temperature T ∗(D), such that Tw < T ∗ < Tsc

where Tw is the wetting temperature and Tsc is the prewetting
critical temperature [27]. Above Tsc, as is considered here, only
the delocalized state is stable.

We now wish to map quantitatively the process of con-
densation in a groove of depth D and width L on the one
in slit of width D formed of competing walls. Above Tsc

the latter corresponds to a continuous shift in the location
of the liquid-gas interface from the vicinity of the wetting wall
to the drying one, as the chemical potential is varied around
μsat. At the given μ, the location of the interface 0 < � < D is
determined by a balance of the effective and oppositely directed
forces, induced by the long-range potentials of the walls. These
potentials, V (w)(z) and V (d)(z), are set such that the excess
grand potential per unit area for the slit model has the same
structure as the one for our groove model given by Eq. (17):


slit = �μ�ρ� + 3Aw

8�3
+ Ad

(D − �)2
, (21)

except that the shift δμ = μcc − μ is replaced by �μ = μsat −
μ. Here Aw ≡ πε(w)

w ρwσ 6�ρ/3 and Ad ≡ πε(d)
w ρwσ 6�ρ/3,
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FIG. 6. Comparison of the location of the meniscus height �(δμ),

where δμ = μcc − δμ, in a capillary groove of depth D = 50 σ and
width L = 20 σ as obtained from microscopic DFT (symbols) and the
full slab model using Eq. (27) (red dashed line). The black solid line
shows the width of a wetting layer in a slit pore of width D formed
by two competing walls with external potentials given by Eqs. (23)
and (24), as a function of �μ = μsat − μ. Note that the abscissa is
oriented such that μ increases from left to right.

with the parameters ε(w)
w and ε(d)

w to be determined. Thus, while
the first term on the right-hand side of Eq. (21) measures the
free energy penalty due to a departure from the two-phase
equilibrium, the last two terms are the binding potentials
exerted by each wall. These are given by [24]

Wπ = −�ρ

∫ ∞

�

Vπ (z) dz, (22)

where Vπ is the corresponding wall potential [28]. From
Eq. (21) it follows that the attractive potential of the wetting
wall is

V (w)(z) = −ε(w)
w ρwσ 6

z4
, (23)

with ε(w)
w = 3πLεw/8 and the (long-range) repulsive potential

of the drying wall is

V (d)(z) = ε(d)
w ρwσ 3

(
σ

D − z

)3

(24)

with ε(d)
w = εw.

In Fig. 6 we display the DFT results of the meniscus growth
in a groove of depth D = 50 σ and width L = 20 σ as a
function of δμ = μcc − μ and compare with the growth of the
wetting layer in a slit pore with competing walls as a function
of �μ = μsat − μ. The external long-ranged potentials of the
slit walls given by Eqs. (23) and (24) that largely determine
the adsorption behavior in the slit are complemented with
the rapidly decaying ∼z−9 repulsive contributions that are
kept the same as in Eq. (10) for both walls. We observe a
reasonably good agreement showing a close link between the
two processes especially for δμ > 0; for large values of �

(δμ < 0) the deviation is slightly larger, which indicates that
our slab model approximation becomes less accurate when the
meniscus reaches top of the groove; this conclusion is indeed
supported by inspection of the density profiles shown in Fig. 3.

It should be emphasized that the simple structure of
Eqs. (16) and (17) follows from the analysis of the slab
model (15) near μcc where the growth of the meniscus is most
dramatic. Further away from μcc, higher order terms neglected
in (17) may also become important. In this case, the last term
in Eq. (15) can be expressed as a single integral:

�ρ

∫ D

�̃

dz

∫ L−�π

�π

dx V (x,z)

≈ 2α6�ρ

∫ D

�̃

dz[�(L − �π ,z) − �(�π ,z)

+�(L − �π ,D − �̃) − �(�π ,D − z) + L − 2�π

z3

]
, (25)

where we considered only the attractive portion of V (x,z) and
introduced

�(x,z) =
∫

ψ6(x,z) dx = (2x2 − z2)
√

x2 + z2

2x2z3
− x

z3
.

(26)

The mean height of the meniscus �(μ) is given by minimization
of (15), dωex

d�̃
|
�̃=�

= 0, so that the integral in (25) does not need
to be evaluated, and we obtain immediately

μ = μsat − 2γ

�ρ(L − 2�π )

+ 2πεwρwσ 6

L − 2�π

[�(L − �π ,�) − �(�π ,�)

+�(L − �π ,D − �) − �(�π ,D − �) + L − 2�π

�3

]
. (27)

Associating �π with the width of a wetting layer on an infinity
planar wall we can write [24]

�π =
(

2πεwρwσ 6

3�μ

) 1
3

, (28)

and substituting for the values of the microscopic and thermo-
dynamic parameters as used in our DFT, the location of the
meniscus �(δμ) can be obtained from Eq. (27) numerically.
The resulting dependence is shown in Fig. 6, and we observe
that the agreement with DFT is better than for the slit with
asymmetric walls, as expected, but the improvement is not
dramatic. This implies that our slab model is limited mainly
by the approximation of the meniscus shape while neglecting
the higher order terms in (17) is less significant.

IV. CONCLUSION

In this work we studied condensation in capillary grooves
of depth D and width L formed of completely wet walls
interacting with a confined fluid via long-range (dispersion)
forces. As has been shown previously, condensation in macro-
scopically deep grooves, D → ∞, is a critical process, such
that an amount of adsorbed liquid, which can be characterized
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by a meniscus height �, unbinds continuously from the groove
bottom and eventually diverges according to � ∼ δμ−1/4, as
δμ = μcc − μ tends to zero, in some analogy to a complete
wetting phase transition on a planar wall. For D finite, the
transition becomes rounded but still experiences the same
power-law behavior for small (positive) δμ as for infinitely
deep grooves. However, this behavior eventually breaks down
in a very close neighborhood of μcc, characterized by the
value δ̄μ, which decays as D−3 with the groove depth. For
δμ negative, or indeed for μ > μcc + δ̄μ, the character of
the condensation crosses over to the second regime where
� ∼ D − |δμ|−1/3. The behavior of the meniscus growth can
be explained using a simple slab model from which it follows
that the meniscus is effectively the subject of two competing
repulsive forces that act from the groove bottom and groove
top, as a result of the presence of long-range intermolecular
forces. The trade-off between them has a number of further
consequences. In particular, right at μcc the two repulsions
are balanced out and the meniscus is located at a height
�∗, which scales as (D3L)1/4; note that the asymmetry in
the range of the effective repulsions implies that the relative
filling of grooves at μ = μcc decays with the aspect ratio
D/L as �∗/D ∼ (D/L)−1/4. Furthermore, we showed that the
chemical potential μ 1

2
at which grooves are half-filled with

liquid [�(μ 1
2
) = D/2] exhibits nonmonotonic dependence on

D, such that μ 1
2

= μcc for D → ∞ and D ≈ L, and drops
rapidly well below μcc for D < L. Finally, we made an explicit
connection between condensation in capillary grooves and
condensation in infinite slits made of asymmetric walls in a
delocalized state. One of the walls interacts with the fluid via
retarded dispersion forces at long distances with the potential
strength depending on L, while the other wall, placed a distance
D apart, interacts with the fluid with a nonretarded dispersion
potential but repulsively. It should be noted that the model
of the asymmetric slit where the density profile varies only
in the direction perpendicular to the walls is computationally
much more tractable than that of the capillary groove where
the density profiles varies in two dimensions.

These predictions may have some interesting applications
in modern technologies. With advanced techniques in nano-
litography that enable the modification of the shape of solid
surfaces on molecular scales, the results suggest a simple
mechanism of how to control an amount of adsorbed liquid
on the microscopic level. Consider a solid wall into which
a network of capillary grooves is carved. From the slab
model it follows that a small change in the chemical potential
from μ = μcc − δμ to μ = μcc + δμ, with δμ > 0, induces
the growth of the meniscus height by the value δ� = D −
(A/δμ)1/3 − (AL/δμ)1/4. This tells us that the adsorption
responses sensitively by tuning the chemical potential, i.e.,
the vapor pressure, around μcc (pcc), and scales linearly with
the groove depth D. Thus, even a very small change in
external conditions can be used to control the amount of the
liquid adsorbed in a microporous medium which can still be
maintained (macroscopically) dry on its top and may thus be
used as a storage of the adsorbate.

We conclude with some remarks regarding phenomena that
have been omitted in this work and its possible extensions.
First, capillary grooves may exhibit a prefilling characterized

by a jump in the meniscus height for temperatures near the
wetting temperature [13]; this is closely related to prewetting
but in contrast to the latter is one-dimensional in nature and
thus becomes necessarily rounded if thermal fluctuations are
considered. The temperature considered here was deliberately
chosen high enough to be beyond this temperature range,
so that the condensation is always continuous even on a
mean-field level. Second, both treatments used in this work,
the slab model and DFT, neglect the effect of interfacial
fluctuations, such as those in the meniscus height along the
groove. However, the only effect of the fluctuations is that the
condensation asymptotic regime � ∼ δμ−1/4 would eventually
crossover to � ∼ δμ−1/3 in a very close neighborhood of
μcc [18]; this effect is utterly irrelevant for finite D though
since this region which is of the order of O(L−11) overlaps
with the crossover region of the characteristic width δ̄μ as
given by Eq. (18) anyway. Possible extensions of the current
work include a study of a model of heterogeneous grooves
where the side walls are of a different material than the bottom
wall, extending Ref. [29] to finite values of D. Compared to the
present study, this would not affect the nature of the effective
repulsion from the groove top, which would still contribute
as ∝ (D − �)−2 to the grand potential but the repulsion from
the groove bottom would now be ∝ �−2, i.e., the forces are
of the same range. One of the consequences would be that
�∗ is now independent of L and scales linearly with D, with
the proportionality constant given by the difference in the wall
potential strengths. Also, it would be interesting to inspect the
impact of the finite-size effects at different wall geometries,
such as linear wedges or cylinders. Finally, the extension of the
current model to a periodic system of parallel grooves would
allow us to investigate the nature of the liquid-gas interface
as μ → μsat and the effect of its undulation to the process of
complete wetting. Some of these problems will be subject of
our future work.
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APPENDIX: ESTIMATION OF δ̄μ

For μ ≈ μcc, the magnitudes of the effective repulsive terms
in Eq. (16) are comparable, while for a sufficient deviation from
μcc one of the two terms in the bracket becomes dominant; in
this appendix we estimate such a minimal deviation δ̄μ for
each case.

To this end, we define the new length scale x ≡ (a/|δ̄μ|)1/3

and express Eq. (16) in the form

1

x3
≈ L

�4
− 1

(D − �)3
, (A1)

where we ignored unimportant multiplicative constants. We
now consider the cases μ < μcc and μ > μcc separately.
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1. μ < μcc

In this case we are looking for a condition under which

L

�4
� 1

(D − �)3
(A2)

implying

D � x + � (A3)

and

x ≈
(

�4

L

) 1
3

. (A4)

By combining Eqs. (A3) and (A4) it follows that

D � �

[
1 +

(
�

L

) 1
3

]
. (A5)

We may now distinguish between two regimes, depending
on the relative values of � and L. If � � L, then the last term in
Eq. (A5) dominates compared to unity and thus D � (�4/L)

1
3 .

Upon using Eq. (A4) and substituting for x this implies that
the relation in Eq. (A2) is obeyed provided δ̄μ � a/D3.

For � � L, the last term in Eq. (A5) is negligible compared
to unity, and the condition (A2) requires that D � � leading to
δ̄μ � aL/D4. This differs from the previous result only if L

appreciably deviates from D. Clearly, the possibility L � D

is excluded since the groove geometry would not allow for a
meniscus formation. On the other hand, L � D would mean
that the condition δ̄μ � a/D3 is more restrictive than δ̄μ �
aL/D4. This is, however, straightforward to show that within

the former regime x � � � L, while in the latter case we
have x � � � L, and recalling that δ̄μ ∝ 1/x these results
contradict the previous statement.

Finally, the intermediate case � ≈ L can be realized only
if L � D in order for the condition (A2) to be fulfilled.
Then (A3) reduces to D � x leading again to δ̄μ � a/D3.

2. μ > μcc

Above μcc the situation is just opposite, i.e., we require

L

�4
� 1

(D − �)3
, (A6)

from which [together with Eq. (A1)] it follows that

D ≈ x + � (A7)

and

D � �

[
1 +

(
�

L

) 1
3

]
. (A8)

Now, since � < D, we can write

D �
(

�4

L

) 1
3

, (A9)

which on using (A7) leads after some rearrangements to

D

[
1 −

(
L

D

) 1
4

]
� x. (A10)

Since x > 0, the last condition is satisfied only if D � x

reproducing (18) again.
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