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Influence of the extrinsic curvature on two-dimensional nematic films
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Nematic films are thin fluid structures, ideally two dimensional, endowed with an in-plane degenerate nematic
order. In this paper we examine a generalization of the classical Plateau problem to an axisymmetric nematic film
bounded by two coaxial parallel rings. At equilibrium, the shape of the nematic film results from the competition
between surface tension, which favors the minimization of the area, and the nematic elasticity, which instead
promotes the alignment of the molecules along a common direction. We find two classes of equilibrium solutions
in which the molecules are uniformly aligned along the meridians or parallels. Depending on two dimensionless
parameters, one related to the geometry of the film and the other to the constitutive moduli, the Gaussian curvature
of the equilibrium shape may be everywhere negative, vanishing, or positive. The stability of these equilibrium
configurations is investigated.
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I. INTRODUCTION

Fluid films, such as soap films or lipid membranes, often
give rise to shapes, as beautiful as they are complex, that have
fascinated scientists of all times and of several areas of science.
Since, as known, the energy of an idealized two-dimensional
fluid film is proportional to the area it occupies, with the surface
tension being the constant of proportionality, the minimizers
of the energy and area functionals are the same. For this
reason the problem of determining minimal surfaces with given
boundaries (raised first by Euler) has relevance not only in
geometry but also in physics and engineering. As a classical
example, a soap film attached to two twin coaxial parallel rings
takes the shape of a catenoid, the only nonplanar minimal
surface of revolution. On the other hand, the study of ultrathin
structures subjected to the simultaneous action of various
forces gives rise to new Plateau-like problems whose solutions,
besides being of interest from the mathematical-physic point
of view, may be used to engineer new devices controlling the
geometric properties of soft shells.

An insightful approach to study the interplay between
orientational order and geometry is given by nematic films.
These are fluid films endowed with an in-plane nematic order
provided by elongated molecules, which may freely glide
and/or rotate while keeping their axes lying on the local tangent
plane. The recent review by Zhang et al. [1] reports how liquid
crystalline vesicles exhibit a large variety of shapes due to
the interplay between in-plane liquid crystalline order and
bending elasticity. Chen and Kamien [2] found axisymmetric
equilibrium shapes of nematic films by minimizing a combi-
nation of surface tension and nematic elastic energies. They
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showed that the nematic order is able to support a rich class
of shapes in addition to the classical constant mean curvature
surfaces. In the same energetic framework, Giomi [3] searched
for axisymmetric interfaces whose boundaries are two given
coaxial rims and argued that only two branches of solution
are allowed: the catenoidal shape when the surface tension
is the dominant effect, and the pseudospherical hyperboloidal
shape when the nematic elasticity plays a predominant role.
In Ref. [3] it has been shown that the competition between
nematic elasticity and surface tension induces a first-order
phase transition between the two branches. More recently,
the same problem has been reexamined in terms of forces by
Barrientos et al. [4].

It ought to be said that in all the studies quoted above only
the contribution due to the intrinsic curvatures of the flux lines
of the director field has been accounted for in the elastic free
energy of the nematics. Such a contribution is related to the
spatial variations of the director field on the curved substrate.
More recently, it has been demonstrated that also the extrinsic
curvature terms, i.e., curvatures related to the geometry of the
substrate itself, are relevant in the energetic balance [5–8].
The potential applications of these new theories in soft matter
and their elegant mathematical formalism have produced a
vivid research activity in the communities of both theoretical
physicists [9–13] and applied mathematicians [14–18].

In this paper, we revise the variational problem studied in
Ref. [3] in the light of the correction to the two-dimensional
nematic free energy proposed in a previous work of ours [6].
This correction includes terms accounting for the extrinsic
curvature of the nematic film, which are instead missing in
Ref. [3]. As a result of the competition between the nematic
elasticity and the surface tension, equilibrium shapes with
positive, vanishing, or negative Gaussian curvature can be
obtained depending on the magnitudes of the constitutive
parameters, the radius of the bounding rings and the distance
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between them. The inclusion of the extrinsic curvature terms
in the energy functional, on the one hand, makes the solutions
obtained by Giomi [3] no longer admissible, on the other hand,
it opens to new scenarios in which the boundary anchoring is
crucial in the determination of the equilibrium shapes.

The paper is organized as follows. In Sec. II we introduce
the model for the energy functional of a two-dimensional (2D)
nematic film, and write down the equilibrium equations and
appropriate sets of boundary conditions. The specialization
of the equilibrium problem to axisymmetric shapes and ho-
mogeneous alignments of the molecules of the nematics is
considered in Sec. III, where, depending on the (uniform)
alignment of the director field, the equilibrium equations are
solved numerically or analytically. In Sec. IV, we study the
local stability of the solutions considering both in-plane strong
anchoring and natural boundary conditions on the nematic
director. Section V contains instead some concluding remarks.
The paper is closed by two Appendices in which we illustrate
the notation adopted throughout the paper, report lengthy
calculations and derive rigorously the equilibrium equations.

II. MODEL

We assume that the nematic film is schematized by a regular
surface S with unit normal field ν. We denote n the nematic
director and assume it to be a smooth unit vector field tangent
to S. The interplay between the geometry of the film and
the director field will be studied by minimizing the following
energy functional

W =
∫

S

(
γ + k

2
|∇sn|2

)
dA, (1)

where γ is the surface tension, k the elastic constant of the
nematics and ∇s indicates the surface gradient. We anticipate
from the beginning that the choice of the differential operator
∇s strongly affects the shape of the equilibrium configuration.
In most of the existing literature on nematic shells or films, the
energy formula is usually expressed in terms of the covariant
derivative (commonly denoted D) instead of the surface gra-
dient. What should be the most appropriate form of the energy
is still on debate. In favor of our constitutive model for the
free energy it must be said that the energy formula (1) can
be derived from the classical three-dimensional Frank’s model
by means of a perturbation analysis. Specifically, regarding
the nematic film as a thin fluid layer whose thickness is much
smaller than the minimum radius of curvature of S, to leading
order the Frank free-energy density approximates to

2wF = k1(divsn)2 + k2(n · curlsn)2 + k3|n × curlsn|2,
(2)

where divs and curls are, respectively, the surface divergence
and surface curl [5]. Next, note that, under the one-constant
approximation (k1 = k2 = k3 = k), (2) reduces to (k/2)|∇sn|2.
To appreciate the differences between our model and that
studied by Giomi [3], observe that the surface gradient and
the covariant derivative of the director field n are related
through the simple relation ∇sn = Dn + ν ⊗ Ln, where L is
the extrinsic curvature tensor of S. Consequently, we have
|∇sn|2 = |Dn|2 + |Ln|2. It is then evident that our free-energy

density exhibits an extra term reflecting the coupling of the
extrinsic curvature of the film with the nematic order.

A. Equilibrium equations

The Euler-Lagrange equations associated with the energy
functional (1) can be readily derived by following consolidated
variational schemes [19]. Specifically, denoting σ , T, and G
the stress, couple-stress, and microtorque tensors, respectively,
and g and the microcouple density acting on the nematic
molecules, the balance equations of forces, and macro- and
microtorques read

divsσ = 0, (3a)

divsT − εσ = 0, (3b)

t · (divsG − g) = 0, (3c)

where t ≡ ν × n represents the conormal vector, and ε is the
Ricci alternator. Specializing the analytical scheme introduced
in Ref. [19] to the energy functional (1) gives

σ =
(

γ + k

2
|∇sn|2

)
P − k[(∇sn)T ∇sn + (ν · �sn)ν ⊗ n],

(4a)

T = k[ν ⊗ (∇sn)T t − t ⊗ Ln], (4b)

G = k∇sn, g = 0, (4c)

where P ≡ I − ν ⊗ ν denotes the projection onto the tangent
plane, ⊗ the tensor product, and �s ≡ divs∇s is the Laplace-
Beltrami differential operator on S.

Observe first that in view of (4) and (3c) the balance equation
of macromoments (3b) is identically satisfied (see Appendix B
for details). Next, inserting (4c) into (3c) yields the equilibrium
equation for the in-plane orientation of n in the simple form

t · �sn = 0. (5)

Adopting the most common terminology in the literature, we
shall refer to (5) as the director equation. We now denote e1 and
e2 the principal directions on S, and parametrize the director
through the convex angle α contained between e1 and n as

n = cos αe1 + sin αe2. (6)

In this way, the director equation (5) can be rewritten as

�sα − divsω+2Hτn = 0, (7)

where ω is the vector parametrizing the spin connection on S,
H is the mean curvature, and τn is the geodesic torsion [20] of
the flux lines of the director field.

By substituting (4a) into (3a) and projecting along ν, we
arrive at the so-called shape equation

2H

(
γ + k

2
|∇sn|2

)

− k{(∇sn)T (∇sn) · L + divs[(ν · �sn)n]} = 0. (8)

On the other hand, the projection of (4a) onto the tangent plane
yields (see Appendix B)

(�sα − divsω + 2Hτn)(∇sα − ω) = 0, (9)

which, as an immediate consequence of the director equation
(7), is identically satisfied.
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FIG. 1. Schematic representation of an axisymmetric 2D nematic
film. At any point P we define both the Darboux frame {n,t,ν} and
the orthonormal basis {ep,em,ν}, with ep and em being the principal
directions.

B. Boundary conditions

For 2D nematic films with boundary, the shape and director
equations must be supplemented by appropriate boundary
conditions. Here, we shall assume that the nematic film is
simply supported, that is the boundary is fixed, while the
surface can freely rotate about the tangent to the boundary.
This obviously entails that the component of the macrotorque
along the unit tangent vector field l must vanish, viz, orienting
l such that ν × l coincides with the in-plane outward normal k
to ∂S,

l · Tk = 0 on ∂S. (10)

As the boundary conditions on the director are concerned,
we will take into consideration the following two cases:

(i) natural boundary conditions, which are valid whenever
the molecules of the nematics may freely rotate about the
normal ν at the boundary, and impose the following restriction
on the microtorque G [21]:

t · Gk = 0 on ∂S. (11)

(ii) in-plane strong anchoring boundary conditions, which
are valid whenever the in-plane direction of n is fixed at the
boundary. In other words, whenever the angle α is prescribed
at the boundary.

C. Axisymmetric shapes

Hereinafter, we shall limit our analysis to 2D nematic films
schematised by axisymmetric surfaces of genus 1, bounded by
two fixed coaxial circular rings of radius r placed at distance 2h

one each other as displayed in Fig. 1. For this class of surfaces
the parallels and meridians (with tangent directions ep and
em, respectively) are lines of curvature, namely ep and em are
principal directions, and the vector field ω is divergence free

and tangent to the boundary [22]. Observe now that, according
to the convention on the orientation of the unit tangent vector
field l agreed in the previous subsection, at the upper (lower)
boundary l ≡ ep (l ≡ −ep) and k ≡ em (k ≡ −em). Thus, for
2D axisymmetric films, in view of (4b), the boundary condition
(10) reads

k(Ln · em)(t · ep) = 0 on ∂S. (12)

For the sake of simplicity, we limit further our analysis to
uniform equilibrium alignments, i.e., homogeneous solutions
to the director equation. Within this ansatz, Eq. (7) reduces to

Hτn = 0, (13)

that is satisfied on the catenoid (the only surface of revolution
bounded by the two given coaxial rings with vanishing mean
curvature) irrespective of the (uniform) alignment of the
molecules, or when the alignment of the director field is such
that the geodesic torsion τn vanishes identically. However, the
catenoid satisfies the shape equation (8) if and only if k = 0,
that is when the functional (1) reduces to the energy of a soap
film. The classical result on the equilibrium shape of a soap
film attached to two coaxial rings with the same radius is
then recovered. More interestingly, the equation τn = 0 implies
that the director field is aligned along a principal direction on
S. This means that, on the axisymmetric surface at hand, at
equilibrium the only two uniform alignments are those with
n oriented along the parallels (α ≡ αp = 0) or the meridians
(α ≡ αm = π/2).

III. EQUILIBRIUM SHAPES

To determine the equilibrium shapes of the nematic film
when the molecules are oriented along the parallels or meridi-
ans, we express the position vector r using cylindrical coordi-
nates, r = (ρ(z) cos ϕ,ρ(z) sin ϕ,z), with ρ(z) > 0 for all z ∈
[−h,h], ϕ ∈ [0,2π ], and introduce the dimensionless quanti-
ties 
 = ρ/r and ζ = z/h. Thanks to such parametrization
and nondimensionalization the energy functional (1) may be
rewritten as

W = 2πγ r2
∫ 1

−1
w(
,
′,
′′,α,α′)dζ, (14)

where the prime denotes differentiation with respect to ζ , and

w =
{

1 + c

[

2α′2 + 
′2 + ξ 2 cos2 α


2(ξ 2 + 
′2)
+ ξ 2
′′2 sin2 α

(ξ 2 + 
′2)3

]}

× 

√

ξ 2 + 
′2. (15)

The dimensionless parameters ξ ≡ h/r and c ≡ k/(2γ r2) in
(15) give, respectively, a measure of the slenderness and the
ratio between the magnitudes of the surface tension and elastic
stiffness of the nematic film.

The shape equations (8) corresponding to the two homo-
geneous equilibrium alignments, α ≡ αi (i = p,m), can be
written as (

d

dζ 2

∂w

∂
′′ − d

dζ

∂w

∂
′ + ∂w

∂


)∣∣∣∣
α≡αi

= 0. (16)
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Equation (16) with i = m is a fourth-order ordinary differential
equation (ODE), whereas for i = p (16) is a second-order
ODE. Since the boundary is assumed fixed, (16) must be solved
subject to the boundary conditions


(−1) = 
(1) = 1. (17)

These two boundary conditions are sufficient to determine the
equilibrium shapes when α ≡ αp. Two more boundary condi-
tions are instead necessary when the molecules are oriented
along the meridians. Since within the parametrization and
nondimensionalization adopted here the boundary condition
(12) reduces to


′′ sin2 α = 0 at ζ = ±1, (18)

the two additional boundary conditions to add to (16) with
i = m are


′′(−1) = 
′′(1) = 0. (19)

It is worth noting that when the molecules are oriented along
the parallels the boundary conditions (18) are identically
satisfied.

For the sequent stability analysis of the equilibria it is
convenient to specify also the boundary conditions on the angle
α. The natural anchoring boundary conditions result in the
Neumann conditions

α′(±1) = 0, (20)

while assuming that the molecules of the nematics are forced to
align tangentially to the delimiting rims leads to the Dirichlet
boundary conditions

α(±1) = 0. (21)

Obviously, both the uniform alignments α ≡ αi (i = p,m)
meet the boundary conditions (20), whereas α ≡ αp is the only
uniform equilibrium alignment, which satisfies the boundary
conditions (21).

A. Director field aligned along the parallels

Let us now examine the equilibrium configurations in
details and start with the case α ≡ αp. In this case, the shape
equation (16) reads

(
2 + c)

′′ − (
2 − c)(
′2 + ξ 2) = 0, (22)

and, as discussed above, has to be solved subject to the
Dirichlet boundary conditions (17). The resulting boundary
value problem (BVP) can be solved exactly to yield


±(ζ ) =
√

2 − a2c ± 2
√

1 − a2c cosh(ξaζ )

a
, (23)

where the solution with the subscript + (−) refers to the case
c < 1 (c > 1). When c = 1 the solution of the BVP is the
cylindrical shape 
 ≡ 1. The positive constant a in (22) is a
root of the equation

ξ = 1

a
arccosh

[
±a2(c + 1) − 2

2
√

1 − a2c

]
. (24)

For any fixed values of c � c ≈ 0.0257 and ξ > 0 Eqs. (24)
can be solved uniquely for a > 0. On the contrary, if 0 < c <

100

101

102

103

a

0 0.2 0.4 0.6 0.8 1
ξ

FIG. 2. Solutions to (24) for different values of c. Solid lines
correspond to stable equilibrium configurations in the case of in-plane
strong anchoring (see Sec. IV B). The dashed lines correspond instead
to unstable equilibria.

c, depending on the value of ξ , Eq. (24) may admit one,
two or three roots (see Fig. 2). In the limiting case c = 0,
(24) admits two roots for any ξ < ξ ≡ maxs>0

arccosh(s2−1)√
2s

≈
0.663, exactly one root if ξ = ξ and no root if ξ > ξ.

Figure 3 displays equilibrium shapes at different c. The
cylindrical configuration (c = 1) separates the equilibrium
shape with inward concavity (0 � c < 1) from those with
an outward concavity (c > 1). Consequently, at equilibrium
the Gaussian curvature of the nematic film is negative if
0 � c < 1, vanishing if c = 1 and positive if c > 1. In the
particular case c = 0, i.e., in the absence of the nematic
order, the equilibrium shape is a catenoid. On the contrary,
in the limit as c tending to infinity, that is when the effects
due to the nematic elasticity are dominant, the equilibrium
shape tends to a portion of a sphere. This result has an

FIG. 3. Equilibrium configurations with the molecules of the
nematics oriented along parallels for different values of c.
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intuitive explanation. At equilibrium, the molecules of the
nematics are aligned along circles whose radii is as large
as possible to diminish the bending energy. This effect is
in competition with the boundary conditions, which fix the
radius of the boundary circles, and the surface tension, which
pushes the nematic film to minimize its area and then towards
the catenoidal configuration. Thus, whenever the nematic
elasticity represents the dominant contribution to the energy
of the nematic film the circles far from the boundaries have
larger radii, which lends the equilibrium configuration a bulgy
shape.

B. Director field aligned along the meridians

When the molecules of the nematics are oriented along
the meridians, the free-energy density depends on 
′′ and, as
mentioned above, the associated shape equation is a fourth-
order ODE. The related BVP [(16)–(19)] can be solved only
numerically. In addition, only the natural anchoring boundary
conditions α′(±1) are compatible with this homogeneous
alignment.

As in the previous case, when c vanishes the equilibrium
shape is catenoidal. For greater c the nematic elasticity is more
significant and the equilibrium shape departs from the catenoid
maintaining an inward concavity (and hence the negativeness
of the Gaussian curvature), though. Also in the case α ≡ αm

our results are in good agreement with the physical intuition. In
fact, since the flux lines of the director field are open curves (the
meridians), the bending energy attains the absolute minimum
when the flux lines are straight. On the other hand, the effect of
the surface tension encourages the meridians to be catenaries
with inward concavity. The equilibrium configurations in Fig. 4
result then from the competition of these two effects. In the
limiting case as c → +∞ the dominant nematic elasticity
lends the equilibrium configuration the cylindrical shape.

FIG. 4. Equilibrium configurations with the molecules of the
nematics oriented along the meridians for different values of c.

IV. STABILITY

Let us denote Sp and Sm the shapes corresponding to the
homogeneous alignments α ≡ αp and α = αm, respectively,
and let (Sp,αp) and (Sm,αm) denote the two resulting equilib-
rium configurations. We now discuss the stability of the two
equilibrium configurations under natural and in-plane strong
anchoring boundary conditions.

A. Natural anchoring boundary conditions

Both the classes of equilibrium shape analyzed in Sec. III are
compatible with the natural anchoring boundary conditions.
The direct calculation of the energy of the two equilibria shows
that (Sm,αm) requires less energy than (Sp,αp) for any values
of the dimensionless parameters c and ξ . On the other hand,
the study of the positive definiteness of the second variations
at the two equilibria reveals that (Sm,αm) is stable, that is
the configuration (Sm,αm) is a local minimizer of the energy
functional (14)–(15), whereas (Sp,αp) is unstable.

For the sake of brevity and simplicity of presentation
we omit the details regarding the positive definiteness of
the second variation of the energy functional at (Sm,αm).
We instead focus on the equilibrium configuration (Sp,αp).
After some manipulations, the second variation of the energy
functional (14)–(15) at (Sp,αp) can be written as

δ2W [u,ϑ] = ξ 2

2

∫ 1

−1

[
u′2+2ξ 2(3c − 
2

±)

(
2± + c)2
u2

]
dζ

︸ ︷︷ ︸
≡δ2

shW [u]

+
∫ 1

−1

c
±√

′2±+ξ 2

[
ϑ ′2− 4cξ 2

(
2± + c)2
ϑ2

]
dζ

︸ ︷︷ ︸
≡δ2

naW [ϑ]

, (25)

where u ∈ H1
0([−1,1]) ≡ {f ∈ H1([−1,1]) : f (±1) = 0},

with H1([−1,1]) being the Hilbert space of functions defined
in [−1,1] whose square is integrable together with the square
of its weak first derivative, ϑ ∈ X ≡ {f ∈ H1([−1,1]) :
f ′(±1) = 0}, and 
± is given by (23). As an immediate
consequence of (25) we deduce that (Sp,αp) is stable if and
only if the quadratic functionals δ2

shW [u] and δ2
naW [ϑ] are

both positive definite. However, obviously, δ2
naW [ϑc] < 0 for

any nonzero constant ϑc. This implies that δ2
naW [ϑ] is not

positive definite and thus (Sp,αp) is an unstable equilibrium
configuration.

B. In-plane strong anchoring boundary conditions

We now assume that the molecules of the nematics are
constrained to align themselves tangentially to the boundaries.
We then consider the Dirichlet boundary conditions (21). As
mentioned before, the only homogeneous alignment compati-
ble with these boundary conditions is that with the molecules
oriented along the parallels.

In contrast to the case of natural boundary conditions, in
the case at issue the equilibrium configuration (Sp,αp) may be
stable for some values of c and ξ . To validate such a claim, we
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see that, setting

θ = ϑ

√√√√ 
±√

′2± + ξ 2

, (26)

the second variation at (Sp,αp) can be rewritten as δ2W [u,θ ] =
δ2
sh[u] + δ2

sa[θ ], with δ2
sh[u] as in (25),

δ2
saW [θ ]

= c

∫ 1

−1

{
θ ′2 − c[(2
2

± + c)(
′2
± + ξ 2) + ξ 2
2

±]


2±(
2± + c)2
θ2

}
dζ,

(27)

and u,θ ∈ H1
0([−1,1]). As in the case of natural anchoring

boundary conditions, (Sp,αp) is stable if and only if δ2
shW [u]

and δ2
saW [θ ] are positive-definite quadratic functionals.

Following standard arguments in calculus of variations, a
necessary and sufficient condition for δ2

shW [u] to be positive-
definite is that the interval [−1,1] contains no interior points
conjugate to −1 (see, for instance, Ref. [23], page 111). For
each c > 0 we then determine the least positive value of ξ , say
ξ (sh)

cr (c), such that both the boundary value problem

u′′ − 2ξ 2(3c2 − 
2
±)

(
2± + c)2
u = 0,

u(−1) = 0, u(1) = 0,

(28)

and the normalization condition u′(−1) = 1 (see Ref. [23],
page 106) are satisfied. Clearly, for ξ < ξ (sh)

cr (c), the boundary
value problem (28) admits only the trivial solution. Thus, the
interval [−1,1] contains no interior points conjugate to −1 and,
consequently, δ2

shW [u] is positive definite.
Following similar arguments one can determine a neces-

sary and sufficient condition for the positive definiteness of
δ2
saW [θ ]. Specifically, denoting ξ (sa)

cr (c) the least positive value
of ξ for which both the boundary value problem

θ ′′ + c[(2
2
± + c)(
′2

± + ξ 2) + ξ 2
2
±]


2±(
2± + c)2
θ = 0,

θ (−1) = 0, θ (1) = 0,

(29)

and the normalization condition θ ′(−1) = 1 are satisfied,
δ2
saW [θ ] is positive definite if and only if ξ < ξ (sa)

cr (c).
We now observe that δ2

shW [u] and δ2
saW [θ ] are both positive

definite, and hence δ2W [u,ϑ] is positive definite, if and only
if ξ < ξcr(c) ≡ min{ξ (sh)

cr (c),ξ (sa)
cr (c)}.

The critical curve ξ = ξcr(c) displayed in Fig. 5 has been
determined numerically by using MATLAB BVP4C solver. When
the molecules of the liquid crystal are anchored tangentially
at the boundaries, the equilibrium configuration (Sp,αp) is
locally stable if and only if ξ < ξcr(c). Beyond this critical
threshold, (Sp,αp) is no longer a local minimizer of the energy
functional (14)–(15) and the equilibrium solutions bifurcate to
configurations with nonhomogeneous alignments as depicted
in Fig. 5.

V. CONCLUSIONS

In summary, we have investigated the equilibrium problem
of fluid films endowed with nematic order. We have showed

0

0.5

1

1.5

2

a

0 0.5 1 1.5 2
ξ

FIG. 5. Critical threshold for the stability of (Sp,αp) as a function
of c. The equilibrium configuration (Sp,αp) is stable if and only if ξ �
ξcr(c). Beyond this critical value, at a stable equilibrium configuration,
the alignment of the molecules must be inhomogeneous.

that, as a result of the competing effects due to surface tension
and orientational order, the equilibrium shape of the nematic
film may have positive, vanishing or negative Gaussian curva-
ture. We have presented the case of a surface bounded by two
coaxial parallel rims and studied the existence, uniqueness, and
stability of the equilibrium configurations with homogeneous
alignments of the molecules of the nematics. Specifically, we
have considered two different sets of boundary conditions on
the director field: natural and in-plane strong anchoring. In
both cases we have determined locally stable equilibria, i.e.,
local minimizers of the energy functional.

Our analysis, though not exhaustive, shows that the inclu-
sion of terms accounting for the extrinsic curvature in the
energy functional renders the equilibrium problem of nematic
films complex and intriguing at the same time. Existence
and uniqueness of solutions to the equilibrium equations
corresponding to nonuniform alignments of the molecules
of the nematics and the search for global minimizers of the
energy functional represent challenges for future analytical and
numerical investigations. Another problem worth of investiga-
tion is the generalization of this problem in the framework
of the two-dimensional Frank’s formula (2), relaxing then
the one constant approximation. Motivated by the recent
results by Sonnet and Virga [24], we think that such a
generalization leads to a more intricate scenario in the energy
landscape.

Finally, our study lays the foundations for the design of
devices capable to control the shape of nematic films. To this
aim, note the analogy of the nematic films studied here with the
soft elastic sheets where surfaces with both positive, vanishing,
or negative Gaussian curvature can be produced by tuning the
amount of local growth or swelling [25]. In the case of nematic
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films, an external electric or magnetic field may control the
curvatures of the equilibrium shapes.
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APPENDIX A: SURFACE DIFFERENTIAL OPERATORS

1. Notation

We first introduce the terminology and notation adopted
throughout the paper. Let E be a three-dimensional Euclidean
point space and V be the Euclidean vector space associated to
E . The elements of V are three-dimensional vectors, which
are here denoted by lowercase boldface letters. The scalar,
vector, and tensor products of two vectors u and v are denoted
u · v, u × v and u ⊗ v, respectively. In components, adopting
the Einstein summation convention, we have u · v = uivi ,
(u × v)i = εijkujvk , (u ⊗ v)ij = uivj , with εijk being the
alternating symbol.

Second-order tensors are linear maps from V to V itself and
are denoted by capital boldface letters. The set of all second-
order tensors is denoted Lin(V). The composition of two
second-order tensors A, B is the tensor AB with components
(AB)ij = AihBhj . Once again, sum over repeated indices is
understood. The trace is the linear operator tr : Lin(V) → R,
which assigns to a second-order tensor A the scalar obtained
by saturation of the two indices of A, viz trA ≡ Aii . The super-
script suffix T to a second-order tensor indicates transposition:
the transpose of A ∈ Lin(V) is the second-order tensor AT

with components (AT )ij = Aji . Thanks to the definitions of
trace and transposition the bilinear map, which assigns to two
second-order tensors A and B the quantity A · B ≡ tr(AT B) =
AijBij is a scalar product in Lin(V).

Tensors of order n > 2 are multilinear maps from Vn to R.
However, in this paper we consider only one tensor of order
greater than 2: the Ricci alternator ε, which is a third-order
tensor with components εijk . Finally, in composing tensors
of different orders we agree to write the lower-order tensor
on the right and saturate all its indices. As examples of this
convention, regarding vectors as tensors of order one, Av is
a vector with components (Av)i = Aijvj , εA is a vector with
components (εA)i = εijkAjk , and εv is a second-order tensor
with components (εv)ij = εijkvk .

2. Differential operators on S: The extrinsic curvature tensor

The nematic film is represented by a regular oriented surface
S of E . Scalar, vector, and tensor fields are functions defined
on S, which assigns to each point p ∈ S an element of R, V or
Lin(V), respectively.

At each point p, S is endowed with a two-dimensional linear
space Tp called the tangent space of S at p. The normal ν(p)
at p ∈ S is one of the two unit vectors spanning the orthogonal
complement of the tangent space. Since S is orientable, at each
point p we can choose an orientation of the normal so that

the resulting unit vector field ν : S → V is differentiable. The
perpendicular projection onto the tangent plane, P ≡ I − ν ⊗
ν, with I being the identity tensor, is then a differentiable tensor
field.

A vector field v on S is tangential if v(p) ∈ Tp for all p ∈ S.
A tensor field A on S is tangential if, at each point p ∈ S,
A(p)w ∈ Tp for all w ∈ V , and A(p)ν(p) = 0.

Let φ be a differentiable scalar field on S. The surface gra-
dient of φ is the tangential vector field ∇sφ ≡ P∇φ. Similarly,
the surface gradient of a differentiable vector field v is the
tensor field ∇sv ≡ (∇v)P. The trace of ∇sv gives the surface
divergence of v, i.e.,

divsv ≡ tr(∇sv) = ∇v · P, (A1)

while twice the axial vector corresponding to the skew-
symmetric part of ∇sv gives the surface curl of v, i.e.,

curlsv ≡ −ε∇sv. (A2)

The tensor field L ≡ −∇sν is symmetric and tangential. At
each point p ∈ S, we may then regard L(p) as a linear map
from Tp to the tangent plane at p itself whose eigenvalues c1

and c2 and corresponding unit eigenvectors e1 and e2 are the
principal curvatures and directions at p, respectively. The first
two principal scalar invariants of L,

2H ≡ tr(L) = −divsν = c1 + c2, (A3)

and

K ≡ 1
2 [(trL)2 − trL2] = c1c2, (A4)

are the mean and Gaussian curvatures of S, respectively. Since
L is a tangential tensor field, the Cayley-Hamilton theorem
implies that

L2 − 2HL + KP = 0. (A5)

Let n be a tangent unit vector field. The normal curvature
and the geodesic torsion along n are defined, respectively, as

cn ≡ n · Ln and τn ≡ −t · Ln, (A6)

where t = ν × n. Similarly, ct ≡ Lt · t is the normal curvature
along t. From this definition and (A6) the extrinsic curvature
tensor L can be written as

L = cnn ⊗ n − τn(n ⊗ t + t ⊗ n) + ctt ⊗ t, (A7)

by which we readily deduce that

cn + ct = 2H and cnct − τ 2
n = K. (A8)

We conclude this section by reporting some identities that
will be useful in deriving the equilibrium equations. Let f , u,
w, and S be differentiable fields on S, with f being scalar
valued, u and w vector valued, and S tensor valued. The
following identities hold

∇s(f u) = u ⊗ ∇sf + f ∇su, (A9a)

divs(f S) = S∇sf + f divsS, (A9b)

divs(ST u) = (divsS) · u + S · ∇su, (A9c)

divs(u ⊗ w) = (∇su)w + (divsw)u, (A9d)

(∇su)u = curlsu × u + 1
2∇s(|u|2), (A9e)
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curls(f u) = ∇sf × u + f curlsu, (A9f)

curls∇sf = −ν × L∇sf. (A9g)

APPENDIX B: DERIVATION OF THE EQUILIBRIUM
EQUATIONS

In Ref. [5] we proved that the surface gradients of the
principal directions are given as follows

∇se1 = k1e2 ⊗ e1 + k2e2 ⊗ e2 + c1ν ⊗ e1, (B1a)

∇se2 = −k1e1 ⊗ e1 − k2e1 ⊗ e2 + c2ν ⊗ e2, (B1b)

where k1 and k2 are the geodesic curvatures of the curvature
lines of S, i.e., the integral curves of the principal directions on
S. Then combining (6), (A9a), and (B1) the surface gradients
of the director and conormal fields are, respectively,

∇sn = t ⊗ (∇sα − ω) + ν ⊗ Ln, (B2a)

∇st = −n ⊗ (∇sα − ω) + ν ⊗ Lt, (B2b)

where ω = −k1e1 − k2e2 is the vector parametrizing the spin
connection on S. From (B2), we readily deduce that

curlsn = (∇sα − ω) × t − ν × Ln, (B3a)

curlst = −(∇sα − ω) × n − ν × Lt, (B3b)

and

|∇sn|2 = |∇sα − ω|2 + |Ln|2. (B4)

From (A9f) and (B1) the surface curl of the vector
parametrizing the spin connection is found to be

curlsω = −curls(k1e1 + k2e2)

= −(∇sk1 × e1 + ∇sk2 × e2)

− |ω|2ν + k1c1e2 − k2c2e1

= −(∇sk2 · e1 − ∇sk1 · e2 + |ω|2)ν

+ (e2 ⊗ e1 − e1 ⊗ e2)Lω

= −ν × Lω + Kν, (B5)

where the identity

−(∇sk2 · e1 − ∇sk1 · e2 + |ω|2) = ν · curlsω = K (B6)

has been used. We refer the reader to Appendix C in Ref. [5]
for the proof of (B6). Finally, with the aid of (A9g) and (B5)
we conclude that

curls(∇sα − ω) = −ν × L(∇sα − ω) − Kν. (B7)

Next, on using (A9c), (A5), (B2), and the definition of the
extrinsic curvature tensor we deduce that

n · �sn = n · divs(∇sn)

= divs[(∇sn)T n] − ∇sn · ∇sn = −|∇sn|2, (B8)

t · �sn = t · divs(∇sn)

= divs[(∇sn)T t] − ∇sn · ∇st

= divs(∇sα − ω) − Ln · Lt

= �sα − divsω + 2Hτn, (B9)

thanks to which the director equation (5) can be rewritten as
(7), and

ν · �sn = ν · divs(∇sn)

= divs[(∇sn)T ν] + ∇sn · L

= divs(Ln) + Lt · (∇sα − ω). (B10)

We now report the identity

divsL = 2[∇sH + (2H 2 − K)ν], (B11)

the proof of which is contained in Appendix A of Ref. [19].
As a consequence of (A9c), (B2b), (B11) and the symmetry of
the extrinsic curvature tensor L, we have

divs(Lt) = divsL · t + L · ∇st

= 2∇sH · t − Ln · (∇sα − ω). (B12)

On the other hand, from (A7), (A8), (A9b), and (B2) we have

divs(Lt) = divs(−τnn + ctt)

= −∇sτn · n + ∇sct · t − (ctn + τnt) · (∇sα − ω)

= 2∇sH · t − ∇sτn · n − ∇scn · t

+ (ν × Lt) · (∇sα − ω). (B13)

Then, combining (B12) and (B13) yields

∇sτn · n + ∇scn · t = (Ln + ν × Lt) · (∇sα − ω). (B14)

From (A5), (A7), (A9f), (B3), and (B14) we obtain

curls(Ln) = ∇scn × n + cncurlsn − ∇sτn × t − τncurlst

= −(∇scn · t + ∇sτn · n)ν

+ (∇sα − ω) × (ν × Ln) − ν × L2n

= −[(ν × Lt) · (∇sα − ω)]ν − 2Hν × Ln + Kt.
(B15)

We are now in position to derive the equilibrium equations
(8) and (9). We first project (3a), with σ as in (4a), along the
normal ν and obtain

0 = ν · divsσ = divs(σ
T ν) + σ · L

= −kdivs[(ν · �sn)n] + 2H

(
γ + k

2
|∇sn|2

)

− k(∇sn)T (∇sn) · L, (B16)

that is equation (8). Next, since from (A3) and (A9d) one
deduces that

divs

[(
γ + k

2
|∇sn|2

)
P
]

= 2H

(
γ + k

2
|∇sn|2

)
ν

+ k

2
∇s(|∇sn|2), (B17)

on using (A9d), (A9e), (B4), (B7), (B10), and (B15), the
projection of (3a), with σ as in (4a), onto the tangent plane
yields

0 = Pdivs[(∇sn)T (∇sn) + (ν · �sn)ν ⊗ n] − 1
2∇s(|∇sn|2)

= Pdivs[(∇sα − ω) ⊗ (∇sα − ω) + Ln ⊗ Ln]

− (ν · �sn)Ln − 1
2∇s(|∇sn|2)
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= P[curls(∇sα − ω) × (∇sα − ω) + curls(Ln) × Ln]

+ 1
2∇s(|∇sα − ω|2 + |Ln|2 − |∇sn|2)

+ (�sα − divsω)(∇sα − ω) + [divs(Ln) − ν · �sn]Ln

= −Kν × (∇sα − ω) + (�sα − divsω)(∇sα − ω)

− [(ν × Lt) · (∇sα − ω)]ν × Ln − [Lt · (∇sα − ω)]Ln

= (�sα − divsω + 2Hτn)(∇sα − ω), (B18)

where the last equality is a consequence of the fact that, in the
light of (A7) and (A8),

[(ν × Lt) · (∇sα − ω)]ν × Ln + [Lt · (∇sα − ω)]Ln

= −[n · (∇sα − ω)]
[
(cn + ct)τnn + (

cnct − τ 2
n

)
t
]

+[t · (∇sα − ω)]
[(

cnct − τ 2
n

)
n − (cn + ct)τnt

]
= −2Hτn(∇sα − ω) − Kν × (∇sα − ω). (B19)

The derivation of (9) is then complete.
Observe now that the stress tensor (4a) is not symmetric

and, in view of (B10) and the symmetry of L, twice the axial

vector corresponding to the skew-symmetric part of σ is

εσ = −k(ν · �sn)t

= −k[divs(Ln) + L(∇sα − ω) · t]t. (B20)

On the other hand, from (A9d), (B2), (A5), (A7), and, again,
the symmetry of the extrinsic curvature tensor L, the surface
divergence of the macrotorque tensor (4b) reads

divsT = −kL(∇sn)T t + kdivs[(∇sn)T t]ν

− k(∇st)Ln − kdivs(Ln)t

= −kL(∇sα − ω) + k(�sα − divsω)ν

+ k[L(∇sα − ω) · n]n − k(L2n · t)ν − kdivs(Ln)t

= k(�sα − divsω + 2Hτn)ν

− k[divs(Ln) + L(∇sα − ω) · t]t. (B21)

Thus, in the light of (7), (B20) and (B21), the equation of
balance of macrotorques is identically satisfied.
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