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Island size distribution with hindered aggregation
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We study the effect of hindered aggregation on the island formation processes for a one-dimensional model
of epitaxial growth with arbitrary nucleus size i. In the proposed model, the attachment of monomers to islands
is hindered by an aggregation barrier, εa , which decreases the hopping rate of monomers to the islands. As
εa increases, the system exhibits a crossover between two different regimes; namely, from diffusion-limited
aggregation to attachment-limited aggregation. The island size distribution, P (s), is calculated for different
values of εa by a self-consistent approach involving the nucleation and aggregation capture kernels. The results
given by the analytical model are compared with those from kinetic Monte Carlo simulations, finding a close
agreement between both sets of data for all considered values of i and εa . As the aggregation barrier increases,
the spatial effect of fluctuations on the density of monomers can be neglected and P (s) smoothly approximates
to the limit distribution P (s) = δs,i+1. In the crossover regime the system features a complex and rich behavior,
which can be explained in terms of the characteristic timescales of different microscopic processes.
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I. INTRODUCTION

Epitaxial growth (EG) has long been a subject of study
due to both its academic and industrial importance. From
an academic point of view, this out-of-equilibrium process is
interesting as it displays a rich and complex behavior arising
from the several timescales involved [1–14]. On the other hand,
an understanding of the microscopic mechanisms affecting
the growth process is a requirement to achieve an accurate
description of material properties in industrial applications. A
typical example of the latter is the use of atomic chains in
nanoscale devices, life sciences, and fuel cells [15–17] which
can be formed, for example, by using stepped surfaces [18,19]
or by anisotropic diffusion on two-dimensional substrates
[20–23].

In general terms, the microscopic mechanisms of EG in-
volve three basic processes: nucleation, aggregation, and trans-
port of basic growth units, usually referred to as monomers,
which may be atoms, molecules, or colloidal particles. Dur-
ing EG, monomers are deposited onto a flat substrate or a
stepped surface at a constant deposition rate, F . The latter
is well controlled in experimental setups and therefore can
be considered as a known parameter in theoretical models.
The time evolution of the deposition process is normally
described in terms of the coverage θ , which is defined as the
number of monomers per lattice site on the substrate at time
t . If evaporation of monomers from substrate is negligible,
then θ ≈ F t . After its deposition, a monomer diffuses on the
substrate with (lateral) diffusion constant D until they nucleate
or aggregate. Nucleation occurs when a number of monomers
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form an island, i.e., a stable cluster, and the aggregation process
takes place when a monomer attaches to a previously nucleated
island.

A paramount concept in standard models of epitaxial growth
is that of the critical nucleus size i, which is defined as the size
of the largest unstable cluster, i.e., clusters with size larger
than i are static and stable. Consequently clusters with size
smaller than i + 1 are considered unstable and the monomers
belonging to such clusters can diffuse away with diffusion
constant D. Therefore, each monomer forming an unstable
cluster behaves as a free monomer. In most EG models,
nucleation and aggregation are instantaneous processes, i.e.,
monomers are incorporated to the clusters once they reach the
interaction range; in such a case, the aggregation belongs to the
diffusion-limited-aggregation (DLA) regime. Nevertheless, in
more realistic situations nucleation and/or aggregation could
be hindered by additional energy barriers which would increase
the time required for each reaction.

For instance, experiments on nucleation and growth of
Ge islands on a Pb overlayer covering a Si(111) surface
suggest that such a barrier could appear due to strain [24–27].
Also, nucleation hindered by attachment barriers has been
observed in Fe deposition on graphene [28] and in metal
(111) homoepitaxial systems [29,30]. Similarly, attachment
barriers must be considered to properly explain the formation
of graphene sheets on metal [31–34] and oxide [35] substrates.
In the former case, individual graphene islands spread at a
constant rate, suggesting that their growth is controlled by the
attachment rate of carbon adatoms to the island edges.

Motivated by previous theoretical [2,3,12,14,36–46] and
experimental [21,22,47–51] studies, in this work we propose a
one-dimensional model in which the aggregation of monomers
is hindered by an additional attachment barrier εa . As explained
in the next sections, this barrier decreases the hopping rate of
monomers to islands. Thus, for large barriers the monomers
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FIG. 1. Two adjacent islands (black segments) with lengths s and
s ′. The length of the gap between island edges is y, while the distance
between their centers is z.

need many attempts to be incorporated into the islands. In this
case, the aggregation is attachment limited and the system is in
the attachment-limited-aggregation (ALA) regime. Naturally,
for zero and weak barriers, our model recovers the widely
studied DLA regime. Although an attachment barrier could
also be considered for unstable clusters (see Ref. [52]), we
neglect it to keep our approach as one of the simplest models
from which we can learn some general properties of systems
exhibiting a crossover between DLA and ALA.

One-dimensional models have distinctive features which
make them amenable to theoretical treatment. For example,
islands in a one-dimensional (1D) defect-free flat substrate
unambiguously split it into independent segments called gaps,
as schematically shown in Fig. 1. A monomer deposited inside
of a particular gap must eventually either aggregate to one of the
islands delimiting the gap, or coalesce with an unstable cluster
to nucleate a new island and therefore form two new gaps.
Furthermore, the 1D model allows the explicit calculation of
several quantities of interest (e.g., capture kernels as a function
of the capture zone length, gap length distribution in terms of
the nucleation rate, etc.). There are several ways to represent
islands in EG models. In the so-called “point-island model,”
all monomers belonging to an island are on top of each other
on the same lattice site and the island size is given just by the
number of monomers, s, attached to it. On the other hand, in
the “extended-island model,” the islands growth laterally and
the size of an island are given by the length between its edges
as shown in Fig. 1.

As previously mentioned, several timescales are involved
in epitaxial growth. In order to simplify the discussion, let us
consider a single gap of length y (see Fig. 1). The average
time between consecutive depositions inside the gap is τdep

and the typical time of the first encounter between a monomer
and the edge of an island is τtr. The aggregation barrier εa

defines the aggregation time, τa , i.e., the typical time that a
single monomer spends inside the gap. If τa ≈ τtr the system
is in the realm of the DLA regime; in the opposite case,
when large barriers are considered, τa � τtr and consequently
the system is set in the ALA regime. It is also possible to
define the typical time of nucleation τn. Naturally, the ratio
between these timescales depends directly on the size of the
gap y and determines the physical properties of the system
[36–41,52–57].

A further important quantity for modeling EG is the island
size distribution, P (s). In the case of two-dimensional (2D)
systems, P (s) can be measured experimentally and used
to extract information regarding the underlying microscopic
processes [58,59]. Up to now, most theoretical investigations
have been mainly focused on the DLA regime. Among the
few studies considering the ALA regime, one of the most

prominent for 2D islands is Ref. [60], where a novel behavior
for the density of islands was found as a function of the flux
F and temperature T , explaining experimental results which
were inconsistent with the standard DLA theory. Recent works
have presented significant results in the ALA regime for some
quantities such as the densities of monomers and islands, the
capture zone, and gap size distributions [36–38,52]. However,
almost nothing has been said about the behavior of P (s). In
the present paper, we report a detailed analysis of the island
size distribution for a 1D model, which exhibits a crossover
between DLA and ALA regimes.

This paper is organized as follows: Sec. II summarizes the
general framework used to calculate the quantities of interest,
i.e., the density of free monomers, the average density of
islands, and the island size distribution. Section III presents a
model where the attachment of monomers to islands is hindered
by an additional barrier. Finally, the analytical results are
compared with those from numerical simulations in Sec. IV,
where we also draw our conclusions.

II. ANALYTICAL MODEL

A. Rate equations

As mentioned above, this work is focused on the island
size distribution, which is defined as P (s) = Ns/N , where Ns

represents the average density of islands with size s > i and
N = ∑

s�i+1 Ns is the total island density. On the other hand,
the density of free monomers N1 is expressed in terms of the
density ηs of unstable clusters with size 1 � s � i, according
to N1 = ∑i

s=1 ηs . The time evolution of N1 and Ns can be
described by standard rate equations (REs) [12–14,46,61].

In terms of the coverage, the RE for N1 can be written as

dN1

dθ
= γ − (i + 1) σu �N1ηi − �N1

∑
s�i+1

σsNs, (1)

where γ is the fraction of the substrate which is not covered by
islands. Thus, γ = 1 − θ + N1 for the extended-island model
and γ = 1 − N for the point-island model. The second term
of Eq. (1) represents nucleation while the third one takes into
account the aggregation. Note that we have neglected the direct
deposition onto occupied lattice sites and consequently, in our
simulations only depositions on empty sites are allowed. The
constant � = D/F is the ratio between the diffusion constant
and the deposition rate. In the experimental setup, the diffusion
constant D is usually much larger than F ; then, from now on,
we set � = 5 × 106 for numerical calculations. The coverage-
dependent factors σu and σs are the capture kernels for unstable
clusters of size i and islands, respectively. From now on, the
subscript u stands for unstable.

Similarly, the evolution of Ns is given by

dNs

dθ
= �N1(σs−1Ns−1 − σsNs), (2)

where σs=i = σu and Ni = ηi . The terms on the right side of
Eq. (2) represent the aggregation of monomers to islands with
size s − 1 and s, respectively. The evolution of the total density
of islands is obtained by summing Eq. (2) over s > i, resulting
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in

dN

dθ
= σu�N1ηi. (3)

In order to make analytical progress, the Walton’s relation is
used to write ηi ≈ Ni

1 [62,63]. Defining the average capture
kernel as

σ̄ = 1

N

∑
s�i+1

σsNs, (4)

we obtain

dN1

dθ
= γ − (i + 1)�σuN

i+1
1 − σ̄�N1N (5)

and

dN

dθ
= �σuN

i+1
1 . (6)

An equivalent way to write Eqs. (5) and (6) is introducing the
nucleation and monomer capture lengths, which are denoted
as ξu and ξ , respectively. By using the capture lengths, Eqs. (5)
and (6) take the form

dN1

dθ
= γ − �N1

ξ 2
(7)

and

dN

dθ
= � N1

(i + 1)ξ 2
u

. (8)

This set of differential equations is usually called “contracted”
RE [14]. The relation between capture kernels and lengths
can be easily obtained comparing Eqs. (5) and (6) with their
contracted counterparts. Therefore

1

ξ 2
= 1

ξ 2
u

+
∑

s�i+1

σsNs (9)

and

1

ξ 2
u

= (i + 1)σuN
i
1. (10)

The monomer capture length and the timescales τa and τn are
related according to

1

ξ 2
= N

D N1

(
(i + 1)

〈
n̄1y

τn

〉
+

〈
n̄1y

τa

〉)
, (11)

where 〈·〉 represents the average over the gaps ensemble and
n̄1 is the average density of (free) monomers inside the gap of
length y.

The RE are equivalently defined by the capture kernels,
the capture lengths, or the timescales τn and τa . If one of
these sets of parameters is known, then the densities N

and N1 can be obtained from the numerical solution of the
corresponding RE. However, the calculation of the island size
distribution P (s) is more involved because the dependence of
the capture kernels on the size of the islands has to be taken
into account. In other words, the size-dependent kernels σs

must be explicitly calculated rather than simply the average
kernel σ̄ .

Perhaps, the simplest nontrivial case corresponds to con-
stant kernels, i.e., size- and coverage-independent kernels.

Taking σu(θ ) = σu, σs(θ ) = σ and defining τ = σ� ∫ θ

0 N1dθ ′,
Eq. (2) can be rewritten as

dNi+1

dτ
= σu

σ
Ni

1 − Ni+1, (12)

dNs

dτ
= Ns−1 − Ns for s > i + 1. (13)

For large coverages the solution of Eq. (13) can be approxi-
mated by (see Appendix)

Ns+i+1 ≈ σu√
πσ

∫ ∞

z

dv exp(−v2)[
√

2τ (v − z)]−[iχ(1+χ )],

(14)

where χ is a growth exponent defined by N1 ∝ θχ and z =
(s − τ )/

√
2τ . The realm of validity of Eq. (14) is discussed in

Sec. IV.
In general, the capture kernel of an island depends on both

the coverage and the island size. For those cases Eq. (14) does
not apply. As described below, the standard procedure used
to calculate σs is based on the solution of a self-consistent
set of equations, which in turn are rooted in an approximate
description of the nucleation process.

B. Self-consistent approach for capture kernels

Given its importance, the functional form of P (s) in the
DLA regime has been discussed in many previous works.
Based on scaling arguments and numerical evidence, semiem-
pirical distributions have been employed to describe the distri-
bution of cluster sizes [64–66]. For instance, Amar and Family
suggested a coverage-independent distribution given by

P (s) = Ais
i exp(−iBix

1/Bi ), (15)

where Ci and ai are fitting parameters depending on the critical
nucleus size i. Also, some analytical expressions relating P (s)
to the capture kernels have been proposed [8,10,46,67]. Based
on a continuum limit of the RE, Bartelt and Evans obtained the
expression

P (s) = P (0) exp

(∫ s

0
dx

(2 C1 − 1) − dC
dx

C(x) − C2 x

)
, (16)

where C1 and C2 are fit parameters close to ∂(ln s̄)/∂(ln θ ),
and C(s) ≈ σs/σ̄ [67]. This expression is not hard to evaluate
but requires the capture kernels σs as input. More general—
although not explicit—expressions to calculate P (s) can also
be found by means of a self-consistent (SC) method which
involves the kernels σs and σu as inputs. This approach has been
successfully used for the case i = 1 in the DLA regime [13,14];
nevertheless, the SC method is quite general and can be applied
to more general models of epitaxial growth, as summarized in
the following.

Let z be the distance between the center of an island with
length s and the center of the adjacent island at the right. The
associated gap length between these adjacent islands is y as
shown in Fig. 1. For point islands we consider y ≈ z, while
for extended islands we assume that there exists no correlation
between the size of adjacent islands. Under this assumption,
the relation between y and z can be approximated by y ≈
z − (s + s̄)/2 with s̄ = (θ − N1)/N the average island size.
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The distribution ps(z; θ ) is defined as the probability density
to find an island with size s and distance between adjacent
centers z. Neglecting the effect of the deposition of monomers
on top of the islands and the breakup of gaps due to nucleation,
the set of equations for the time evolution of ps(z,θ ) is given
by

dpi+1(z; θ )

dθ
= dN

dθ
δ(z − z̄) − �N1σ̃i+1(y)pi+1(z; θ ) (17)

and
dps(z; θ )

dθ
= �N1[σ̃s−1(y)ps−1(z; θ ) − σ̃s(y)ps(z; θ )], (18)

with s > i + 1 [14]. The first term of Eq. (17) represents
nucleation. Note that the Dirac delta function δ(z − z̄) implies
that the length of the new gaps generated by nucleation is
always equal to the average gap size ȳ = γ /N . The additional
terms in Eqs. (17) and (18) represent the aggregation of
monomers to islands. Defining θz according to z = 1/N(θz), it
is possible to write Eq. (17) as

dpi+1(z; θ )

dθ
= 1

z2
δ(θ − θz) − �N1σ̃i+1(y)pi+1(z; θ ). (19)

By definition, σ̃s(ys) is the local capture kernel of an island of
size s with an associated gap of length ys . Thus, the kernels σs

which appear in the RE are the average over the gap lengths of
σ̃s(ys). For point islands, the capture kernels have no explicit
dependence on the island size. However, for extended islands
the explicit dependence on the island size s in the capture
kernels does not allow one to analytically solve Eqs. (18) and
(19). Nevertheless, the capture kernels for extended islands can
be approximated by σ̃s(y) ≈ σ̃s̄(y) = σ̃s̄(z − s̄). Consequently,
for both point and extended islands it becomes possible to use
the transformation,

Xz = �
∫ θ

θz

N1(θ ′)σ̃s(z)dθ ′, (20)

to find the solution of Eqs. (18) and (19). In terms of the new
variable Xz, the explicit solution is given by [14]

ps(z; Xz) = Xs−(i+1)
z exp(−Xz)

z2[s − (i + 1)]!
. (21)

The average value of z for a given s, z̄s , can be calculated from

z̄s =
∑

z zps(z; Xz)∑
z ps(z; Xz)

. (22)

For large coverages, i.e., beyond the nucleation regime,
ps(z; Xz) is a sharply peaked distribution of z and therefore
the capture kernels can be approximated by

σs =
∑

z σ̃s(z)ps(z; Xz)∑
z ps(z; Xz)

≈ σ̃s(z̄s). (23)

Note that it is also possible to use the peak position z∗ in
Eq. (23) instead of z̄s to approximate the capture kernels
[13,14]. We found similar results by using both procedures;
nevertheless, from the computational point of view, it is
more convenient to find z̄s than z∗

s . The average value of
zs calculated from Eq. (22) is larger than the correct value
since the effect of the breakup due to nucleation has been
neglected in Eqs. (17)–(19). To include the nucleation effect, it

is necessary to rescale the length to ensure the correct average
value z̄ = γ /N = ∑

s zs Ns/N . Using

z̃s = γ z̄s∑
s z̄sNs

, (24)

the capture kernels σs appearing in the RE are finally given by

σs = σ̃s

(
z̃s − s + s̄

2

)
, (25)

for extended islands, while σs = σ̃ (z̃s) for point islands.
In summary, the procedure to determine N1 and Ns is

the following: if the local capture kernel σ̃s(y) is known, at
each discrete time step the integral given by Eq. (20) can be
calculated. Then the values of z̄s are found from Eqs. (21) and
(22) for all relevant values of s. Afterward, the size-dependent
capture kernels, σs , can be calculated using Eqs. (24) and (25).
Finally, Eqs. (2) and (5) are integrated to find the densities of
monomers and islands at the next time step. This self-consistent
procedure is schematically represented in Fig. 2. For small
coverages, where the distribution ps(z; Xz) does not feature
a well-defined peak, the RE can be solved by means of
the mean-field (MF) approximation σs ≈ σ̄ for all s. In this
approximation, the dependence on the island size of σs is
neglected and the capture kernels just depend on the coverage.

In the next section the local capture kernel σ̃s(y) as well
as the nucleation kernel σu are calculated for a model of EG
where the aggregation of monomers to islands is hindered by
an additional barrier.

III. ISLAND FORMATION WITH HINDERED
AGGREGATION

In standard EG models free monomers diffuse on the
substrate with a hopping rate r = 2D until they are captured
by an island (aggregation) or by an unstable cluster of size
i (nucleation). Similarly, monomers belonging to unstable
clusters can diffuse away with a hopping rate r . However,
the hopping rate to stable islands is hindered by an additional
attachment barrier εa which reduces the hopping rate to
those islands to r ′ = 2 D′. As usual, εa has an associated
characteristic length la = exp(εa/kBT ) − 1 which determines
the asymmetry between D and D′ as D/D′ = la + 1 [36–
38,52,55]. As previously mentioned, for the sake of simplicity
we neglect the deposition on occupied sites, which constrains
the applicability of our model to the low coverage regime.
The island size distributions reported here were evaluated at
coverages up to θmax = 0.25. For this value of coverage, the
fraction of empty sites on the substrate is about 95% for point
islands and 80% for extended islands. Thus, the deposition on
top of stable islands is negligible especially for point islands,
where it is below 5%.

The behavior of the system depends on the relevant
timescales. For a single gap of length y, the average time
between consecutive depositions is given by τdep = (Fy)−1,
while the average aggregation time can be expressed as [39–
41,55]

τa = y

12D
(y + 6 la). (26)
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FIG. 2. Schematic representation of the SC procedure to determine N1 and Ns .

The transversal time can be calculated taking la = 0 in last
equation, i.e., τtr = y2/(12D). In the DLA regime τdep � τa ≈
τtr, while in the ALA regime τdep � τa � τtr.

During the low coverage regime (L), monomers diffuse in
such a way that nucleation and aggregation are rare events and
N1 ≈ θ . The attachment barrier has no effect because εa only
affects aggregation of monomers to islands. On the other hand,
for large times most of the monomers aggregate to islands and
nucleation is negligible, defining the aggregation regime (A).
The time evolution of the system on the A regime strongly
depends on εa . In both L and A regimes, scaling forms N1 ∝ θχ

and N ∝ θβ are expected with χ and β noninteger exponents.
The crossover between L and A occurs at coverage θc which
depends on �, i, and la . For large barriers, between L and A

regimes an intermediate regime is found where N ≈ θ/(i + 1)
and N1 is almost constant, as explained in detail in Ref. [38].

The kernel σ̄ can be calculated considering the evolution
of the spatial average of the local density of monomers n̄1

inside a single gap with size y in the aggregation regime where
nucleation is negligible. In this regime,

dn̄1

dθ
≈ 1 − n̄1

F τa

≈ 0, (27)

and consequently n̄1 ≈ Fτa . The total number of monomers
can be calculated from

N1 =
∑

y

n̄1yp(y)N =
∑

y

Fyτap(y)N = 〈Fyτa〉N (28)

with p(y) = ∑
s�i+1 ps(y; θ ) and N the total number of

islands. Defining the scaled gap size, � = y/ȳ ≈ yN , from
Eqs. (26) and (28) it is possible to show that [38]

NN1 = 1

�
( 〈�3〉

12N
+ la〈�2〉

2

)
. (29)

The relation between the densities and the capture kernel σ̄

in the A regime can be extracted from the rate equation (5),
resulting in

�σ̄NN1 ≈ 1. (30)

Then, from Eqs. (29) and (30) we found

σ̄ = 12N

〈�3〉 + 6〈�2〉laN . (31)

Equation (31) agrees with the results found in [38]. Note that
for zero and small barriers σ̄ ∝ N , while for large barriers

σ̄ ∝ l−1
a . Furthermore, τa and consequently σ̄ are single-

particle properties which do not depend on i. Thus, Eq. (31)
can be used for arbitrary critical nucleus size [38].

As mentioned above, the evaluation of σs(y) is a require-
ment to describe P (s). To accomplish that, we focus on the
time evolution of the local density of monomers n1(x,θ ) at the
position x inside a single gap with length y. Explicitly, we have

∂n1(x,θ )

∂θ
= 1 + �∂2n1(x,θ )

∂x2
− �n1(x,θ )

ξ 2
u

, (32)

with boundary conditions at gap edges

n1(0,θ ) = la
∂n1(0,θ )

∂x
,

n1(y,θ ) = −la
∂n1(y,θ )

∂x
. (33)

The three terms in the right side of Eq. (32) represent deposi-
tion, diffusion of monomers, and nucleation, respectively. Note
that for la = 0 and la → ∞, Eqs. (33) represent absorbing
and reflecting boundaries, respectively. In the former case,
the monomers are captured by an island once they reach the
interaction range. In contrast, for large barriers, the monomers
need many attempts before being incorporated into an island.
The average of the local monomer density in all the gaps, n̄1,
is related with N1 according to N1 = γ n̄1. Then, multiplying
Eq. (7) by γ and subtracting Eq. (32), we arrive at

∂2n1(x,θ )

∂x2
≈ ξ−2

u

(
n1(x,θ ) − α2

γ
N1

)
, (34)

where α2 = ξ 2
u/ξ 2 and the approximation dN1/dθ ≈

γ ∂n1/∂θ has been used to eliminate the coverage dependence.
The solution of Eq. (32) with boundary conditions (33) can be
written as

n1(x) = α2N1

γ

(
1 − cosh (x̃ − ỹ/2)

cosh (ỹ/2) + l̃a sinh (ỹ/2)

)
, (35)

with x̃ = ξ−1
u x, ỹ = ξ−1

u y, and l̃a = ξ−1
u la . As before, σ̃s(y)

represents the local capture kernel of an island with size s

and gap length y. Thus, σ̃s(y) can be calculated by equating
the expression for the rate of capture of monomers by an
island of size s given in Eq. (5), Dσ̃s(y)N1, to the microscopic
rate of capture 2D[∂n1/∂x]x=0. This leads to the following
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FIG. 3. Coverage evolution of the island density N for (a) i = 1 and (b) i = 2 with two different attachment barriers, la = 0 and la = 250,
for both point (PI) and extended islands (EI). Dots correspond to kMC simulations, while continuous lines correspond to the SC approach. The
ratio between diffusion constant and deposition rate was � = 5 × 106. Dotted lines are included as a guide to the eye. The low coverage (L),
intermediate (I ), aggregation (A), and coalescence (C) regimes are indicated in the inset of panel (a), where the corresponding evolution of the
(free) monomer density N1 is shown.

expression:

σ̃s(y) = 2α2ξ−1
u

γ

tanh(ỹ/2)

1 + laξ
−1
u tanh(ỹ/2)

. (36)

Substituting Eq. (36) into (9) and replacing y by its average
value ȳ = γ /N , we find another relation for the capture lengths

ξ 2 = ξ 2
u

(
1 − 2ξuN

γ

tanh
(

γ

2ξuN

)
1 + laξ

−1
u tanh

(
γ

2ξuN

)
)

. (37)

It is worth emphasizing that, as expected, Eqs. (36) and (37)
reduce to those found for the DLA case la = 0 [14]. For large
barriers, Eq. (37) reduces to ξu ≈ ξ implying α ≈ 1. Thus, in
this regime σ̃s ≈ 2/(γ la) and the dependence on the coverage
and gap length vanishes as predicted by Eq. (31). For infinite
barriers, σ̄s = 0 and the formation of islands with size larger
than i + 1 becomes unlikely.

Furthermore, the kernel σu can be estimated as follows.
From the RE equations, the density of islands increases
according to (i + 1)�σuN

i+1
1 , which can also be written in

terms of the nucleation rate ωn as (i + 1)N〈n̄1yωn(y)〉/F .
Thus, in the aggregation regime

〈n̄1y ωn(y)〉 = Dσu

Ni+1
1

N
. (38)

On the other hand, the total nucleation rate inside a gap with
length y, ω̃n(y) = n̄1yωn(y), has been estimated in Ref. [37]
for the A regime. For small and weak barriers, ω̃n(y) ∼ y2i+3

when i > 1 and ω̃n(y) ∼ y4 when i = 1. Thus, the average
rates behave as

〈ω̃n〉 ∼
{

N2
1 if i = 1

N
(2i+3)/2
1 if i > 1.

(39)

Finally, from Eqs. (29), (38), and (39), it is easy to show that
for zero and weak barriers

σu ∼
{
N

−1/2
1 for i = 1

constant for i > 1.
(40)

Note that this result coincides with that found in Ref. [14] for
i = 1 and la = 0. The case of large but finite barriers can be
handled similarly by taking into account that ω̃n(y) ∼ yi+2 for
all i [37]. Then, σu is a constant independent of the critical
nucleus size. Following these results, for i = 1 and weak and
zero barriers Eq. (40) implies

σu =
(

4

�N1

)1/2

(41)

as shown in [14]. For i = 1 and strong barriers, σu follows
Eq. (41) in the L regime and becomes constant in the A regime.
For i > 1 and arbitrary barrier the nucleation kernel is coverage
independent in the L and A regimes with a weak dependence in
the I regime because the value of σu is not necessarily the same
in both regimes. Consequently, for those sets of parameters we
propose the empirical expression

σu = c1g(θ ) − c2

1 + (
θ
c3

)c4
+ c2, (42)

where the ci constants are fitting parameters and g(θ ) =
(4/�N1)1/2 for i = 1 and g(θ ) = 1 for i > 1.

IV. RESULTS AND DISCUSSION

The coverage evolution of N for both point- and extended-
island models in the DLA (la = 0) and ALA (la = 250)
regimes are shown in Fig. 3, where kinetic Monte Carlo (kMC)
simulations and the SC approach are contrasted. The low cover-
age (L), intermediate (I ), aggregation (A), and coalescence (C)
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FIG. 4. Coverage evolution of the capture kernels (a) σu and (b) σ̄ for point islands with i = 1 and two different attachment barriers: la = 0
and la = 250. In panel (a) lines correspond to Eq. (42), while in panel (b) to Eq. (31). In panel (a) the fit parameters used in Eq. (42) are c1 = 2,
c2 = c4 = 0 for la = 0, while c1 = 1.3, c2 = 0.01, c3 = 0.02, and c4 = 1 for la = 250.

regimes are indicated in the inset of Fig. 3(a). Note the power-
law behavior N ∝ θβ in the L and A regimes. By definition
the εa barrier does not affect nucleation; therefore in the L

regime, which is dominated by nucleation, the evolution of
N does not depend on la . However, in the A regime it does
clearly depend on la; in fact, the growth exponent β defined by
N ∝ θβ changes from β = 1/4 in the DLA regime to β = 1/3
in the ALA regime for i = 1 and from β = 1/7 to β = 1/4
in the case i = 2. As expected for large coverages, there are
important differences between the point- and extended-island
models inasmuch as in this regime the average island size is
comparable to the average gap length, as shown in the inset of
Fig. 3(a). As expected, the C regime arises for lower coverages
in the extended-island model than in the point-island model
where unphysical coverages θ > 1 are possible.

Figure 4 shows the behavior of σu and σ̄ as a function of
the coverage for the point-island model with i = 1. Numerical
results obtained from kMC simulations are compared to those
from the analytical approximation. The kernel σu was calcu-
lated from Eq. (6), σu = (dN/dθ )/(�Ni+1

1 ), using the kMC
results to evaluate N1 and dN/dθ . The average kernel σ̄ was
calculated similarly using Eq. (5).

From Fig. 4(a) it is clear that in the L regime σu does not
depend on la . However, there is an strong dependence in the A

regime. For la = 250 the kernel σu seems to reach a constant
value, while for la = 0 it increases with the coverage according
to σu ∼ N

−1/2
1 as predicted by Eq. (41). Due to the finite size of

the islands, for the extended-island model an additional weak
dependence on the coverage is found (not shown). For i > 1
and arbitrary values of la , ω̃n ∝ Ni+1

1 regardless of the value of
la , implying that σu can be taken as a constant. Consequently,
for i > 1 the local density of monomers inside a gap, n1(x), is
in general well represented by the global average N1.

According to Eq. (31), for arbitrary i, σ̄ ∼ N in the case
of zero and weak barriers, while σ̄ ∼ 1/la for strong barriers.
As shown in Fig. 4(b), these trends are also reproduced by the

kMC simulations. This result agrees with those obtained from
Eqs. (36) and (37), which predicts ξu ≈ ξ � 1 and σ̃s(y) ≈
2/(γ la) for large enough barriers. In this regime it is possible to
neglect the island size dependence on the aggregation kernels.
Moreover, given that the capture lengths are small in this
regime, the density of monomers inside a gap can be considered
homogeneous as predicted by Eq. (35).

For large barriers, the local density, n1(x,θ ), becomes
almost homogeneous except close to the gap edges. This
behavior is even more pronounced for large i. Consequently,
the global densityN1 describes welln1(x,θ ) for allx far enough
from the gap edges. Thus, we can expect that nucleation is
almost uniform inside the gap and the nucleation capture kernel
becomes almost independent on the local fluctuations of the
monomer density. On the other hand, the aggregation kernel
depends on the behavior of ∂n1(x,θ )/∂θ close to the gap edges,
as explained in the derivation of Eq. (36). Then, even in the
case of strong barriers σs depends on the spatial fluctuations of
the monomer density. Our results agree thoroughly with these
observations.

In regard to the island size distribution, P (s), Figs. 5–8
report the comparison between the obtained results from kMC
simulations and those from the SC approach. Note that the
horizontal axis indicates the island size once it has been
normalized to its average value, i.e., s → s/s̄. The P (s) data
shown were evaluated in the A regime at coverage θ = 0.25 for
point islands (Figs. 5 and 6) and θ = 0.2 for extended islands
(Fig. 7). Two barriers were considered given by la = 0 and
la = 250 for two different critical nucleus sizes, i = 1 and
i = 2. In all cases the SC approach yields a good description
of P (s) regardless of the value of la . For point islands the
results given by the MF approach, for which σs ≈ σ̄ , are also
included. For comparison purposes, the Amar and Family (AF)
and the continuum RE (CRE) approaches given by Eqs. (15)
and (16), respectively, are shown for the particular case of
point islands with i = 1 (see Fig. 5). As shown, the island size
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FIG. 5. Island size distribution for point islands with i = 1 and two different attachment barriers, (a) la = 0 and (b) la = 250. The parameters
used are θ = 0.25 and � = 5 × 106. Symbols correspond to kMC simulations, while continuous and dotted lines correspond to the SC and MF
approaches, respectively. For the AF result [Eq. (15)] the fit parameters are Ai ≈ 1.04 and Bi ≈ 0.32 for la = 0, while for la = 250 these are
Ai ≈ 1.03 and Bi ≈ 0.33. For the CRE approach [Eq. (16)] we use C1 ≈ 0.75, C2 ≈ 0.70 and C1 ≈ 0.7, C2 ≈ 0.68 for la = 0 and la = 250,
respectively. The fit parameters used in Eq. (42) are c1 = 2 and c2 = c4 = 0 for la = 0 and c1 ≈ 1.3, c2 ≈ 0.01, c3 ≈ 0.02, and c4 ≈ 1 for
la = 250.

distribution given by the MF approach deviates significantly
from the kMC results even in the case la = 250. The same
occurs in the case of extended islands (not shown). On the other
hand, the AF approximation describes well the distribution for
large values of s but deviates significantly from the kMC results
for small values. For the considered set of parameters, the CRE
approach gives good results for all island sizes. Unfortunately,
the CRE requires the capture kernel σs as input which is not
known explicitly. In Fig. 5 we used a third-order polynomial
to approximate σs , whose coefficients were considered as fit
parameters besides C1 and C2. Note that la = 250 represents a

large enough barrier to set the growth exponents of the densities
N and N1 in the limit values corresponding to the ALA regime
[38]. However, even for this barrier the size of the islands plays
a quite important role in the behavior of the capture kernels
and has to be taken into account in order to describe P (s)
adequately.

For zero and weak barriers P (s) is a monomodal distribution
with a well-defined maximum, as can be seen in the (a) panels
of Figs. 5–7. On the other hand, for large enough barriers the
height of the maximum decreases in such a way that P (s)
becomes a monotonically decreasing distribution, as displayed
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FIG. 6. Island size distribution for point islands with i = 2 and two different attachment barriers, (a) la = 0 and (b) la = 250. The parameters
used are θ = 0.25 and � = 5 × 106. Symbols correspond to kMC simulations, while continuous and dotted lines correspond to the SC and
MF approaches, respectively. The fit parameters used in Eq. (42) are c1 ≈ 1, c2 ≈ 0.84, c3 ≈ 0.04, and c4 ≈ 13.36 for la = 0, while c1 ≈ 0.18,
c2 ≈ 0.2, c3 ≈ 0.04, and c4 ≈ 10.39 are for la = 250.
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FIG. 7. Island size distribution for extended islands with (a) i = 1 and (b) i = 2, and two different attachment barriers, la = 0 and la = 250.
The parameters used are θ = 0.2 and � = 5 × 106. Symbols correspond to kMC simulations, while lines correspond to the SC approach. In
panel (a) the fit parameters used in Eq. (42) are c1 = 2, c2 = c4 = 0 for la = 0, while c1 ≈ 1, c2 ≈ 0.01, c3 ≈ 0.02, and c4 ≈ 3.1 for la = 250. In
panel (b) we used c1 ≈ 0.25, c2 ≈ 1, c3 ≈ 0.025, and c4 ≈ 2.21 for la = 0, while c1 ≈ 0.23, c2 ≈ 0.31, c3 ≈ 0.07, and c4 ≈ 2.68 for la = 250.

in Fig. 8(a). This is not an unexpected result inasmuch as the
formation of large islands requires the aggregation of several
monomers to small islands. The typical time of aggregation
inside a gap of length y for large la values increases by a
factor 6la/y with respect to the case without barriers. Thus,
the formation of large islands requires a significantly much
longer time in the case of large barriers than in the case of zero
and weak barriers. Additionally, for large barriers τa � τn,
so that nucleation events occur more often than aggregation
ones. For a given coverage, this implies that the average island
size decreases for large barriers in comparison to the case of
weak and zero barriers. In fact, if la → ∞, then the limit case

P (s) → δs,i+1 is obtained and only formation of islands with
size i + 1 is found.

For a large but finite barrier, islands with size larger than
i + 1 start to appear at coverages θ ≈ F 〈τa〉. This defines the I

regime where N1 remains almost constant and N ≈ θ/c, where
c � i + 1 and c → i + 1 when la → ∞, as shown in the insets
of Fig. 8. For finite systems the time required to form islands
larger than i + 1 may satisfy θ > 1, which is not physically
possible. For practical purposes, in those cases the barrier can
be considered as infinite since the formation of islands with
size larger than i + 1 is very unlikely. Naturally, in this regime
the density of monomers can be considered homogeneous;
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consequently, σu and σs can be taken as constants and Eq. (14)
can be used to describe P (s). Figure 8 shows two examples,
i = 1 with la = 400 and i = 2 with la = 2000. In both cases
θc ≈ 0.02. The agreement between the kMC and Eq. (14)
results is excellent.

As a final remark we want to point out that our model is
simple, easy to implement, and can be used as a starting point
to improve the analysis of experimental data where the standard
models based on the DLA regime do not achieve satisfactory
results. Naturally, 2D systems have quantitatively different
behavior from the 1D model discussed here. Nevertheless,
the SC approach used in the present work can be extended
and applied to the experimentally relevant case of a 2D
substrate.
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APPENDIX: SOLUTION OF THE RE FOR CONSTANT
KERNELS

Using the Laplace’s transformation,

Ñs(r) = L[Ns(τ )](r) =
∫ ∞

0
dτ exp(−τ r)Ns(τ ),

Eqs. (12) and (13) take the form

(r + 1)Ñi+1 = σu

σ
L

[
Ni

1

]
(r) (A1)

and

(r + 1)Ñs = Ñs−1 for s > i + 1, (A2)

where it has been assumed Ñs(0) = 0 for s � i + 1. Equations
(A1) and (A2) form a closed set of equations which can be
solved recursively. The explicit solution of Ñs is

Ñs+i+1 = 1

(r + 1)s
σu

σ
L

[
Ni

1

]
(r). (A3)

Noticing that the last equation can be interpreted as the
Laplace’s transform of a convolution product, it is possible
to write

Ns+i+1 = σu

σ

∫ τ

0
dr exp(−r)

(
rs

s!

)
Ni

1(τ − r)

= σu

s! σ

∫ τ

0
dr exp (−r + s ln r)Ni

1(τ − r). (A4)

In order to make analytical progress we focus in the limit
of τ ≈ s with τ,s → ∞ and z = (s − τ )/

√
2τ finite. In this

case, it is possible to approximate exp(−r + s ln r) around the
maximum r = s by a Gaussian function. This leads to

Ns+i+1 ≈ σu

σ
√

2πs

∫ τ

0
dr exp

[
− (r − s)2

2s

]
Ni

1(τ−r), (A5)

where the approximation s! ≈ √
2πs ss/es has been used.

Making the change of variable r = s − v
√

2τ in Eq. (A5) we
obtain

Ns+i+1 ≈ σu√
πσ

∫ ∞

z

dv exp(−v2)Ni
1[

√
2τ (v − z)]. (A6)

Finally, in the aggregation regime the average monomer den-
sity behaves as Ni ∝ τ−i χ/(1+χ) with χ the growth exponent of
N1 [38]. Using this expression on Eq. (A6) we found Eq. (14).
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