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Topological defects in two-dimensional liquid crystals confined by a box
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When a spatially uniform system that displays a liquid-crystal ordering on a two-dimensional surface is confined
inside a rectangular box, the liquid crystal direction field develops inhomogeneous textures accompanied by
topological defects because of the geometric frustrations. We show that the rich variety of nematic textures and
defect patterns found in recent experimental and theoretical studies can be classified by the solutions of the
rather fundamental, extended Onsager model. This is critically examined based on the determined free energies
of different defect states, as functions of a few relevant, dimensionless geometric parameters.
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I. INTRODUCTION

Nature has it that some physical systems of vastly different
scales and composed of different materials present the same
phenomena, which in turn can be classified by a single physical
picture. The topic of anisotropically shaped particles confined
on a surface with a boundary enclosing them is an excellent
example. The word “particles” needs to be interpreted gen-
erally. These could be a thin layer of liquid-crystal molecules
confined in a micron-sized well [1], aqueous suspensions of
actin filaments [2] and linearly shaped virus [3] confined in
a microchamber, and micron-sized colloidal silica rods [4] or
visible-range granular rods [5,6] flatly laid on a leveled bed
confined by a box of approximately one order of magnitude
larger. In an ideal bulk state without a boundary, the anisotropic
nature of these particles drives them into the formation of a
directionally ordered but spatially homogeneous liquid state
known as the nematic phase [7] under sufficiently high particle-
number density. A uniform orientational direction, along the
common nematic director, can be identified.

The confinement boundary, of any geometric shapes, how-
ever, disrupts the otherwise uniform, directionalized pattern.
The frustrated director field begins to display a range of
different configurations and the orientational pattern now
shows topological defects. The most stable defect states within
the rectangular confinement, diagonal (D), X-shaped (X),
and long-axis (L) states, are showcased in Fig. 1. While
understanding of topological defects in liquid crystals is a
research field that spans over other types of geometries and
dimensions [7–11], here we focus on two-dimensional (2D)
systems with a simple rectangular confinement boundary. We
demonstrate that these simple systems display all essential
features of the more complicated liquid-crystal confinement
problems and that the orientational patterns observed in the
above experiments can be qualitatively accounted for by
extending a fundamental statistical physics model known as
the Onsager theory [12].

*hzhang@bnu.edu.cn
†jeffchen@uwaterloo.ca

On the application side, the defect structures, such as those
in Fig. 1, can produce different, polarized optical properties.
Most 2D defect structures discussed below correspond to
free-energy minima partitioned from each other by barriers.
Switching between different defect states could be achieved by
an external field that lowers the energy barrier and biased to one
of the states. The possible coexistence of these multiple states
in miniaturized, confining cells is a desirable feature [1] for
liquid-crystal display industries [13], among other techniques
that produce multistable liquid crystal devices [14–16].

There are only three most relevant, dimensionless parame-
ters that control the type of resulting nematic patterns in these
systems. The aspect ratio of a confining rectangle b/a, where a

and b are the short- and long-side lengths, and the box-rod size
ratio a/L, where L is the length of a rodlike particle, define the
confinement geometry. In a system consisting of n sterically
repelling particles, the reduced number of particles per unit
area, L2ρ ≡ L2n/ab, determines the degree of orientational
ordering and hence the type of nematic patterns as well.
Originally, Onsager proposed a free-energy model for the
bulk properties of the isotropic-nematic transition in three
dimensions [12]. The model was later extended to include
the positional dependence of the distribution function [17–23].
For the current problem, the free energy must be minimized
with respect to the particle configurations, which produces a
solution for the distribution function f (x,y,θ ) at given [L2ρ,
a/L, a/b], where x,y are the Cartesian coordinates to describe
the location of a point in the box and θ is an angle to describe
the particle’s axial direction from the x axis [24]. Section II
summarizes this approach.

In a complex free-energy landscape, a single solution corre-
sponds to a local (“metastable”) or global (“stable”) minimum.
Depending on the physical conditions, an observed structure in
a theoretical or real experimental system can correspond to the
global minimum or can be trapped in a local minimum if the
free-energy barrier between these is high. Section III A further
explains these concepts.

Multiple defect patterns have been found in this work. The
results are organized in two subsections. In Sec. III B, we
consider those for fixed L2ρ = 10, which is in a relatively deep

2470-0045/2018/97(5)/052707(14) 052707-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.052707&domain=pdf&date_stamp=2018-05-30
https://doi.org/10.1103/PhysRevE.97.052707


XIAOMEI YAO, HUI ZHANG, AND JEFF Z. Y. CHEN PHYSICAL REVIEW E 97, 052707 (2018)

2 3 4 5
2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

a/L

βF
/n

 

 

2 3 4 5 6
 

 

 

 

 

 

 

 

a/L

 

 

D
L
X

D
L

(a) b/a=1.0, L2ρ=10 (b) b/a=1.2, L2ρ=10

FIG. 1. Typical nematic defect states (top) and their free-energy
(per molecule) branches as functions of a/L for fixed (a) [b/a,L2ρ] =
[1,10] and (b) [1.2,10]. Defect points of winding numbers −1/2
(blue) and −1 (yellow) are seen in the diagonal, long-axis, and X-
shaped states. The crossing of these branches yields a phase boundary
for the transition between the two involved states.

nematic state. Most experimental work (mentioned above) and
computer simulations [25–30] are conducted in well-formed
nematic state. It is here we present a discussion of our findings
with other work.

Other theoretical tools, such as the Landau–de Gennes
and Oseen-Frank models, were used to study the current
problem. These models contain phenomenological parameters
that cannot be easily identified with, for example, a/L and L2ρ

[1,3,6,30,31]. One commonly used approximation in solving
these models has been the one-elastic-modulus approxima-
tion, which is only valid near the isotropic-nematic transition
boundary. To compare with previous theoretical results, as our
second set of calculations, we let L2ρ = 6, near the transition
boundary. Some of the defect patterns described in Sec. III B
are comparable to those found in Ref. [30] and some are
new. The defect patterns predicted in this subsection could
be observed by future experiments.

In general, how do we classify the 2D nematic defect
patterns within a line boundary? This is a question that goes
beyond the rectangular confinement. In Sec. III D we classify
the confinement types by the number of confinement boundary
corners n and present a general formula for the total winding
number W (n) of a given type. All defect patterns discussed in
this work follow the expect rule for n = 4.

The extended Onsager theory can be presented as a self-
consistent field theory of wormlike-chain polymers with
infinite rigidity. This and the computer algorithm that is
used to solve the theory numerically, are presented in the
Appendices.

II. METHODS

A. Extended Onsager model

Of the central focus is the density distribution function
ρc(r,u) which characterizes the probability density of finding
the centers of mass of the rodlike molecules at a spatial position
specified by the vector r with the condition that the rods are
pointing at the direction specified by a unit vector u. Here we
assume that ρc(r,u) is normalized to n. For a given, unknown
distribution ρc(r,u), accurate to the second-virial coefficient
[32], the extended Onsager model states that the free energy
of the system is a functional [7,12,33],

βF =
∫

ρc(r,u) ln[L2ρc(r,u)]drdu

+ 1

2

∫
ρc(r,u)w(r,u; r′,u′)ρc(r′,u′) drdudr′du′,

(1)

where β = 1/kBT , with kB being the Boltzmann constant
and T the temperature. To obtain the stable or metastable
configurational properties, the free energy is to be mini-
mized with respect to ρc(r,u) with the appropriate hard-wall
boundary conditions. The free energy includes two terms.
The first term is ideal-gas-like, containing both translational
and orientational entropies of a spatially inhomogeneous and
orientationally ordered gas of rodlike molecules. The kernel
function w(r,u; r′,u′) in the second term describes the inter-
action between two rods respectively having the coordinates
(r,u) and (r′,u′). The two terms compete with each other as
one prefers isotropic state and the other nematic state.

The actual numerical calculation to minimize the free
energy was carried out by using the mathematically equivalent
self-consistent field theory [24,34]. Appendix A summarizes
the main formalism.

B. Visualization of the nematic structures

The calculated physical properties are based on the distri-
bution function of segments on a rodlike molecule, f (r,u). It
is related to the center-of-mass distribution function ρc(r,u)
by

f (r,u) = ab

n

∫ 1

0
ρc

[
r − uL

(
s − 1

2

)
,u

]
ds, (2)

where we trace back along the path of a rodlike molecule to
the rod center. The integrant represents the probability density
of finding the segment labeled by s on the rodlike molecule to
appear at a location with the coordinate r. The path-averaged
f (r,u) is the probability density of finding any segments,
regardless of its label s, to appear at r. With this definition
f (r,u) is dimensionless and normalized to the box area ab.
In 2D, f (r,u) is expressed by f (x,y; θ ), where x,y are the
Cartesian coordinates along the two perpendicular sides of a
rectangle and θ is the angle between u and the x axis. Here a
number of physical quantities are introduced to illustrate the
nature of the three-variable function f (x,y; θ ).

The density variation is reflected by the function

φ(x,y) =
∫ 2π

0
f (x,y,θ )dθ, (3)
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where the θ dependence of the distribution function is averaged
out. In the bulk isotropic and nematic states, this function is
identically constant (=1). In the current system, the nematic
defect locations normally accompany a low φ(x,y).

On a 2D surface, to measure the orientational ordering, we
define the orientational order parameter tensor

Q(x,y) = 1

2

[
S(x,y) T (x,y)

T (x,y) −S(x,y)

]
, (4)

where the two elements are

S(x,y) =
∫ 2π

0 dθ cos(2θ )f (x,y,θ )

φ(x,y)
, (5)

T (x,y) =
∫ 2π

0 dθ sin(2θ )f (x,y,θ )

φ(x,y)
. (6)

Respectively, S and T characterize the ordering of the rodlike
molecules along the x axis and the direction that makes a
π/4 angle with respect to the x axis. Note that both S and
T defined here have been divided by φ(x,y), whereas similar
quantities studied in Ref. [24] were directly the integrals in the
numerators.

Based on this definition, the main order parameter measured
from a local nematic director n(x,y) is found from the positive
eigenvalue of the Q tensor,

�(x,y) =
√

S2(x,y) + T 2(x,y). (7)

The nematic-director field itself is projected on the Cartesian
axes by

n(x,y) = x̂ cos θ0(x,y) + ŷ sin θ0(x,y), (8)

where θ0 is determined from

cos θ0(x,y) = 1

2

[
1 + S(x,y)

�(x,y)

]
. (9)

The location where � = 0 is considered as a defect point and
hence n cannot be defined.

In a typical optical experiment, to image the possible defect
pattern, a liquid-crystal cell is placed between two crossed
polarizers. To model the defect pattern seen by the experiments,
here we assume that the first polarizer makes an angle α with
respect to the x axis. After the light passes the liquid-crystal
cell, the electric field E makes a projection E cos(α − θ ) after
been screened by those molecular segments oriented in the
θ direction. Another projection of sin(α − θ ) along the axis
of the second polarizer makes the final outcome of the light
intensity proportional to

Iα(x,y) = 1

4

∫ 2π

0
dθ [sin(2θ − 2α)]2f (x,y; θ ). (10)

The average is performed locally with respect to the molecular
orientation θ .

III. RESULTS AND DISCUSSION

A. Free energy and phase diagrams

The relative stability of a defect state over the other can
be assessed by examining the free-energy differences between
these states. For example, each data point in Fig. 1(a) represents
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FIG. 2. Phase diagrams in terms of a/L and L2ρ for four given
aspect ratios, b/a = 1,1.2,2, and 3. A second-order phase transition
curve (dashed) separates the parameter space into ordered and
isotropic (ISO) states.

the free energy per particle, calculated after minimization is
performed with respect to the probability density distribution
for a fixed b/a = 1 and L2ρ = 10. The interpolation of the
calculated data indicates that a first-order phase transition takes
place at a/L ≈ 2.8, where, beyond this point, D has a lower
free energy. This leads to the phase boundary in the phase
diagram, Fig. 2(a), at [a/L,L2ρ] = [2.8,10]. Calculations for
other values of L2ρ give rise to the entire phase boundary curve
for the X-D transition.

In another example, for a system with fixed b/a = 1.2
and L2ρ = 10, by changing a/L we obtain three free-energy
branches corresponding to X, L, and D, which are displayed in
Fig. 1(b). The first crossing point at L2ρ ≈ 2.0 determines the
X-L phase boundary and the second at L2ρ ≈ 4.1 the L-D
phase boundary. Within this two points, both D and X are
metastable.

Our system has three parameters, [L2ρ,b/a,a/L]. A com-
plete phase diagram is hence dependent on three system
parameters. Figure 2 is a series of two-dimensional phase
diagrams with fixed values of the aspect ratio b/a. The phase
diagram shows the parameter space where the D, X, or L states
have the lowest free energy.

The Onsager model ignores all fluctuation effects and hence
is at a mean-field level. As such, when it is used to model the
isotropic-nematic phase transition of rodlike molecules in 2D,
it predicts a second-order transition density [21,35,36],

L2ρ∗ = 3π/2, (11)
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φ Λ πππ φ Λ πππ

FIG. 3. Nematic defect structures found from the solutions to the extended Onsager model for b/a = 1. Every structure is visualized by
six methods: nematic-director field, fluid density variation φ, main-axis orientational order parameter �, and three gray-scale crossed-polarizer
images calculated according to (10) for α = π/4, 5π/16, and 3π/8. The reduced parameters used to produce these structures are [L2ρ,a/L] =
[10.0,8.0] for (a) and (f) and [10.0,10.0] for (b)–(e) and (j)–(l). The color scale used for columns 2 and 3 is indicated by the white-blue color
bar and the grayscale used for all Iα plots by the black-white gray bar. The blue, yellow, and green circles label the defect locations of −1/2,
−1, and +1/2 winding numbers, respectively. The three gray-scale images of D and U states closely match the real crossed-polarizer images
of a liquid crystal confined in 80-μm square cells, reported in Ref. [1].

above which the nematic state is stable and below which the
isotropic state is stable. In the asymptotic limit a/L � 1 and
b/L � 1, the confined system modeled here reduces back to
this transition as the boundary effects diminish.

B. Nematic patterns, when L2ρ = 10

Here we consider the case of L2ρ = 10, which places the
system inside a relatively strong nematic state. Beyond the
basic D, X, and L states, the Onsager model yields a number
of metastable defect states that are of interesting properties.
A compilation of these states are shown in Figs. 3 and 4.
Figure 5(a) is a phase diagram in terms of [a/b,a/L], when
L2ρ is fixed at 10.

The color in Fig. 5 illustrates the relative probability be-
tween two compared states A and B, following the Boltzmann
distribution function, PA/PB = exp[−β(FA − FB)], where
βF is the reduced free energy of the system. Given all
possible initial conditions, or, if the system can be thermally
equilibrated, this directly represents the relative probability

of finding state A over state B. However, the free-energy
barrier between low- and high-probability states can be so high
that a low-probability state can be kinetically trapped when
the experimental condition (or the theoretical initial guess)
prepares the system in such a state. The shaded areas in these
diagram show the parameter space where the metastable states
can be found. To find these areas, we prepared the initial guess
by a suitable ansatz function.

The diagonal state (D), shown in Figs. 3(a) and 4(a), is one
of the most basic and most-studied defect patterns for all ratios
of a/L. It has the lowest free energy over a large parameter
space shown in Fig. 5(a), as the major body of the structure
has a single nematic domain. Galanis et al. [5] described
this nematic pattern in centimeter-long granular rods confined
by a square cell of 29-cm diagonal size, experimentally; the
structure was visualized by their digital images [5], and one
of them is reproduced here as Fig. 6(a). Tsakonas et al. [1]
reported the light transmission intensity observed by placing
a thermotropic liquid crystal, E7, in micron-sized square cells
between crossed polarizers [1]. The light intensity images, Iπ/4,
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φ Λ π 5π π φ Λ ππ 5π

FIG. 4. Nematic defect structures found from the solutions to the extended Onsager model for a rectangular box of aspect ratio b/a = 2.
Every structure is visualized by six methods: nematic director field, nematic fluid density variation φ, main-axis orientational order parameter
�, and three gray-scale crossed-polarizer images calculated according to (10) for α = π/4, 5π/16, and 3π/8. The system parameters used to
produce these structures are [L2ρ,a/L] = [10.0,7.5] for (a), [8.0,6.0] for (e), and [10.0,10.0] for (b)–(d) and (f)–(l). The color and grayscales
and the meaning of colored circles are the same as in Fig. 3.

I5π/16, and I3π/8, constructed from our numerical results and
displayed in Fig. 3 are nearly identical to the experimental
images, hence indirectly confirming that their observed state
is D, a conclusion also supported by their own solutions to the
Landau–de Gennes model.

Soares e Silva et al. [2] imaged the florescence filaments
embedded in 6-μm-long actin filaments confined by a square
cell of 30-μm side length [Fig. 6(b)], which also displays the
same orientational pattern [2]. D is the common state that
appears in the square-confinement solutions of the Landau–de
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FIG. 5. Phase diagram and the probabilities for appearance of metastable states, P , in the nematic phase for a given L2ρ = 10. The solid
phase boundary in all plots divides D, L, and X states. The shaded areas are metastable regions. The color bars specify the relative probabilities,
in comparison with those in states D and L.

Gennes theory [1,30,31] and the extended Onsager theory
[24], the Monte Carlo simulations of rodlike particles in a slit
with a square-boundary [28,30], and the rectangle-confinement
solution of the Oseen-Frank theory [3]; these patterns are
reproduced here as Figs. 6(c)–6(f), respectively. The same D
state was observed in Y21M and fd-wt-viruses confined in a
flat rectangular box [3]; one example image is reproduced here
as Fig. 6(g).

In a system with relatively small a/L, the boundary effects
are more profound, influencing the structures in the box
interior. When the box is nearly square (b/a − 1 � 0.2), a
structure that keeps the four-sided symmetry of the original
box, the X-shaped (X) pattern, is stable according to the inset
of the phase diagram in Fig. 5(a). X has a single defect point
at the center of the box and its main properties are illustrated
by Fig. 3(b). It was deemed metastable previously from the
preliminary solution of the extended Onsager model in a square
box [24]; however, it is found here stable in a small parameter
region. Robinson et al.’s recent solution to the Landau–de
Gennes model analyzes the stability of X, too [30]. Most
experimental systems taken so far fall outside of the parameter
region; it would be useful to verify the prediction for the
existence of the X-state experimentally.

Another stable structure where the symmetry is inherited
from the box boundary condition is the long-axis state, L,
where the main domain of the nematic structure aligns with
the long box-side direction, shown in Fig. 4(b). It is one of
the basic structures where a twofold symmetry is maintained,
naturally occurring for a system of large aspect ratio b/a, as
described by the phase diagram in Fig. 5(a). Lewis et al. [3]

reported the existence of L in Y21M and fd-wt viruses confined
by a rectangle with a large b/a, experimentally, showing an
image of the dominating, long-axis nematics [see Fig. 6(h)];
they regarded that as a uniform nematic state. On the other
hand, a careful examination of that image gives a hint of tilted
nematic directions near the two ends of the narrow box; the
image is similar to the director field produced from our solution
shown in Fig. 6(i) where the two defect points are located
near the ends of the rectangular box, which were, within good
possibility, poorly captured by their experiment.

Less intuitively, our work predicts that L can be found,
although metastable, for a confining square box b/a = 1 [see
Fig. 3(c)], which was conceptually suggested as a possibility
without proof in Ref. [24]. The spatial symmetry of L is
closely related to those of L′ and L′′, shown in Figs. 3(d) and
3(e), where the latter contain defect lines. They are recently
found as the solutions to the Landau–de Gennes model as
well [30]. These three can coexist in the same parameter
region but L′ and L′′ are much less stable, according to the
assessment in Figs. 5(b) and 5(c). Coincidentally, using the
Zwanzig model [37] (which oversimplifies a nematic structure
by forcing rodlike particles to align only in the x and y

directions and hence renders D impossible), González-Pinto
et al. reported that L′′ is stable [38]. Cortes et al. [4] reported
a confocal-microscopy nematic image of confined colloidal
silica rods of 4 to 5 μm length in a a/L = 15 square box
[reproduced as Fig. 6(j)]. According to Fig. 5(a), in the region
near a/L ∼ 15, the relative probability for natural occurrence
of L, in comparison with that of D, is low. On the other hand,
their nematic state is clearly trapped in the L state with two
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FIG. 6. Comparison to nematic textures found experimentally and theoretically. These plots are adapted from (a) Ref. [5] (experiment on
granular rods); (b) Ref. [2] (experiment on actin filaments); (c), (k), and (n) Ref. [30] (solution to LdG model); (d) Ref. [24] (solution to the
Onsager model); (e) Ref. [28] (MC simulations); (f) and (o) Ref. [3] (solution to the Oseen-Frank model); (g), (h), (l), (m), and (p) Ref. [3]
(experiment on Y21M and fd-wt viruses); as well as (j) Ref. [4] (experiment on colloidal rods). All plots were reproduced with consents from
the original authors. Systems in (a)–(g) are in the D state, (h)–(k) L state, (l)–(o) U state, and (p) T state. More images have been published in
Ref. [3]; the most characteristically representative ones are reproduced here.

defect points, similar to our illustration in Fig. 3(c). It should
be realized that in their experiment, they started from a dense,
smectic-A state with the nematic director aligned along a box
side; all L, L′, and L′′ (not D) are closely related intermediate
states on the pathway to an isotropic state. Because of the
special initial condition, L can be energetically separated from
the ground D state that would require the rotation of the main
orientational axis. This comes as the concrete experimental
validation of the existence of L for a b/a = 1 system.

We find four other metastable structures in all parameter
regions searched: U, T, J, and J′. The structure with a U-shaped
(U) bending nematic domain [Figs. 3(f) and 4(e)] occupies
almost the entire phase diagram, except for the low a/L region,
as illustrated by the shaded area in Fig. 5(d). It has no rotational
symmetry but contains a mirror symmetry. Tsakonas et al. [1]
observed a typical image of U when they placed square wells
filled with E7 liquid crystals between crossed polarizers. Our
simulated images, Iπ/4, I5π/16, and I3π/8 in Fig. 3(f) for U,
are almost identical to the three plots in the middle column
of their Fig. 2. Tsakonas et al. [1] claimed that D and U are
energetically degenerate. This cannot be the case, as the free
energies associated with these two different patterns should
be different; qualitatively, placing two same-signed defects at
a shorter distance in U is bound to increase its free energy.
The metastability of U was well documented by Lewis et al.
[3] when they produced multiple virus systems confined by
rectangles with various values of a/L [3] [Figs. 6(l) and

6(m)] experimentally. There is a close agreement between the
probabilities of finding U assessed there and our Fig. 5(d).
Theoretically, U has been found in the square-confinement
solutions of the Landau–de Gennes theory [1,30,31] and the
rectangle-confinement solution of the Oseen-Frank theory [3]
[reproduced as Figs. 6(n) and 6(o)].

Here we discover a tilted-T (T) state shown in Fig. 3(g). It
displays two nematic defect points, one close to the square
center and the other on a diagonal line near a corner. In
T, a diagonal symmetry is maintained. The structure can be
typically found in a near-square confining box, as illustrated
in Fig. 5(e), due to the embedded symmetry. Experimentally,
Lewis et al. reported a nematic pattern that clearly resembles
T [see reproduced Fig. 6(p)], when they confined Y21M and
fd-wt viruses in a near-square box, which they identified as a
variation of the D state [3].

Both J and J′ are metastable low-symmetry solutions, which
were reported as recent solutions to the Landau–de Gennes
model as well [30]. These states have not been observed
experimentally yet but, according to our assessment of the
phase diagram, Figs. 5(f) and 5(g), they could be easily
found.

C. Nematic patterns, when L2ρ = 6

The parameter regions explored in the last subsection corre-
spond to systems having relatively strong nematic ordering. As
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φ Λ πππ φ Λ π π π

FIG. 7. Additional nematic defect structures found from the solutions to the extended Onsager model for b/a = 1 and b/a = 2. See
the caption of Fig. 3 for an explanation of the physical quantities illustrated. The reduced parameters used to produce these structures are
[L2ρ,a/L] = [6.0,12.5]. The color and grayscales, as well as the meaning of the colored circles, are the same as in Fig. 3. In addition, the
orange circle labels the defect location of a defect of the +1 winding number.

such, the splay elastic modulus is expected to be much larger
than the bending elastic modulus. To solve a typical Landau–
de Gennes model [1,30,31], on the other hand, one would
customarily equate these two elastic constants; Robinson et al.
[30] reported many other metastable states on the basis of
this approximation [30]. It is perhaps not accidental that
experimental observations are only D, L, U, and T, as most
experiments are conducted in the strong nematic regime.

We directly use excluded-volume based interaction energy
in this work, which avoids the pitfall of a single elastic
modulus. In this subsection, we explore an interesting area
of the parameter space by letting L2ρ = 6, which is a density
right above the isotropic-nematic transition density in (11). As

generally expected, near the transition point, the two elastic
constants are of the same order. We see below that the extended
Onsager model gives rise to a large variety of defect patterns,
some reproducing those in Ref. [30].

Figure 7 lists these defect states, found at [L2ρ,a/L] =
[6.0,12.5] for the cases b/a = 1 and b/a = 2. They all display
the essential features that follow the general principles of
nematic defects. For example, regardless of the number of
excited defect points, the total sum of winding number is fixed
at −1. The positioning of defects having positive and negative
winding numbers approximately follows the electrostatic-
interaction comparison. We decide not to name these structures
because of the richness of the excited defect patterns. Some of
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FIG. 8. Phase diagram and the probabilities for appearance of metastable states, P , in the nematic phase (for a given L2ρ = 6). The solid
phase boundary in all plots divides the D and L states. The shaded areas in plots (a)–(k) represent the metastable regions of the structures listed
in Fig. 7. The color bars specify the relative probabilities, in comparison with those in states D and L.

them can be related to a ±1/2-pair insertion into the basic
structures described in Figs. 3 and 4.

In total, within the parameter regimes considered, we have
found 23 defect structures for the case of square confining box,
b/a = 1. Most of them could also exist when the confining
square box becomes rectangular. One important contribution
of the current work is the assessment of the stability region
and comparative probability of various states. Most basic
structures in Fig. 3 have large parameter regimes of stability
with well-defined nematic ordering. Deep in the nematic states,
the metastable states can be partitioned from the energetically
preferred ground states, hence in many cases, they become
experimentally observable. This can be contrasted with the
stability regimes described in Fig. 8. These more exotic defect
states appear to have similar free energies as those of L and
D. In a real system near the isotropic-nematic transition point,

large local density fluctuations exit and that can easily open up
kinetic pathways to the ground states. The question of whether
these excited defect states can be found experimentally in
real systems or in computer simulations containing molecular
details remains.

D. Line boundaries and defects

According to the general theory of nematic defect structures
[39–42], the total winding number as the summation of
individual contributions, must be the same for a given type
of geometric frustrations. The hard-wall boundary condition
adopted in this work yields the tangential boundary condition
(planar alignment), which enforces the main molecular axis
to align in parallel to the confining wall surface perfectly
[43,44]. One can measure this total winding number by taking
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FIG. 9. (a) Winding angle of a sharp angle boundary (left) and
a smooth boundary (right), (b)–(f) the total winding numbers of
different types of boundary geometries, and (g) the types of defect
points labeled by their winding numbers. Every type of frustrations
is represented by the total number of corners along the boundary, n.
Two example defect patterns of the same total winding number are
shown for each case.

a complete loop along the wall boundary and tracing the
angular rotation of a unit vector after the completion of
the loop.

Figure 9(a) shows two possible geometry boundaries that
such a loop can encounter. Following the change of molecular
directions inside the corner (labeled by arrows for clarity), the
boundary corner of angle α produces a rotation of −α of the
director field. In comparison, a smooth boundary of radial angle
α produces a +α change. Adding all contributions, we found
that the total winding angle is simply the the negative sum of all
internal angles after mapping a closed boundary (which might

contain curve segments) into a polygon consisting of straight
lines only.

Then we can establish a simple rule of the total winding
number. According the geometry theory, the total sum of
internal angles is (n − 2)π for a polygon consisting of n

corners. Hence the total winding number is

W (n) = −(n − 2)π/2π = −(n − 2)/2. (12)

As far as we are aware of, this rule has not been made explicit
in the literature of liquid crystal defects for a 2D confinement
shape made of acute and obtuse angles.

Figures 9(b)–9(f) illustrate simple examples that follow this
rule. In particular, for rectangular confinement, n = 4, the total
winding number is −1. This is indeed satisfied by all defect
patterns, in Figs. 3, 4, and 7.

When the argument is generalized to other closed line
boundaries, interesting defect patterns can be guessed. For
example, along a the circular (or elliptical) confinement bound-
ary, n = 0 and hence W = +1. The two example patterns
shown in Fig. 9(b) were the defect patterns produced from
solving the extended Onsager model [24] and the second
one was observed experimentally [2,5]. This smooth-edged
boundary has the same topology as a spherical surface, on
which the total winding number is known to follow the
Poincaré-Hopf theorem [45].

The first pattern of a liquid crystal confined inside a triangle,
Fig. 9(e), agrees with the experimental observation of the same
type [2]. The other patterns in Figs. 9(c)–9(e) are demonstrated
here for the first time.

Our general formula, (12), depends on the assumption
that nematic texture at a corner has a splay pattern [left
panel of Fig. 9(a)], not a bending pattern [right panel of
Fig. 9(a)]. In some previous theoretical work, however, soft
boundary conditions were used where the nematic layers at the
boundaries are allowed to point at directions other than planer,
with an energy penalty. One consequence is that the near-corner
defects can resolve themselves to save the local defect-point
free energy at the expense of increasing the energy penalty
of the nearby boundary molecules, which are now tilted from
the perfect planar condition [1,3,31]. For example, the nematic
defects seem to have melted away at the rectangular corners of
plots in Figs. 6(f) and 6(o), which can be contrasted with the
defects showing in our Figs. 3 and 4. In these soft boundary
cases, the tilted boundary molecules do not follow the analysis
schematically presented in the left panel of Fig. 9(a). As such,
the formula in (12) can no longer be followed.

In a recent study of the Landau–de Gennes model, the
Dirichlet planar boundary condition seems to be followed
on most line boundaries [30]. The corner point itself is a
singularity for perfect boundary conditions in that treatment.
There is a very small area at the corners of some illustrations
where it neighbors a corner and a bending nematic texture
rather than a corner and splay nematic texture. The finite
anchoring strength used in that work to simulate the Dirichlet
boundary condition would make a bend distortion at the corner
admissible.

Our numerical work also demonstrates that when a −1/2
defect point is located very close to a corner to form a −1/2-
defect-corner pattern, the region containing the defect and the
corner is associated with a depletion of the molecular density
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(φ plots in Figs. 3, 4, and 7). In real experimental systems,
the depletion directly lowers the intensity on an optical im-
age. This perhaps is the reason why the −1/2-defect-corner
pattern is not always explicitly visible on optical images in
Refs. [2,28].

To summarize, here we show that a general defect rule,
(12), is mathematical exact when liquid crystals are con-
fined by a planar line boundary condition for classification
purposes. We also discussed a few scenarios when (12) is
apparently violated. Assessment of those nematic textures with
seemingly disappeared defects in −1/2-defect-corner regions
should be augmented by −1/2 defects to void confusion in
classification.

E. Excited states

Our calculation shows that excited states beyond basic
structures can be stabilized. For example, pairs of ±1/2 defects
are inserted into the basic defect patterns. Among these are
UI [Figs. 3(j) and 4(h)] and its variation UI′ [Fig. 3(k)], UIII
[Fig. 4(j)], and UV [Fig. 4(l)], where one, three, and five ±1/2
pairs show up in an otherwise U state, and DII [Figs. 3(l) and
4(i)] and DIV [Fig. 4(k)], where two and four ±1/2 pairs
show up in an otherwise D state. The insertion makes the
structure multilayered. Each layer has its own tilted, main
nematic direction, altered layer by layer. These structures were
found by enforcing the corresponding initial guesses, which
traps the systems in these structures during the convergence
to the final solutions. The metastable patterns can be created
as long as the b/a ratio can accommodate the space needed
to sustain the layered structures. As a general guideline, from
our trial-and-error, we found that a maximum of three layers
can be stabilized per unit b/a. Figures 5(h), 5(i) and 5(j)
demonstrate the region in phase space where UI, UI′, and DII
can be stabilized. No experimental study yields these excited
states so far.

The interaction between nematic defects appearing on a
surface can be compared with electrostatics [39,46]. Within
this analogy, the defects with a positive (or negative) winding
number play the role of a positive (or negative) pointlike
charge. Hence, the three repelling negative defects keep them-
selves as far as possible in UI and the positive defect finds itself
a suitable balancing position inside the three negative defects
to maximize the attractions it experiences. These excited states
can be viewed as insertion of (long) dipole pairs into an existing
defect pattern. The alternation of the dipole axes is needed to
maintain the electrostatic stability.

Another important fact that must be noted is that the
locations of the nematic defects can fluctuate to large extent,
as shown by recent molecular simulations [47] and a real-time
experimental movie of a colloidal liquid crystal [4]. The current
study is mean-field based and produces nematic patterns with
particular symmetries. These symmetries may not always be
clearly visible in computer simulations or real experiments
with fluctuating defects.

IV. SUMMARY

In summary, we examine the 2D nematic-defect structures
of rodlike molecules confined in rectangular boxes of various

sizes and aspect ratios, using an extended version of the
classical Onsager model for liquid crystal systems. The main
conclusions are based on numerical solutions to the model,
which display a variety of basic and excited defect patterns, all
topologically different. All optical images of real experimental
systems taken in recent years are now systematically accounted
for by our theoretical results. In addition, some structures
predicted in this work should be verifiable in further experi-
mental work. The phenomena described here land on a number
of branches in physics, materials science, and mathematics,
forming problems of fundamental importance.

We have left behind the thread of other technical issues such
as whether there is indeed a long-range order in a 2D system
[48,49] and whether a density-functional theory [25] can repair
the underestimate of the isotropic-nematic transition point
from the 2D Onsager model. The current work demonstrates
the beauty and triumphs of a fundamental physical idea
proposed by Onsager nearly 70 years ago—the directional
ordering seen in nematics can be captured by the needs to
increase the orientational entropy and to decrease the excluded-
volume interaction. While this concept was proposed to deal
with the bulk isotropic-nematic transition, addition of the
geometric frustrations gives the model a new life. It can be
used to study the nematics of rigid molecules embedded on
the spherical surface where the topological frustrations of
accommodating a headless vector nematic field on a curved
closed surface produce multiple nematic defect states [50–52].
It can also be used to study the 2D nematics of rigid molecules
frustrated by confining geometry of various shapes: rectangle
(this work and Ref. [24]) and circle (Ref. [24]).

While this paper discusses the nematic states found based
on a three-parameter model using a/b, a/L, and L2ρ, fur-
ther extensions could be made to address other aspects of
related systems. For example, the diameter of a rod, d, does
not enter into the current theory but could be introduced
explicitly through the shape of end-caps of rods [12]. The
main effects would be the ability of the further extended
theory to handel smectic ordering, as shown previously in
Ref. [53], in order to tackle, for example, the isotropic-nematic-
smectic coexisting problem in a recent experiment [4]. Another
interesting direction of extension of the current work would
be to consider semiflexible chains rather than rigid rods, as
“molecules” in most biological experiments are not exactly
rigid. This extension is already built into the self-consistent
field theory by using a finite persistence length λ [34]. The
introduction of these effects would make the theory depend
on a/b, a/L, L2ρ, d/L, and λ/L, resulting a much larger
parameter space to explore.

The formation of the nematic ordering predicted from
the Onsager theory is density driven. Strictly speaking, the
theory only describes “lyotropic” systems to which most of
the experiments described here belong. The liquid crystal
system in Ref. [1], however, more likely belongs to another
class, “thermotropic” liquid crystals. The basic natures, such
as boundary frustrations against uniform nematic ordering, are
the same in both confined thermotropic and lyotropic systems.
As long as a thermotropic liquid crystals is brought into a
nematic state (by temperature change), the defect patterns
discussed in the present work (generated by density change)
should also be qualitatively applicable.
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APPENDIX A: SELF-CONSISTENT FIELD THEORY

The extended Onsager model presented in the text,

βF =
∫

ρc(r,u) ln[L2ρc(r,u)]drdu

+ 1

2

∫
ρc(r,u)w(r,u; r′,u′)ρc(r′,u′) drdudr′du′,

(A1)

can be reformulated as a self-consistent field theory (SCFT)
for wormlike polymers with an infinitely large persistence
length (hence the molecules are rigid), which is summarized
here. The proof for mathematical equivalence is carefully
addressed in both Refs. [24] and [34]. The formalism requires
the introduction of a path variable s, continuously varying from
one end of the molecule where s = 0 to another end where
s = 1. The direction of the unit vector u is assumed to point
from s = 0 to 1. A segment element on the rodlike molecule
then carries a label s.

A few advantages can be gained by using the path-averaged
distribution function within the SCFT, f (r,u). The second
nonlocal term in (A1) can now be simply written with a local
kernel function without the complex structure of w; the non-
local boundary conditions at the walls can be handled through
the local boundary conditions of the reduced Green’s function.
The price that must be paid for these simpler expressions is the
more complicated entropy term. Instead of the local expression
shown in the first term of (A1), in terms of f (r,u) a nonlocal
relationship now needs to be considered, which, within SCFT,
is determined by the solution to a partial differential equation.

The density function is related to the reduced Green’s
function q(r,u; s) by

f (r,u) = n

ρQ

∫ 1

0
dsq(r,u; s)q(r,−u; 1 − s), (A2)

where Q is the single-chain partition function,

Q =
∫

drduq(r,u; 1). (A3)

The reduced Green’s function q(r,u; s) is introduced to de-
scribe the probability of finding a polymer segment of length s

with its terminal end locating at r and pointing at unit vector u.
Given an external potential W (r,u), q(r,u; s) can be calculated
by solving the modified diffusion equation (MDE) [24]

∂

∂s
q(r,u; s) = [

(L/2λ)∇2
u − Lu · ∇r − W (r,u)

]
q(r,u; s),

(A4)
where an initial condition q(r,u; s = 0) = 1 is imposed. In
this work we already assume that the persistence length of the
polymer λ � L to model a rodlike polymer.

The free energy in the extended Onsager model can be
rewritten as

βF = n ln(ρ/Q) − ρ

∫
drduW (r,u)f (r,u)

+ L2ρ2

2

∫
drdudu′f (r,u)|u × u′|f (r,u′). (A5)

The minimization of (A5) with respect to f (r,u), δ(βF )/δf =
0, gives

W (r,u) = L2ρ

∫
du′|u × u′|f (r,u′), (A6)

which relates the mean field W with the distribution
function.

The main algorithm of the self-consistent loop is the
following. (A) The excluded-volume interaction of the system
is modeled by the local expression, (A6). (B) For a single-
chain statistics, W is considered as an external field and the
reduced Green’s function problem is solved through (A4),
which yields the single-chain partition function through (A3)
and probability distribution through (A2). (C) One then goes
back to (A6) to complete the self consistency.

APPENDIX B: BOUNDARY CONDITIONS

One of the main constraints that need to be implemented
beyond the original Onsager model is the hard-wall potential
acting on the molecules [18,22,23,44]. The wall-excluding
potential can be easily handled by the use of the q function
[24,44]. We let

q(r,u; s) = 0 (if u · n � 0 and s 	= 0), (B1)

where n is the normal direction of a wall area element, pointing
to the box interior. The other half of function at the wall,
for the parameter region u · n < 0, is specified automatically
by the physical problem. The physical significance of this
boundary condition, together with the consideration of the
mathematical requirements in solving a partial differential
equation within a hard wall, is discussed in depth in Sec. 2.5 of
Ref. [34].

APPENDIX C: NUMERICAL ALGORITHM TO
SOLVE MDE

The center of the numerical calculation is to solve MDE in
(A4). In this work we specify r through 2D variables x, y, and
u through the angle θ that it makes with the x axis. Then the
MDE can be represented by

∂

∂s
q(x,y,θ ; s) =

[
−L cos θ

∂

∂x
− L sin θ

∂

∂y

−W (x,y,θ )

]
q(x,y,θ ; s), (C1)

with the initial condition

q(x,y,θ ; 0) = 1. (C2)

For numerical implementation, we assume that the parameter
spaces in x/L, y/L, θ , and s are divided into Nx, Ny, Nθ , and
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Ns representative divisions; the nodes are labeled by integers
i, j, k, and n. The function q(xi,yj ,θk; sn) is then directly
represented by qn

i,j,k . In most calculations, when b/a = 1, we
set (Nx,Ny,Nθ ,Ns) to (50,50,30,2000). In the large b/a case,
Ny/Nx is adjusted accordingly. For example, when b/a = 2,
(Nx,Ny,Nθ ,Ns) is set to (50,100,30,2000). The step sizes in x,
y, θ , and s are �x = a/(LNx), �y = b/(LNy), �θ = 2π/Nθ ,
and �s = 1/Ns .

In terms of x and y, the above is a first-order convection
equation, which can be tackled by using the implicit upwind
scheme. We write

qn+1
i,j,k = qn

i,j,k + Ĥxq
n+1
i,j,k + Ĥyq

n+1
i,j,k + HWqn+1

i,j,k. (C3)

Here HW = −�sWi,j,k and the operators Ĥx and Ĥy yield

Ĥxq
n+1
i,j,k =

{
− cos θk

�s
�x

(
qn+1

i,j,k − qn+1
i−1,j,k

)
, cos θk � 0

− cos θk
�s
�x

(
qn+1

i+1,j,k − qn+1
i,j,k

)
, cos θk < 0

,

(C4)

Ĥyq
n+1
i,j,k =

{
− sin θk

�s
�y

(
qn+1

i,j,k − qn+1
i,j−1,k

)
, sin θk � 0

− sin θk
�s
�y

(
qn+1

i,j+1,k − qn+1
i,j,k

)
, sin θk < 0

.

(C5)

Since the ∂/∂s operator is treated by Euler’s forward scheme,
the increment �s must be small enough to ensure numerical
stability to satisfy the Courant-Friedrichs-Lewy condition.

The above equations can be formally represented by the
following notation:

AQn+1 = Qn, (C6)

where we move all linear terms associated with the time step
n + 1 to the left-hand side. The Nx × Ny × Nθ -dimensional
matrix A contains all coefficients of these terms and is sparse,
which can be inverted by using a standard algorithm. The Nx ×
Ny × Nθ -dimensional vector Qn+1 representing qn+1

i,j,k is then
calculated at time step n + 1 when Qn is given.
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