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Stresses in curved nematic membranes
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Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a
theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we
use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations
of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress
tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with
the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami
operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and
the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes
to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of
the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive
with respect to the north pole, indicating that it is an unstable equilibrium point.
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I. INTRODUCTION

When extrinsic couplings of Frank’s energy describing
liquid crystals on curved membranes are neglected, one finds
that defects interact with each other through the Green function
of the Laplace-Beltrami operator of the surface [1,2]; they also
have interactions with the membrane itself and a bulk term
appears describing the interaction of the Gaussian curvature of
the membrane mediated by the Green function. Clearly, these
interactions induce stresses along the membrane, which in turn
responds by modifying its shape: the interest in determining
the shape of biological membranes because it is related to
specific functions of the cell [3,4]. The distribution of stress
along the membrane plays a relevant role, whether its shape can
change or remain fixed. If the shape of the membrane is frozen,
the amount of topological charge is determined precisely by
the topology of the membrane through the Hopf-Poincaré and
Gauss-Bonnet theorems [5,6]. The nematic texture with defects
determines how the stress is distributed along the membrane.

The stress tensor has been calculated in several different
ways: in Ref. [7] and using a variational principle the authors
find it in the case of fluid membranes; in Ref. [8] and using
an elegant and general geometric formalism, the authors find
this tensor for very general schemes that can be applied to
the relevant case of elastic membranes coated with nematic
textures; in Ref. [9] the author finds the stress tensor of the
bending energy, examining deformations with respect to a flat
membrane. Remarkably, in Ref. [10] the author finds this tensor
by using auxiliary variables, avoiding the tedious calculations
of deforming the geometric objects involved.

The first main result of this article is the covariant stress
tensor of Frank’s energy in the so-called limit of one constant,
denoted κA. Although extrinsic effects is a subject of great
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interest [11–14], in the model we examine, the extrinsic
couplings are not taken into account, but instead interactions
between topological defects and the Gaussian curvature of the
surface are explicitly introduced. This model can be seen as the
dominant approximation of an effective energy that includes
extrinsic corrections in curvature.

The stress tensor found exhibits the forces in the nematic
membrane: Two like (unlike) charge defects repeal (attract)
each other. Defects are attracted to patches with the same sign
in Gaussian curvature, the interaction being through the Green
function (−1/∇2) of the surface. We also find nonisotropic
forces that involve derivatives of the Green function and
the Gaussian curvature, a result that exhibits more complex
nonisotropic forces than those described above.

Using this theoretical framework, we also find the covariant
Euler-Lagrange equation for the nematic energy. This equation
describes the shape of the membrane that is coupled with the
configuration of the director field. It is the covariant form of
the von Kármán equation [15], to which it is reduced when we
use the Monge approach. In the calculation of deformations
of the nematic energy, we have found that the tangential
deformations do not imply only a boundary term, that is
because this energy is not invariant under reparametrizations:
the presence of the nematic texture implies elastic stresses
tangent to the membrane. Moreover, when the variational
principle is implemented, the boundary conditions for a free
edge appear naturally. We write these conditions in terms of
geometrical information of the edge curve.

As a relevant example, we obtain the stress tensor in the
case of axially symmetric membranes. If the membrane is
closed, we find the corresponding Young-Laplace law, Eq. (54),
which gives us the relationship with the pressure difference P

between inside and outside. Although this is also a relevant
result of this work, this expression still depends on the nematic
texture on the vesicle.
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Therefore, we analyze the spherical case that has been
studied not only from a theoretical point of view but also
experimentally [16–19]. Placing +1 defect at each pole of the
spherical vesicle, we find the relationship of P with the radius
R of the membrane, the surface tension σ and the nematic
constant κA to be

P = 2σ

R

(
1 − ακA

2σR2

)
, (1)

where α ∈ (0,1) is constant that depends of the nematic texture.
Notice the negative sign of the nematic correction, unlike the
positive sign by bending rigidity [20]: while the elastic force
of the membrane adds to the surface tension, the nematic force
subtracts it.

Taking into account that elastic membranes have σ ∼
10−2 J/m2 and for typical liquid crystals κA ∼ 4.1 × 10−21 J,
to have a nematic correction of at least 10%, the sphere
must be R ∼ 0.7 nm. Nevertheless, some liquid crystals have
κA ∼ 10−11 N and σ ∼ 10−5 J/m2, [21,22]; for these liquid
crystals we have a nematic correction of 50% if R ∼ 1 μm,
a reasonable size in which the nematic correction can be
observed

If the membrane is not closed, the stress tensor is conserved
on its surface. We must also take into account that in addition to
the integrated Gaussian curvature over the area, the edge curve
determines the topological charge through the Gauss-Bonnet
theorem. We analyze two examples within the spherical cap,
one of them with charge +1 and the other one with charge
+1/2 at the north pole. The result we get is that the force on
any horizontal loop is repulsive with respect to the point defect
at the pole.

The rest of the paper is organized as follows: in Sec. II
we give a brief review to describe the Frank energy on a
curved surface, in the limit of one constant. In Sec. III we
obtain the response of the energy to small deformations of
the embedding function. To avoid confusion in the reading we
have separated the calculation of the normal and tangential
deformation. In Sec. IV the boundary conditions are obtained.
The key point here is to project the edge deformations along
the Darboux basis. By using the invariance of the energy
under translations and rotations, in Sec. V we find the stress
tensor and the torque. In Sec. VI, the case of membranes
with axial symmetry is examined, and then some results
for the spherical case are obtained. We finished the article
with a brief summary in Sec. VII. Most of the long calcu-
lations have been written in several appendices at the end
of the paper.

II. NEMATIC ENERGY

Let us consider a surface in R3 of coordinates x =
(x1,x2,x3). The surface is parametrized by ξa , through the
embedding functions x = X(ξa). The induced metric on the
surface is given by gab = ea · eb, the euclidean inner product
in R3 of the tangent vectors ea = ∂aX to the surface. The unit
normal vector to the surface is defined as n = e1 × e2/

√
g,

where g = det gab. The covariant derivative compatible with
the induced metric will be denoted ∇a .

Frank’s energy describes the ordering of a unit director field
η. This energy includes the effect of splay, twist, and bend the

field along the surface. In the limit of one coupling constant
the Frank energy can be written as [23]

F = κA

2

∫
M

dA(∇aη
b)2. (2)

The integral involves the infinitesimal area element on the
patch M given by dA = √

g d2ξ , and the coupling with the
extrinsic curvature has been neglected; nevertheless, by using
theoretical and numerical simulations methods, some recent
works have taken into account extrinsic effects [11,12,24].

A convenient alternative route to describe this field theory
is in terms of the spin connection � = ea�a , a vector valued
function defined in the tangent space of the surface [25], whose
fundamental property is its relationship with the Gaussian
curvature

∇ × � = RGn. (3)

We define an orthonormal basis εα , α = {1,2}, such that the
field η can be written in terms of the angle 	 with ε1:

η = ηαεα

= cos 	ε1 + sin 	ε2. (4)

The spin connection is defined by ε1 · ∇aε2 = �a , and with
that we have an alternative way of writing the nematic energy
Eq. (2) as [25]

F = κA

2

∫
M

dAgab(∂a	 − �a)(∂b	 − �b). (5)

Euler-Lagrange equation of the field ∇a(∇a	 − �a) = 0
implies that a scalar field χ exists such that −εab∇bχ =
∇a	 − �a , where εab = εab/

√
g. The presence of topological

defects screening by the Gaussian curvature of the membrane
is the source of this field:

−∇2χ = ρD(ξ ) − RG, (6)

where ρD(ξ ) = ∑
i qiδ(ξ − ξi) is the charge density. A formal

solution of Eq. (6) can be written as

χ =
∑

i

qiG(ξ,ξ i) − U , (7)

where G(ξ,ζ ) denotes the Green function associated with the
Laplace-Beltrami operator on the surface such that

−∇2G(ξ,ζ ) = δ(ξ − ζ )√
g

(8)

and

U (ξ ) =
∫
M

dAζ G(ξ,ζ )RG(ζ ) (9)

defines the geometric potential. The energy can thus be written
as

F =
∫
M

dA(∇aχ )2

=
∫
M

dA∇a(χ∇aχ ) +
∫
M

dAχ (−∇2)χ. (10)
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The first integral in Eq. (10) is a boundary term and the second
one is the bulk term that can be developed as∫

M
dAχ (−∇2)χ =

∫
M

dAχ (ξ ) [qiδ(ξ − ξ i) − RG]

= qiqjG(ξ i,ξ j ) + qi U (ξ i)

+
∫
M

dAU (ξ )RG(ξ ). (11)

From this we see that defects interact with each other through
the Green function, we also see that the geometric potential
plays the role of an external electric field. The last term is the
interaction energy between the Gaussian curvature mediated
by the Green function.

In the next section, the shape equation and boundary
conditions of the functional energy

H = σ

∫
M

dA + κA

∫
M

dAχ (−∇2)χ + σb

∮
C
ds (12)

will be obtained; σ is the surface tension of the membrane
patch M, and σb is the linear tension of its boundary C.

III. SHAPE EQUATIONS AND NOETHER CHARGES

To find the shape equation, we obtain the response of the
energy Eq. (12), to small deformations of the embedding
functions, X → X + δX. We project the deformation into its
tangential and normal to the surface:

δX = δ‖X + δ⊥X

= �aea + � n. (13)

As a first step, we get from Eq. (6): −δ∇2χ = δρD − δRG.
Now, when the area of the surface is modified, the total

defects can also be modified. Nevertheless, if the total area
remains fixed, local deformations of the surface implies defor-
mations of the charge density without further changes in the
total defects. Thus, since the total charge Q = ∫

M dAρD is
preserved, we have that δQ = ∫

M(δdA)ρD + ∫
M dA δρD =

0, in such a way that locally,

δρD = −ρD(∇a�
a + K�), (14)

where we used the area deformation, δdA = dA(∇a

�a + K�).
Let us first get the normal variation of the nematic

energy. This deformation can be obtained by using the
commutator [δ⊥,∇2]χ = J⊥ where J⊥ = −2Kab�∇a∇bχ +
∇b[(Kgab − 2Kab)�]∇aχ , see Ref. [26], so that we can
write −∇2δ⊥χ = δ⊥ρD − δ⊥RG + J⊥ and deformation of the
energy gets

δ⊥F = −
∫
M

dAK (ρD + RG) χ �

+
∫
M

dA [J⊥ − 2δ⊥RG]χ, (15)

where we used the normal deformation of the charge density,
according to Eq. (14): δ⊥ρD = −�KρD . Deformation of the
Gaussian curvature has also been calculated as [26]

δ⊥RG = −RGK� + (Kab − gabK)∇a∇b�. (16)

After some algebra and several integrations by parts, we have

δ⊥F =
∫
M

dA E⊥ � +
∫
M

dA∇aQ
a
⊥, (17)

where the Euler-Lagrange derivative of the nematic energy and
the Noether charge Qa

⊥ are given by

E⊥ = 2(Kgab − Kab)∇a∇bχ + (2Kab − Kgab)∇aχ∇bχ,

Qa
⊥ = −2(Kab − Kgab)χ∇b� + [(Kgab − 2Kab)χ∇bχ

+ 2(Kab − gabK)∇bχ ]�. (18)

This expression for the Noether charge has not been completed;
tangential deformation is needed, and as we shall see, it is not
just a boundary term.

Let us now get the tangential deformation. For the scalar
curvature we have (see Appendix)

δ‖R = �a∇aR. (19)

Notice that the tangential deformation δ‖F is not only a
boundary term, this happens because the nematic energy is
not reparameterization invariant. The presence of the director
field breaks out this property of the bending energy. To prove
this, we see that the commutator with the Laplacian is given
by [δ‖,∇2]χ = J‖, where now

J‖ = (−∇2�a + RG�a)∇aχ − 2(∇a�b)∇a∇bχ. (20)

By using this commutator we have that −∇2δ‖χ = J‖ +
δ‖ρD − δ‖RG, and thus the tangential deformation does de-
pend on the Green function. By using that δ‖ρD = −ρD∇a�

a

and proceeding as in the case of the normal deformation, we
have

δ‖F =
∫
M

dA (Ea�
a + ∇aQ

a
‖), (21)

where we have identified

Ea = 2(ρD + RGχ )∇aχ,

Qa
‖ = �b

[∇a(χ∇bχ ) − 2χ∇a∇bχ − δa
b (ρD + RG)χ

]
−χ∇bχ∇a�b. (22)

To obtain the Euler-Lagrange equation of the energy Eq. (12),
we write its bulk deformation

δH =
∫
M

dAE · δX +
∫
M

dA∇aQ
a, (23)

where the Euler-Lagrange derivative

E = (κAE⊥ + σK)n + Eaea, (24)

and the Noether charges in Qa = κAQa
⊥ + (κAQa

‖ + σ�a) are
given by Eqs. (18) and (22). In equilibrium we haveE = 0, and
therefore its components must vanish: E⊥ + σK = 0 = Ea .

An interesting fact occurs if there are no defects on the
membrane; in such a case we have that χ = −U and Ea = 0
implies that ∇aU = 0, so that the Euler-Lagrange equation
simplifies to

K(σ + 2κARG) = 0, (25)

and therefore, minimal surfaces or hyperboliclike surfaces are
solutions to the Euler-Lagrange equation [13,27,28]. Notice
that this result has been obtained by deforming the energy
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functional H, Eq. (12), which contains the function χ . If
instead of doing that one deforms Eq. (5), which involves �a ,
we get an apparently different result [29]. We will tackle this
interesting point in a future work.

As we will see below, from the Noether charge Qa we
can find both the stress tensor and the torque; these can be
found when writing explicitly a translation and rotation of
the embedding function. Before that, let us find the boundary
conditions that appear naturally in the variational principle.

IV. BOUNDARY CONDITIONS

According to the previous section, in equilibrium shapes,
deformation of energy Eq. (12), including the boundary terms,
is given by

δH = κA

∮
C
ds laQ

a + σ

∮
C
ds la�

a + σb δ

∮
C
ds, (26)

and thereby the boundary conditions will be obtained by doing
δH = 0.

The calculation involves the Darboux basis adapted to the
boundary C parametrized by arc length s [30]. Deformation of
the boundary can be projected as

δX = �aea + �n

= φT + ψ l + �n, (27)

where we have defined the scalar functions �aTa = φ and
�ala = ψ . Therefore, deformation of the unit tangent can be
written as

δT = φ̇T + ψ̇ l + �̇n + φṪ + ψ l̇ + �ṅ

= (φ̇ − κgψ − κn�)T + (ψ̇ + κgφ + τg�)l

+ (�̇ + κnφ − τgψ)n, (28)

where κg is the geodesic curvature, κn the normal curvature,
and τg the geodesic torsion of the boundary, see Appendix E.
The point means derivative with respect to arc length. Then we
obtain [31]

δ

∮
C

ds =
∮
C

ds T · δT

=
∮
C
ds (φ̇ − κgψ − κn�)

= �φ −
∮
C
ds (κgψ + κn�), (29)

where �φ = 0 for a closed curve. Thus, δL does not include
deformation along the unit tangential vector. According to
Eqs. (18) and (22) we have laQ

a = la(Qa
⊥ + Qa

‖). If we write

Qa
⊥ = Mab∇b� + Ma�,

Qa
‖ = Na

b�
b + Nb∇a�b, (30)

where

Mab = 2(Kgab − Kab)χ,

Ma = [(Kgab − Kab)(χ − 2) − Kabχ ]∇bχ,

Nab = ∇aχ∇bχ − χ∇a∇bχ − gab(ρD + RG)χ,

Na = −χ∇aχ, (31)

we have the boundary conditions, see Appendix E:

−κA

d

ds
(laM

abTb) + κAlaM
a − σbκn = 0,

κA(laN
ablb + Nb∇l lb) + σ − σbκg = 0,

laM
ablb = 0, Nblb = 0, NbTb = 0, (32)

where we have used that on the boundary ∇a� = la∇l� +
Ta�̇ and ∇b�

a = Tb�̇
a + lb∇l�

a, and the fact that on the
boundary the independent deformations are given by the scalar
functions ψ,φ,�.

V. STRESS AND TORQUE

How the stress is distributed along a membrane is the
information that is encoded in the stress tensor [7,32]. To find
it, we write the deformation of the energy as

δH =
∫
M

dAE · δX +
∫
M

dA∇aQ
a, (33)

where the Euler-Lagrange derivativeE = (E⊥ + σK)n + Eaea

and the Noether chargesQa = Qa
⊥ + Qa

‖ are given by Eqs. (18)
and (22). In equilibrium we have that E = 0, which implies
E⊥ = 0 = Ea .

If the energy is invariant under reparametrizations, then its
tangential deformation is a boundary term and Ea vanish iden-
tically; however, if the energy does not have this invariance, as
in the case of the nematic energy, these terms are not trivial as
we see in Eq. (21).

However, invariance of energy under translations implies
that δH = 0, so that locally we have

E = ∇afa, (34)

where fa is the stress tensor. In equilibrium, the conservation
law of the stress ∇afa = 0 is fulfilled and thus F = ∮

C ds fala ,
is a conserved vector field along the surface; it is identified as
the force acting on the curveC parametrized by arc length s with
normal la . The tangential derivatives Eb will be relevant when
coupled with crystalline order through the strain deformation
[15,33].

In the case of a membrane that encloses a certain volume
V , we must add the term PV to the energy, where P is the
pressure difference between the interior and the exterior. In
that case the stress tensor is not conserved but ∇afa = P n, in
such a way that ∮

C
ds fala =

∫
M

dAP n. (35)

A. Stress

Under an infinitesimal translation δX = a, we have that
� = a · n and �a = a · ea; we also see that ∇b� = a · Kb

cec.
Substituting in Eqs. (18) and (22), we find the stress tensor as

fa = (f ab
⊥ + f ab

‖ )eb + (f a
⊥ + f a

‖ )n, (36)

where the coefficients are given by

f ab
⊥ = −gab(σ + 2 χ RG),

f ab
‖ = χ∇a∇bχ − ∇aχ∇bχ + gab(ρD + RG)χ,
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FIG. 1. A +1 defect on the top of a mountain. At any point of
the curve C, the force per unit length along l is given by −(σ +
κAχRG). In addition, there is the anisotropic force κAlalb(χ∇a∇bχ −
∇aχ∇bχ ) along l. Darboux frame adapted to the curve is shown: T
the unit tangent, the unit normal to the surface n, and l = T × n.

f b
⊥ = −(Kgab − 2Kab)χ∇aχ − 2(Kab − gabK)∇aχ,

f b
‖ = −Kabχ∇aχ. (37)

We have verified that the relationship Eq. (34) with the Euler-
Lagrange derivatives is fulfilled, this guarantees that both the
expression for the stress tensor and the shape equation are
self-consistent.

Let x(s) = X[ξa(s)] be a curve C parametrized by arc length
on the surface, see Fig. 1; as before, we identify the Darboux
basis adapted to it: T = T aea , its tangent vector, and l = laea ,
the outward pointing unit vector, such that l = T × n. The
force per unit of length can be written as

fala = FT T + Fl l + Fnn, (38)

where FT = laTbf
ab, Fl = lalbf

ab, and Fn = laf
a . We get

Fl = −f + lalb(χ∇a∇bχ − ∇aχ∇bχ ),

FT = laTb(χ∇a∇bχ − ∇aχ∇bχ ),

Fn = lb(Kab − gabK)(χ − 2)∇aχ. (39)

Note that Fl includes f = σ − (ρD − RG)χ . This force can
be written explicitly:

−f = −σ +
∑
i 	=j

qiqj δ(x − xi)G(x,xj ) −
∑

i

qiG(x,xi)RG

−
∑

i

qiδ(x − xi)U + URG. (40)

The second term is the force on the charge qi due to qj ; it is
given by qiqjG(xi ,xj ), and this force is repulsive (attractive)
between defects with like (unlike) charge. Similarly, the third
term is the force on the point x (of Gaussian curvature RG),
caused by the presence of qi at the point xi : defects are attracted
to points with the same sign of Gaussian curvature. These
interactions are mediated by the Green function. The fourth
term is a self-force at the point xi with the Gaussian curvature
at the same point.

The total force along l includes the anisotropic stress
κAlalb(χ∇a∇bχ − ∇aχ∇bχ ), along l and T. Finally, there is
also a force Fn along the unit normal to the surface as given in
Eq. (39). None of these forces has been reported so far.

B. Torque

Taking now an infinitesimal rotation δX = b × X, we have
that � = b · X × n and �a = b · X × ea . Therefore, we can
write

∇b� = b · (eb × n + Kab X × ea)

= b · (εabea + KabX × ea). (41)

Similarly, we have

∇b�a = b · (εban − Kab X × n), (42)

where now εab = √
gεab. Deformation of the energy under a

rotation is then given by [7]

δH =
∫
M

dAE · (b × X) +
∫
M

dA∇ama, (43)

where

mb = X × fb + sb, (44)

fb being the stress tensor Eq. (36), and

sb = 2
(
Ka

b − δb
aK

)
χ εacec + εabχ∇aχ n. (45)

In equilibrium we have E = 0 so that ma is conserved as a
consequence of invariance under rotations. The first term in
Eq. (44) is the orbital torque, while sb can be seen as an intrinsic
torque. If we use the fact that εacec = laT − T al, then we
obtain the intrinsic torque in the Darboux basis along a curve
on the membrane.

VI. AXIAL NEMATIC MEMBRANES

Let us see the case of axial surfaces parametrized as

X(l,φ) = (ρ(l) cos φ,ρ(l) sin φ,h(l))

= ρρ + hk (46)

where ρ = (cos φ, sin φ,0) is a unit radial vector field, and
k = (0,0,1). The tangent vectors to the surface can be found
to be

el = (ρ ′ cos φ,ρ ′ sin φ,h′)

= ρ ′ρ + h′k,

eφ = (−ρ sin φ,ρ cos φ,0)

= ρ φ, (47)

where φ = (− sin φ, cos φ,0) is the unit azimuthal vector and
′ denotes derivative with respect to l. The induced metric on
the surface can be written as

gabdξadξb = dl2 + ρ2dφ2, (48)

where we have taken the parameter l along the meridians to be
the arc length such that h′2 + ρ ′2 = 1. The unit normal to the
surface n = φ × el , is given by

n = (h′ cos φ,h′ sin φ, − ρ ′)

= h′ρ − ρ ′ k. (49)

The second fundamental form can be written as

Kabdξadξb = −ρ ′′

h′ dl2 + ρh′dφ2, (50)
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whereas the mean curvature K = h′/ρ − ρ ′′/h′, and the Gaus-
sian curvature RG = −ρ ′′/ρ. Let ε1 = φ and ε2 = ρ ′ρ + h′k
be the unit basis so that the components of the spin connection
are given by �l = 0 and �φ = ρ ′. Along a horizontal curve
we have ll = l · el = 1 and Tl = 0, so that in these coordinates
the coefficients Eq. (38) of the force llf l per unit length on a
horizontal loop can also be written as

llf l = (Flρ
′ + Fnh

′)ρ + (Flh
′ − Fnρ

′)k, (51)

where we have

Fl = −σ +
(

ρD + ρ ′′

ρ

)
χ + [χχ ′′ − (χ ′)2],

Fn =
(

−h′

ρ

)
(χ − 2)χ ′, FT = 0. (52)

We note that although ρ = ρ(l) by the axial symmetry, in a
general setting, the presence of the nematic texture implies
that the coefficients depend on both variables (l,φ) on the
surface, through the function χ . This force has radial and
vertical components. The total vertical force on the loop is
then

F(l) = k
∫ 2π

0
d φ ρ(Flh

′ − Fnρ
′)

= k[h′〈Fl〉 − ρ ′〈Fn〉], (53)

where we have denoted 〈F 〉 = ∫ 2π

0 dφρF . If the membrane
is a closed surface we must take into account the pressure
difference P between the inside and outside to the nematic
membrane. Equation (35) is then

2ρ(h′Fl − ρ ′Fn) = −Pρ2, (54)

where we have taken ρ(0) = 0. This equation must be satisfied
for each value of l in the domain considered; it is the
corresponding Young-Laplace law.

A. Spherical particles

Without nematic texture in the membrane such that Fl =
−σ and Fn = 0, Eq. (54) reduces to 2ρh′σ = Pρ2. By using
that h′ =

√
1 − ρ ′2 and taking the simplest case such that P is

a constant, we obtain

ρ(l) = 2σ

P
sin

(
P l

2σ

)
, (55)

which is the representation of a sphere with radius R = 2σ/P ;
this is the corresponding Young-Laplace equation, which
relates the surface tension σ , the pressure P , and the radius of
the sphere R. Let us find the corresponding law in the presence
of the nematic texture. From Eq. (54), we see that it is necessary
to calculate the function χ that involves the Green function on
the sphere. To this, write the metric in isothermal coordinates

ds2 = ω(dr2 + r2dφ2), (56)

where r > 0, φ ∈ [0,2π ], and ω is the conformal factor [34].
Comparison with the induced metric in axial coordinates
Eq. (48) gives

dl2 = ωdr2, ωr2 = ρ2. (57)

That is, log r = ∫
dl/ρ + C. Let ξ = (l,φ) and ζ = (�,ϕ) and

write the Green function that satisfies the equation

−
[ 1

ρ
∂l(ρ ∂l) + 1

ρ2
∂2
φ

]
G(ξ,ζ ) = 1

ρ
δ(l − �)δ(φ − ϕ), (58)

replacing with isothermal coordinates u = (r,φ), gets into

−∇2G = − 1

ω
∇2

uG(u,u′) = 1

ωr
δ(r − r ′)δ(φ − φ′). (59)

The last equality in Eq. (59) implies the Green function in
isothermal coordinates,

G(u,u′) = − 1

4π
log[r(l)2 + r(�)2 − 2r(l)r(�) cos(φ − ϕ)].

(60)

If the surface is closed, the singularities that appear into the
Green function can be eliminated if we subtract both Ḡ(ξ ) =
(1/A)

∫
dAζ G(ξ,ζ ) and Ḡ(ζ ). Let us look explicitly at the

example of the sphere; parametrize it as

ρ(l) = R sin(l/R), h(l) = −R cos(l/R), (61)

where l ∈ [0,πR]. If we choose r(πR/2) = R, then we have

r(l) = R tan

(
l

2R

)
, (62)

and we can obtain

Ḡ(ξ ) = 1

A

∫ πR

0
d� ρ(�)

∫ 2π

0
dφ G(ξ,ζ )

= − 1

8πR2

∫ πR

0
d� ρ(�) log r2

>

= 1

4π
log cos2

(
l

2R

)
, (63)

where r> refers to the larger value between r(l) and r(�). The
Green function can then be written as

G(ξ,ζ ) = − 1

4π
log

[
sin2(l/2R) cos2(�/2R)

+ sin2(�/2R) cos2(l/2R)

− 1

2
sin(l/R) sin(�/R) cos(φ − ϕ)

]
. (64)

Therefore, as shown in Appendix F, the geometric potential is
simply given by U = 1. Thus, with a charge +1 at each pole,
the function χ can be written as

χ (l) = − 1

4π
log

[
sin2

(
l

2R

)
cos2

(
l

2R

)]
− 1. (65)

Notice that as a consequence of topological defects at the poles,
singularities in Eq. (65) appear, see Fig. 2.

Now, since Eq. (54) is fulfilled for l ∈ (0 + ε,πR − ε),
where ε is related with the core of defects, it can be
rewritten as

P = 2σ

R

(
1 − α

R2

κA

2σ

)
, (66)

where α is a fixed number ∈ (0,1), which is obtained from

α = χ̇(χ − 2) − χ + (χχ̈ − χ̇2), (67)
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FIG. 2. The function χ in Eq. (65) with +1 defect at each pole
where singularities appear.

where the dot means derivative with respect to x = l/R. We
see that the surface tension has been modified by the presence
of the nematic texture with +1 defects at the poles, see Fig. 3.
As mentioned in the Introduction, for spherical membranes
with R ∼ 1 μm, coated with some liquid crystals, the nematic
correction is about 50%.

In the case of a spherical capM, Gauss-Bonnet implies that∫
M

dARG +
∮
C
κgds = 2πQ, (68)

where κg is the Gaussian curvature of the boundary curve
C parametrized by arc length s. The sum of these integrals
is equivalent to the charge Q of defects into the surface.
Integration of the Gaussian curvature gives∫

M
dARG = 2π

R2

∫ l0

0
dlR sin(l/R)

= 4π sin2(l0/2R). (69)

If the boundary is the parallel l = l0, then we find∮
C
κgds = 2π cos(l0/R), (70)

and therefore, the total charge on the spherical cap is given by

Q = 4 sin2(l0/2R) − 1. (71)

For a half sphere l0 = πR/2, we have Q = 1, in such a case,
the boundary is a geodesic curve with κg = 0; a cap with l0 =
πR/3 as boundary point has a nematic texture with Q = 0.
If l0 = 2πR/3, then we have Q = 2. Notice that Q = 1/2 if
l0 = 2R arcsin(

√
3/2/2) ∼ 5πR/12 and there is not l0 such

FIG. 3. A spherical particle with radious R and +1 defects on
opposite sides; with this nematic texture, the relationship between the
parameters is given by the Young-Laplace law, Eq. (66).

FIG. 4. Nematic texture on spherical sheets with boundary at
l0 = 2R arcsin(

√
3/2/2) and l0 = πR/2 respectively. Gauss-Bonnet

theorem implies defects with q = +1/2 and q = +1 on them.

that Q = −1. Two of these caps with their nematic texture are
shown in Fig. 4. For each of these spherical shells the Green
function is given by Eq. (60), while r(l) is given by Eq. (62),
but now we must impose boundary conditions on the Green
function at l = l0. Under Dirichlet boundary conditions it reads

G(ξ,ζ ) = − 1

4π
log

⎡
⎣ r2(l) + r(�)2 − 2r(l)r(�) cos(φ − ϕ)

r(l)2r(�)2

r2
0

+ r2
0 − 2r0r(�) cos(φ − ϕ)

⎤
⎦,

(72)

where r0 = r(l0). After making some integrations we can find
the geometric potential U as

U = − log

[
cos2(l/2R) sin2(l/2R)

sin2(l0/2R)

]

+ cos(l/R) log

[
tan2(l/2R)

tan2(l0/2R)

]
. (73)

For a half spherical cap, r0 = R and sin(l0/2R) = 1/
√

2, and
thus we get

U = − log[2 cos2(l/2R) sin2(l/2R)]

+ cos(l/R) log[tan2(l/2R)]. (74)

If the boundary is at the point l0 = 2R arcsin(
√

3/2/2), we
obtain the geometric potential as

U = − log
[

8
3 cos2(l/2R) sin2(l/2R)

]
+ cos(l/R) log

[
5
3 tan2(l/2R)

]
. (75)

Figure 5 shows these geometric potentials: To minimize the
energy, defects must be at l = 0; nevertheless, as we shall see,
it is an unstable equilibrium point. For a half sphere such that
l0 = πR/2 and � = 0 (defect at the pole ζ = ζN ), we have

G(ξ,ζN ) = − 1

4π
log[tan2(l/2R)]. (76)

If the boundary is at l0/R = 2 arcsin(
√

3/2/2) and the defect
at the north pole, we obtain the Green function as

G(ξ,ξ0) = − 1

4π
log

[
5

3
tan2(l/2R)

]
. (77)

Since the membrane is not closed, then F in Eq. (51) is a
conserved quantity; in particular, we evaluate it at the equator
of the half sphere. In this case, Fl can be written as

Fl = −σ − 1

R2
(χ − χχ̈ + χ̇2), (78)
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FIG. 5. The geometric potencial U for the spherical caps in Fig. 4. The point l = 0 being the north pole, where the defect is placed. The
force RGU before than the root x0 = l0/R is attractive to the defect point and repulsive after this point.

where the dot means derivative with respect to x = l/R. The
force on a horizontal loop is thereby given by

F = 〈Fl〉k = −2πRσ

(
1 + κA

σR2

C

2

)
k, (79)

where C ∼ 0.72 for half sphere with q = 1 at the north pole,
and C ∼ 0.49 for spherical cap with defect q = +1/2 at the
pole. This force acts to elongate the shape of the membrane
towards cylindrical forms [35–37].

VII. SUMMARY

In this work we have introduced a framework to calculate
both the stress tensor and the torque induced by nematic
ordering on curved membranes. Using the variational prin-
ciple and differential geometry of surfaces, we obtain the
Euler-Lagrange equations and boundary conditions. Taking
advantage of invariance under translations and rotations, we
find the corresponding Noether charges; from these we obtain
the stress tensor and the torque, respectively. We find repulsive
(attractive) forces between defects with like (unlike) charge;
defects are attracted to points with the same sign of Gaussian
curvature. These forces are mediated by the Green function
of the Laplace-Beltrami operator of the surface. Furthermore,
we find anisotropic forces that involve derivatives of both the
Green function and the Gaussian curvature. Extrinsic geometry
only plays a role in the forces along the normal direction to the
surface. We present these results in a coordinate independent
way. We next applied this framework to the case of membranes
with axial symmetry to analyze the spherical case. For a
spherical vesicle with defects at the poles we find the modified
Young-Laplace law. We find that for certain liquid crystals, the
nematic corrections to the Young-Laplace law will be at least
50%, if the radius of the vesicle R ∼ 1–10 μm, a reasonable
size in micropipette experiments [38]. For spherical layers with
a defect at the north pole we find that the force at any point is
repulsive with respect to the pole, which implies that it is an
unstable equilibrium point.

It is possible that this nematic force be relevant in the
description of nanoparticles embedded onto spherical nematic
vesicles [39]. As we will show in a future report, it is possible
to extend this theoretical framework to take into account the
effect of extrinsic couplings, a fact that may be relevant for

both the texture of the nematic and the membrane shape itself
[40].
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APPENDIX A: TANGENTIAL DEFORMATION OF SCALAR
CURVATURE

We need the deformation of the scalar curvature,

δR = gabδRab + δgabRab. (A1)

The first term in Eq. (A1) can be calculated in terms of
deformations of the Christoffel symbols

gabδRab = gab∇c

(
δ�c

ab

) − gab∇b

(
δ�c

ca

)
, (A2)

where we can write

δ�c
ab = 1

2gcd (∇bδgad + ∇aδgbd − ∇dδgab). (A3)

Using the fact that the induced metric transforms as δ‖gab =
∇a�b + ∇b�a, so that the tangential deformation of the
Christoffel symbols are given by

gabδ‖�c
ab = 1

2gcd (2∇2�d + [∇a,∇d ]�a + [∇b,∇d ]�b)

= ∇2�c + Ra
c�a (A4)

gabδ‖�c
ca = 1

2gcdgab([∇c,∇d ]�a + [∇a,∇d ]�c

+ [∇a,∇c]�d + 2∇c∇a�d )

= gcdgab∇c∇a�d − Rc
b�c, (A5)

where the commutator [∇a,∇b]�c = Rc
dab�

d has been used.
By taking the corresponding gradients, and using the fact that
∇b∇c∇b�c = ∇c∇2�c, we can write Eq. (A2) as

gabδ‖Rab = 2∇a

(
Ra

c�
c
)
. (A6)

Adding this result into Eq. (A1) we obtain Eq. (19).

APPENDIX B: THE COMMUTATOR [δ‖,∇a] f

Deformation of a second derivative can be written as

[δ‖,∇a∇b]f = −(∇cf )δ‖�c
ab, (B1)
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so that

[δ‖,∇2]f = −gab(∇cf )δ‖�c
ab + (δ‖gab)∇a∇bf, (B2)

by using gabδ‖�a
bc from Appendix A, we find Eq. (20).

APPENDIX C: MONGE GAUGE

In the representation a la Monge, where the embedding
function is X(x,y) = (x,y,f (x,y)), the induced metric can be
written as gab = δab + ∇af ∇bf and its inverse

gab = δab − ∇af ∇bf

1 + (∇f )2
. (C1)

The normal vector to the surface is given by n = (−∇af,1)√
1+(∇f )2

.

The extrinsic curvature is then

Kab = − ∇2
abf√

1 + (∇f )2
, (C2)

and the mean curvature is

K = − ∇2f√
1 + (∇f )2

+ ∇af ∇bf ∇2
abf

(1 + (∇f )2)3/2
. (C3)

To lower order and without defects we can write the shape
equation as(

∂2
y f

)
∂2
xU + (

∂2
x f

)
∂2
yU − 2

(
∂2
xyf

)
∂2
xyU

+ 1

2

[
∂2
x f − ∂2

y f
]
[(∂yU )2 − (∂xU )2]

− 2
(
∂2
xyf

)
(∂xU )(∂yU ) = 0. (C4)

When the corresponding term of the bending energy is added,
the von Kármán equation is obtained.

APPENDIX D: DEFORMATION OF THE NEMATIC
ENERGY

Write the nematic energy of the membrane χ as

F = −
∫
M

dAχ ∇2χ, (D1)

where the field χ satisfies the equation

−∇2χ = ρD − RG, (D2)

and ρD is the charge density. Deformation of Eq. (D1) can be
written as

δF = −
∫
M

[(δdA)χ∇2χ −dA(δχ )∇2χ︸ ︷︷ ︸
II

−dAχ (δ∇2χ )︸ ︷︷ ︸
III

].

(D3)

In the second term, deformation of the field δχ can be
calculated as

δχ =
∫
M′

dA′G(ξ,ξ ′)(J ′ + δρ ′
D − δR′

G), (D4)

which is because −δ∇2χ = δρD − δRG, so that if the com-
mutator [δ,∇2]f = J , we have −∇2δχ = J + δρD − δRG,

and thus Eq. (D4) follows. The integrals in Eq. (D3) can then
be written as

II =
∫
M

dAχ (J + δρD − δRG),

I II =
∫
M

dAχ (δρD − δRG). (D5)

We have then II + III = ∫
M dAχ (J + 2δρD − 2δRG), and

therefore we can write

δF = −
∫
M

(δdA)χ∇2χ +
∫
M

dAχ (J + 2δρD − 2δRG).

(D6)

Once again, let us calculate separately. For the normal defor-
mation, the first integral in Eq. (D6) becomes

−
∫
M

(δ⊥dA)χ∇2χ = −
∫
M

dA[Kχ∇2χ ] �.

In the second integral, we substitute J⊥ and several integrations
by parts to obtain∫
M

dAJ⊥χ = −
∫
M

dAχ{[2Kab∇a∇bχ + (∇aK)(∇aχ )]�

+ (2Kab − Kgab)∇aχ∇b�]},
which can be written as

= −
∫
M

dAχ [2Kab∇a∇bχ + (∇aK)(∇aχ )]�

+
∫
M

dA∇b[(2Kab − Kgab)χ∇aχ ]�

−
∫
M

dA∇b[(2Kab − Kgab)χ (∇aχ )�)]. (D7)

We also have that

2
∫
M

dA χ δ⊥ρD = −2
∫
M

dAχρDK�. (D8)

The last integral in Eq. (D6) can be calculated as

−2
∫

dAM χ δ⊥RG

= 2
∫
M

dAχ RGK� − 2
∫
M

dAχ (Kab−gabK)∇a∇b�,

and after some integrations by parts we get

= 2
∫
M

dA[RGKχ − (Kab − gabK)∇a∇bχ ]�

−
∫
M

dA 2 ∇a[(Kab − gabK)(χ∇b� − �∇bχ )]. (D9)

The normal deformation is therefore

δ⊥F =
∫
M

dA E⊥� +
∫
M

dA∇aQ
a
⊥, (D10)
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where the normal Euler-Lagrange derivative and the Noether
charge are given, respectively, by

E⊥ = −Kχ∇2χ − χ [2Kab∇a∇bχ + (∇aK)(∇aχ )]

+∇b[(2Kab − Kgab)χ∇aχ ] − 2χρDK

+ 2[RGKχ − (Kab − gabK)∇a∇bχ ]

= 2(Kgab − Kab)∇a∇bχ + (2Kab − Kgab)∇aχ∇bχ,

Qa
⊥ = −(2Kab − Kgab)χ (∇aχ )�

− 2(Kab − gabK)(χ∇b� − �∇bχ ). (D11)

The tangential deformation can be calculated in a similar way.
By using the tangential deformation of the area we have

−
∫
M

(δ‖dA)χ∇2χ = −
∫
M

dAχ ∇2χ (∇a�
a)

= −
∫
M

dA∇a(χ∇2χ�a)

+
∫
M

dA∇a(χ∇2χ )�a. (D12)

We also obtain that the integral∫
M

dAJ‖χ =
∫
M

dAχ [(−∇2�a + RG�a)∇aχ

− 2(∇a�b)∇a∇bχ ]

can be rewritten after integrations by parts

= −
∫

dAM∇a[∇a�
bχ∇bχ ] +

∫
M

dA∇a[�b∇a(χ∇bχ )]

−
∫
M

dA�a∇2(χ∇aχ ) +
∫
M

dA�aRGχ∇aχ

− 2
∫
M

dA∇a(�bχ∇a∇bχ )+2
∫
M

dA�b∇a(χ∇a∇bχ ).

(D13)

The next integration can be written as

2
∫
M

dA χ δ‖ρD = −2
∫
M

dAχ ρD∇a�
a

= −2
∫
M

dA∇a(χρD�a) + 2
∫
M

dA∇a(χρD)�a,

(D14)

and finally we get

−2
∫
M

dAχ δ‖RG = −2
∫
M

dAχ �a∇aRG. (D15)

So that we obtain the tangential derivative and the Noether
charge as

Ea = ∇a(χ∇2χ ) − ∇2(χ∇aχ ) + RGχ∇aχ

+ 2∇b(χ∇b∇aχ ) + 2∇a(χρD) − 2χ ∇aRG

= 2(ρD + RGχ )∇aχ,

Qa
‖ = −(χ∇2χ �a) − [∇a�b χ∇bχ ] + [�b∇a(χ∇bχ )]

− 2(�bχ∇a∇bχ ) − 2(χ ρD �a).

= �b
[∇a(χ∇bχ ) − 2χ∇a∇bχ − δa

b (ρD + RG)χ
]

−χ∇bχ∇a�b. (D16)

APPENDIX E: DARBOUX FRAME

For the second integral we recall the Darboux basis adapted
to the boundary C parametrized by arc length. Defining T as its
tangent vector, such that T = T aea , we also define l = T × n
as the normal unit to the boundary, tangent to the surface. We
have that

Ṫ = κnn + κgl,

l̇ = −κgT − τgn,

ṅ = −κnT + τgl. (E1)

In these equations, we have defined the normal curvature

κn = Ṫ · n,

= (Ṫ aea − KabT
aT bn) · n,

= −KabT
aT b, (E2)

and its geodesic curvature

κg = Ṫ · l,

= κa
g ea · l,

= (
Ṫ a + �a

bcT
bT c

)
la. (E3)

The second equation in Eqs. (E1) defines the geodesic torsion

τg = ṅ · l, = KabT
alb. (E4)

Let us calculate the deformations in the Darboux frame.
Deformation of the boundary is given by

δX = φT + ψ l + �n,

= �aea + �n, (E5)

that is �aTa = φ and �ala = ψ . Therefore, deformation of the
unit tangent can be written as

δT = φ̇T + ψ̇ l + �̇n + φṪ + ψ l̇ + �ṅ,

= (φ̇ − κgψ − κn�)T + (ψ̇ + κgφ + τg�)l

+ (�̇ + κnφ − τgψ)n. (E6)

Then we obtain

δ

∮
C

ds =
∮
C

ds T · δT

=
∮
C
ds (φ̇ − κgψ − κn�),

δL = �φ −
∮
C
ds (κgψ + κn�), (E7)

where �φ = 0 for a closed curve. Thus, δL does not include
deformation along the unit tangential vector. Write

Qa
⊥ = Mab∇b� + Ma�,

Qa
‖ = Na

b�
b + Nb∇a�b, (E8)

where

Mab = 2(Kgab − Kab)χ,

Ma = [(Kgab − Kab)(χ − 2) − Kabχ ]∇bχ,

Nab = ∇aχ∇bχ − χ∇a∇bχ − gab(ρD + RG)χ,

Na = −χ∇aχ. (E9)
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The we can obtain

laQ
a = la(Qa

⊥ + Qa
‖)

= la(Mab∇b� + Ma�) + la(Nab�b + Nb∇a�b),

= laM
ablb∇l� + laM

abTb�̇ + laM
a�

+ (laN
abTb + Nb∇lTb) φ + (laN

ablb + Nb∇l lb)ψ

+Nblb∇lψ + NbTb∇lφ, (E10)

where we have used that on the boundary

∇a� = ea · ∇�

= (lal + TaT) · ∇�

= la∇l� + Ta�̇, (E11)

that is ∇l� = la∇a� and �̇ = T a∇a�. We also have that

∇b�
a = Tb�̇

a + lb∇l�
a. (E12)

Note that on the boundary the independent deformations
are given by the scalars functions ψ,φ,�. Then we have
that

δH =
∮

ds[κAlaQ
a + (σ − σbκg)ψ − σbκn�]. (E13)

APPENDIX F: GREEN FUNCTION AND GEOMETRIC
POTENTIAL ON THE SPHERE

To find the Green function on the sphere, we need

I =
∫ πR

0
d�ρ(�) log r>. (F1)

We split the integral as

I = log r(l)
∫ l

0
d�ρ(�) +

∫ πR

l

d� ρ(�) log r(�)

= log[R tan(l/2R)]
∫ l

0
d�R sin(�/R)

+
∫ πR

l

d�R sin(�/R) log[R tan(�/2R)]

= −R2 log[R tan(l/2R)][cos(l/R) − 1]

+R2
∫ π

l/R

dx sin x log(R tan x/2). (F2)

Here the integral can be obtained as
∫ π

l/R

dx sin x log(R tan x/2)

= log R − log[sin(l/2R) cos(l/2R)]

+ cos(l/R) log[R tan(l/2R)]. (F3)

When substituting we obtain Eq. (63). The Green function is
then given by

G(ξ,ζ ) = − 1

4π
log[r(l)2 + r(�)2 − 2r(l)r(�) cos(φ − ϕ)]

− 1

4π
log[cos2(l/2R) cos2(�/2R)], (F4)

which no longer contains singularities. By using the Green
function Eq. (F4), we can evaluate the geometric potential as

U (ξ ) =
∫

dAζ G(ξ,ζ )RG(�). (F5)

The Gaussian curvature of the sphere is given by RG = 1/R2,
such that

U = 1

R2

∫ πR

0
d�ρ(�)

∫ 2π

0
dϕ G(ξ,ζ ). (F6)

As an intermediate step we obtain

U = log cos2(l/2R) − I1, (F7)

where I1 is written as

I1 = 1

4πR2

∫
dAζ log[cos2(l/2R) cos2(�/2R)]. (F8)

We split this integral as

4πR2I1 = 2π log cos2(l/2R)
∫ πR

0
d�ρ(�)

+ 2π

∫ πR

0
d�ρ(�) log cos2(�/2R)

= 4πR2 log cos2(l/2R) − 4πR2, (F9)

in such a way that when substituting into Eq. (F7) we get
U = 1.
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